
Mitigation of Make Span Time in Job Shop Scheduling
Problem Using Gannet Optimization Algorithm
K.R. Anil Kumar1,* and J. Edwin Raja Dhas2

1 Research Scholar, Department of Mechanical Engineering, Noorul Islam Centre for Higher Education,
 Kumarakovil Tamil Nadu- 629180, India.
2 Head, Department of Automobile Engineering,
Noorul Islam Centre for Higher Education, Kumarakovil Tamil Nadu- 629180, India.

Abstract

INTRODUCTION: Effective Job Shop Scheduling (JSS) was required in the manufacturing industry to satisfy demand
productivity, reduce production costs, and increase competitiveness in a market that was becoming more active and
demanding of a variety of goods.
OBJECTIVES: The Job Shop Scheduling Problem (JSSP) has gained importance in recent years as a result of rising customer
demand across a variety of categories, shifting markets due to increased global competition, and the quick development of
new technology. The proper scheduling and sequencing of jobs on machines was one of the fundamental and important
issues that a shop or factory management faces.
METHODS: Different machines can be found in a shop, and depending on the task, one or more of these equipment may
need to be used in a particular order. The aim in correcting this issue might be to reduce the make span. For each machine,
the jobs sequencing must be done once the make span had been reduced.
RESULTS: To solve these issues, (GOA) was used to reduce make span time. Both jobs and machines were fed as an input
to the proposed optimization and to found optimal job scheduling with low make span time. The outcome of the proposed
work was compared the outcomes of various optimization strategies in JSSP in order to minimize the make span time.
CONCLUSION: The objective of optimization was to reduce the total amount of time or duration required to complete a
task. A proposed gannet optimization method was employed to reduce the make span time in various sectors to resolve the
job shop scheduling problem.

Keywords: job shop scheduling problem, makespan, gannet optimization algorithm, machine and jobs.

Received on 07 December 2022, accepted on 12 June 2023, published on 26 June 2023

Copyright © 2023 Kumar et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-SA 4.0,
which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original
work is properly cited.

doi: 10.4108/eetsis.2913

1. Introduction

In order to improve production, various manufacturing tasks
are allocated to machines at appropriate times. This is known
as the job shop scheduling problem (JSSP), also termed as
JSS [1]. The goal of JSSP is to determine the best timetable
for distributing shared resources over time to competing tasks
in order to decrease the total amount of time required to finish
all tasks. Since 1950, scheduling has gained a lot of attention
due to the direct impact it has on the productivity and
expenses of a manufacturing system [23]. Scheduling is the

process of allocating a group of resources to a group of
activities over a predetermined period of time. In referring to
machines, the tasks are referred to as operations and the
resources as machines [2]. Thus, selecting a working order
that optimises the production system is the process of
scheduling. In a workshop, each task is carried out by each
machine in a specific order, with each machine only able to
handle one task at a time [3]. The vast majority of research
focuses on decreasing make span time the total amount of
time required to complete every operation on a schedule and
improving flow, which is the amount of output or jobs
produced per unit of time. The scheduling of shops is an
illustration of a nondeterministic polynomial complete issue.

*Corresponding author. Email: anilkumarniu742@gmail.com

EAI Endorsed Transactions on
Scalable Information Systems

| Volume 10 | Issue 5 |

https://creativecommons.org/licenses/by-nc-sa/4.0/

These issues are referred to be "Hard" issues since the
processing time increases exponentially as the issue's size
increases linearly [24]. The total duration indispensable for
all shop floor machines to accomplish all operations on all
tasks is referred to as make span time [4].

The main subject of present research in this field is the
scheduling application of heuristics and meta-heuristics [5].
Genetic algorithm was first proposed by John Holland in
1975 [9]. For the purpose of solving an optimization problem,
a population of possible solutions is generated. A genetic
procedure known as crossover combines two chromosomes
to create a new chromosome. Implementing the mutation
operation should come after crossing. Mutation protects the
method from regional extreme points [10]. Although the
genetic algorithm performs well, it is expensive, difficult to
optimize and consuming much computation time for complex
scheduling. Afterward a PSO models is used to solve the
JSSP. A flock of birds looking for food served as the model
for the evolutionary algorithm known as PSO. A population
of randomly generated particles with each having a velocity
and position serve as the foundation for this population-based
search procedure [11]. The enormously complicated nature of
production scheduling problems is also addressed by fuzzy
logic, genetic algorithms [6], simulated annealing [8] and
particle swarm optimization with Cauchy distribution [7].

Convolutional approaches are the most efficient in cutting
down on make-span time, but existing methods also have
some minor drawbacks, such as slow convergence and a
tendency to not provide an appropriate optimal solution,
failure to identify the best optimal value, and inability to
identify any additional local optima after the local optima
have been attained [12].

Job scheduling is the process of managing and executing
tasks on a cloud computing platform, such as Google Cloud.
Job scheduling can help you optimize your resource
utilization, automate workflows, and improve performance
and reliability. Quality of experience framework for Cloud
computing (QoC) for monitoring the Quality of Experience
(QoE) of the end user using video streaming services in the
cloud computing [32], fog computing [33] ,IOT platform [34]
,protect data in cloud computing [35], Quality Of Service
(QoS)[36], Quality of Experience(QOE)[37],[38],[39]
,[40],[41] to ensure the performance of executing tasks
environment in job shop scheduling but consume more time
in execution.

To overcome these drawbacks, a novel proposed method
is employed to determine optimal scheduling and minimize
make span time. Jobs and machines are initialized to GOA in
order to determine the optimal job shop scheduling with low
make span time. The main contribution of a novel approach
is discussed as follows.

• The advanced gannet optimization algorithm (GOA) is
utilised to determine a typical job shop schedule which
can reduce the make span time in a sector.

• At first, a number of machines and the number of jobs
are given as an input to GOA.

• A single machine completes a task in a given period, and
a GOA analyses each machine's process and the entire
work volume to schedule task effectively.

• The performance of the proposed method is compared to
existing approaches, and the more efficient average
benchmark make span times provided by the proposed
GOA are more in line with the real average benchmark
make span times.

Rest of the manuscript structure are as follows; section 2
describes several researches related to job shop scheduling
and minimize make span time. Section 3 describes proposed
method problem formulation. Section 4 describes proposed
methodology for job shop scheduling. Section 5 describes
proposed experimental investigation and discussion. Section
6 describes conclusion.

2. Literature Review

Many strategies are developed to increase production while
reducing make span time. The following techniques for job
shop scheduling and minimising make span time were
covered.

Kress and Müller [13] had presented a solution of FJSP via
mathematical model. Two mathematical approaches were
utilized to analyse the performance of the method namely,
mixed-integer programming model and constraint
programming model. An impact of the method is taking long
time for calculating numerous number of machines and
workers. Zhang, et al. [14] had presented an Evolving
Scheduling Heuristics through Genetic Programming to solve
flexible job-scheduling scheduling problem. The outcome
showed the method was more efficaciously achieved
interpretable scheduling heuristics with more minuscule size
and less unique features. The method contains some
constraints like that the rule is engender by CCGP up to the
selective features. Due to the present of more features in rules,
the method is arduous to explicate the rules.

Wang and Zhu [15] had suggested a method of
mathematical model to resolve the flexible job shop
scheduling problem (FJSP). A hybrid algorithm which
combines genetic algorithm and tabu search is to solve the
FJSP-SDST-LT. The method gives same outcome as another
perpetual models, however, the method is not fit for
astronomically immense number of variables and equation
since it takes more time to give a result. Juvin et al. [16] had
presented Logic-Based Benders Decomposition for the Pre-
emptive Flexible Job-Shop Scheduling Problem.
Mathematical and constraint programming models enable the
resolution of this problem for small instances. However, as an
NP-hard problem, the cost of solving grows rapidly when
considering larger instances. In this regard, propose a logic-
based Benders decomposition that relies on an efficient
branch-and-bound procedure to solve the sub problem
representing a pure (non-flexible) pre-emptive job-shop
scheduling problem. Yet, the dimension of a number of jobs

EAI Endorsed Transactions on
Scalable Information Systems

| Volume 10 | Issue 5 |

and machine in this method is not dependent on processing
time so the scheduling time is erroneous.

Dehghan-Sanej, et al. [17] had presented a simulation
model to resolve JSSP as well as reducing make span time.
The model had been minimizing the make span time using
meta-heuristic algorithms. The method outcome is very well,
yet it is only suited for diminutive quandaries since the
simulation of immensely quandary take more execution time.
Dai et al. [18] had developed an optimization model with
numerous objectives was developed with the aim of reducing
energy consumption and to solve a problem of make span
with flexible workshop scheduling based on by transportation
constraints. An improved genetic algorithm was used to
completely resolve the problem. This model offers high
precision and quick computation, but it falls short of
effectively reducing energy usage since it does not account
for unforeseen occasions like task cancellation, machine
failure, and rush orders.

Meng et al. [19] presented a method for solving the JSSP
that makes use of six dynamic MILP models and an On/Off
switching strategy. Numerical tests were performed using
CPLEX SLOVER to confirm the accuracy and efficiency of
each MILP model. But it is less effective and more difficult.
Mihoubi, et al. [20] had represented that in order to the
realistic FJSSP and resolve the RS, a GA-based
computational technique be used to control the employment
of a hybrid neural component and a DES model. The system,
however, was unable to gather accurate and reliable data,
which was necessary for it to produce results that were
satisfactory.

Caldeira and Gnanavelbabu [21] had suggested that an
improved Jaya algorithm be created to address the issue of
job shop scheduling. 203 benchmark instances were used to
evaluate this method's performance. However, this approach
is inappropriate for the industry's multi-objective job
scheduling. Li, et al. [22] had presented to reduce the JSSP
with transportation and setup times, the improved Jaya
(IJaya) algorithm has been improved. An integer
programming technique was created to reduce energy usage
and achieve goals. However, this is overly intricate and does
not offer greater precision.

Wang, et al. [25] had developed an improved GA which
utilised local search to efficiently and effectively solve
Sudoku puzzles, but it is still needed to increase the
performance of LSGA by integrating it with other Sudoku-
solving techniques. Li, J. Y et al. [26] had developed a novel
three-layer DDE framework with adaptive resource
allocation (DDE-ARA), including the algorithm layer for
evolving various differential evolution (DE) populations, the
dispatch layer for dispatching the individuals in the DE
populations to different distributed machines, and the
machine layer for accommodating distributed computers.

Author
name

Techniques Advantage Disadvantage

Ge, Yu et
al. [27]

distributed
memetic
algorithm

Enhancing
database
privacy and
utility

Consume
more time

Li, Zhan
et al. [28]

DDEA
framework
with
perturbation-
based
ensemble
surrogates

Efficient
mechanism to
enhance
performance

But its
expensive

Ge, Caoa
et al. [29]

set-based
adaptive
distributed
differential
evolution
algorithm

An island
model to
maintain
population
diversity

Hybrid
mechanism is
not work out.

Ge,
Wang et
al. [30]

information-
driven
genetic
algorithm

To achieve
optimal
anonymization
based on
attribute
generalization
and record
suppression.

Consume
more time

Ge,
Orlowska
et al. [31]

similarity-
based
alignment
operator

To adjust the
fragment
orders in
different
database
fragmentation
solutions.

complication

 The above methods minimizes make-span time most
effectively [17], [26] but also have some major drawbacks,
take more time [13], [25] like slowdown convergence [21],
[29] a tendency to not provide an appropriate optimal solution
[16], difficulty to determine the best present optimal value
[22], [31].To overcome these drawback proposed method is
employed which find the optimal scheduling process with
low make span time.

3. Problem formulation

The task of assigning a number of jobs to machines so that
one or more criteria are optimised is termed as JSSP. A
particular machine must process each piece of work
continuously for a predetermined period of time. Arranging
𝑗𝑗𝑡𝑡ℎ job on 𝑚𝑚𝑡𝑡ℎ machine with goal of abbreviating the
scheduled low make span time of all jobs. Each of the 𝑗𝑗𝑡𝑡ℎ jobs
consists of numerous tasks that must be completed on 𝑚𝑚𝑡𝑡ℎ
various machines within a specified amount of time. Each
work should be performed exactly once on each machine, and
only one machine can perform the same task at once. To
improve production efficiency, reduce expenses, and/or
improve product quality, effective solutions to the JSSP are
essential. Modelling of job shop scheduling is illustrated in
figure 1.

EAI Endorsed Transactions on
Scalable Information Systems

| Volume 10 | Issue 5 |

Figure 1. Job scheduling in an industry.

Let as consider, 𝑗𝑗 as task/jobs available in a
company/industry, 𝑚𝑚 denote machines, 𝑛𝑛 and 𝑞𝑞 denotes
number of machine and queue, and queues respectively. As
𝑗𝑗𝑖𝑖(𝑡𝑡) denotes the 𝑖𝑖𝑡𝑡ℎ job with its processing time𝑡𝑡, and 𝑞𝑞𝑖𝑖 is
termed as 𝑚𝑚𝑡𝑡ℎ machine 𝑗𝑗𝑡𝑡ℎ queue. Each machine has various
execution time and scheduling time for complete a task. The
jobs and machines of an industry is stated as below,

𝐽𝐽 = 1,2,3, … . 𝑗𝑗, and 𝑀𝑀 = 1,2,3, … .𝑚𝑚 (1)

And the queue is expressed as,

𝑞𝑞 = 1,2,3, … . , 𝑗𝑗 × 𝑚𝑚, 𝑗𝑗 × 𝑚𝑚 + 1 (2)

Where, 𝑗𝑗 × 𝑚𝑚 + 1 denotes the last operation of a machine.
The make span time of a machine is stated as,

min𝐹𝐹𝑛𝑛×𝑚𝑚+1 (3)

𝑠𝑠. 𝑡𝑡; 𝐹𝐹𝑘𝑘 < 𝐹𝐹𝑗𝑗 − 𝑇𝑇𝑗𝑗 , 𝑗𝑗 = 1, 2, … . . ,𝑛𝑛 × 𝑚𝑚 + 1; 𝑘𝑘 ∈ 𝑃𝑃𝑗𝑗 (4)

𝐹𝐹𝑗𝑗 ≥ 0, 𝑗𝑗 = 1, 2, … … ,𝑛𝑛 × 𝑚𝑚 + 1 (5)

∑ 𝑒𝑒𝑗𝑗𝑚𝑚 ≤ 1,𝑗𝑗∈𝐴𝐴(𝑡𝑡) 𝑚𝑚 ∈ 𝑀𝑀; 𝑡𝑡 ≥ 0 (6)

The objective function used to reduce the make span time

is indicated by Eqn. (3). Eqn. (4) denotes the order of priority
among the process. A machine can only process one task at a
time, according to equation (5), and Eqn. (6) define the non-
negative finishing times. Where, 𝐴𝐴(𝑡𝑡) represents the total
number of tasks processed at any given time𝑡𝑡, and 𝐹𝐹𝑗𝑗 and 𝑇𝑇𝑗𝑗
stand for the completion time and operation time of
operation𝑗𝑗, correspondingly. When a job 𝑗𝑗 needs to be
processed on a machine𝑚𝑚, 𝑒𝑒𝑗𝑗𝑚𝑚 is set to 1, else it is set to zero.
The activities are interconnected, and due to given
constraints, each action 𝑗𝑗 must be scheduled after all earlier
operations 𝑃𝑃𝑗𝑗 have finished. Operation 𝑗𝑗 can only be planned
if the relevant machine is idle. To obtain the optimal make
span quickly and with fewer iterations, the estimation of an
appropriate value and a quick solution to satisfying the
problems are important. Utilize the fact that using a novel
optimization to solve the problem quickly and minimizing the
make span time.

4. Proposed methodology for job shop
scheduling

Job shop scheduling and make span time reduction are
significant issues for the industrial sector. A benchmark job
schedule is designed to reduce make span time while
maintaining high production. In order to reduce the make
span time and assign the suitable job of a machine, a novel
gannet optimization approach is introduced to schedule a job.
The schedules are generated using a priority rule, where the
novel gannet optimization algorithm determines the
priorities. Both machine and jobs are initialized to find the
optimal schedule which have low make span time. GOA
analyses the input to plan the task at a low make span time by
taking into account the total number of machines and jobs.
Through GOA, the solutions are updated to discover the best
one. Until the best ideal option is identified, the procedure is
repeated. Effectively reducing the make span time is the
suggested way. A detail study of proposed GOA is given
below.

4.1. Background of Gannet optimization
algorithm

This section will discuss the gannet optimization algorithm, a
new meta-heuristic optimization technique that was inspired
by gannets' predatory behaviour. To imitate the predatory
behaviour of pond geese, two stages of exploration and
exploitation are proposed in the pond goose optimization
method. There are a total of four different predation
behaviours present in the exploration and exploitation stages:
V-shaped dive mode, U-shaped dive mode, rapid rotation,
and random wandering.

Initialization phase
It starts with the collection of random results represented in
Eq. (7), at that time the best solution is considered to be the
optimal best solution.

𝑋𝑋 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝑥𝑥1,1 … 𝑥𝑥1,𝑗𝑗
𝑥𝑥2,1 … 𝑥𝑥2,𝑗𝑗
⋮ ⋮ ⋮

… 𝑥𝑥1,𝐷𝐷𝑖𝑖𝑚𝑚−1 𝑥𝑥1,𝐷𝐷𝑖𝑖𝑚𝑚
… 𝑥𝑥2,𝐷𝐷𝑖𝑖𝑚𝑚−1 𝑥𝑥2,𝐷𝐷𝑖𝑖𝑚𝑚
⋮ ⋮ ⋮

⋯ ⋯ ⋯
⋮ ⋮ ⋮

𝑥𝑥𝑁𝑁−1,1 … 𝑥𝑥𝑁𝑁−1,𝑗𝑗

⋯ ⋯ ⋯
⋮ ⋮ ⋮
… 𝑥𝑥𝑁𝑁−1,𝐷𝐷𝑖𝑖𝑚𝑚−1 𝑥𝑥𝑁𝑁−1,𝐷𝐷𝑖𝑖𝑚𝑚

𝑥𝑥𝑁𝑁,1 … 𝑥𝑥𝑁𝑁,𝑗𝑗 … 𝑥𝑥𝑁𝑁,𝐷𝐷𝑖𝑖𝑚𝑚−1 𝑥𝑥𝑁𝑁,𝐷𝐷𝑖𝑖𝑚𝑚 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

(7)

𝑥𝑥𝑖𝑖,𝑗𝑗 = 𝑟𝑟1 ∗ �𝑈𝑈𝐵𝐵𝑗𝑗 − 𝐿𝐿𝐵𝐵𝑗𝑗� + 𝐿𝐿𝐵𝐵, 𝑖𝑖 = 1,2 … ,𝑁𝑁, 𝑗𝑗 =
1,2, … ,𝐷𝐷𝑖𝑖𝑚𝑚 (8)

Where, 𝑥𝑥𝑖𝑖 signifies the position of the 𝑖𝑖th gannet. Each 𝑥𝑥𝑖𝑖,𝑗𝑗

in the matrix 𝑋𝑋 can be calculated by equation (8). 𝑁𝑁 is the
number of individuals in the population. 𝑈𝑈𝐵𝐵𝑗𝑗 𝑎𝑎𝑛𝑛𝑎𝑎 𝐿𝐿𝐵𝐵𝑗𝑗 are the
lower and upper bounds of the 𝑗𝑗 th dimension of the
problem. 𝑟𝑟1 is a random number between 0 and 1, and 𝐷𝐷𝑖𝑖𝑚𝑚
signifies the dimensional size of the problem.

Exploration phase
The depth of the prey's dive is taken into account when
adjusting the gannet's dive pattern after it has located its prey

EAI Endorsed Transactions on
Scalable Information Systems

| Volume 10 | Issue 5 |

in the water. A long, deep U-shaped dive and a quick, shallow
V-shaped dive are the two types of dives available.

𝑡𝑡 = 1 − 𝐼𝐼𝑡𝑡
𝑇𝑇𝑚𝑚𝑇𝑇𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 (9)

𝑎𝑎 = 2 ∗ 𝑐𝑐𝑐𝑐𝑠𝑠 (2 ∗ 𝜋𝜋 ∗ 𝑟𝑟2) ∗ 𝑡𝑡 (10)

𝑏𝑏 = 2 ∗ 𝑉𝑉 (2 ∗ 𝜋𝜋 ∗ 𝑟𝑟3) ∗ 𝑡𝑡 (11)

V(x) = �
− 1

𝜋𝜋
∗ x + 1, x ϵ (0,𝜋𝜋)

1
𝜋𝜋
∗ x − 1, x ϵ (𝜋𝜋, 2𝜋𝜋)

 (12)

Where, 𝑇𝑇𝑚𝑚𝑎𝑎𝑥𝑥_𝑖𝑖𝑡𝑡𝑒𝑒𝑟𝑟 is the maximum number of iterations,

𝐼𝐼𝑡𝑡 the number of current iterations, 𝑟𝑟2 and 𝑟𝑟3 are both random
numbers between 0 and 1.

Exploitation phase
The gannet rushes into the water in the methods mentioned
above, and two further actions are needed to take advantage
of it. In order to catch the fish desperately attempting to
escape, the gannet also expends a great deal of energy.
Explain the capture capacity in equation (13).

𝐶𝐶𝑎𝑎𝐶𝐶𝑡𝑡𝐶𝐶𝑟𝑟𝑎𝑎𝑏𝑏𝑖𝑖𝐶𝐶𝑖𝑖𝑡𝑡𝐶𝐶 = 1
𝑅𝑅∗𝑡𝑡2

 (13)

𝑡𝑡2 = 1 + 𝐼𝐼𝑡𝑡
𝑇𝑇𝑚𝑚𝑇𝑇𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 (14)

𝑅𝑅 = 𝑀𝑀∗𝑣𝑣𝑣𝑣𝑣𝑣2

𝐿𝐿
 (15)

𝐿𝐿 = 0.2 + (2 − 0.2) ∗ 𝑟𝑟6 (16)

Where 𝑣𝑣𝑒𝑒𝐶𝐶 = 1.5𝑚𝑚/𝑠𝑠 is the gannet's speed in the water

while ignoring the current level of water resistance, 𝑀𝑀=2.5kg
is the bird's weight, and 𝑟𝑟6 is a random number between 0 and
1. If the gannet's capturing range is within the catchable prey's
range, the location is updated with a sudden turn; otherwise,
if the gannet is unable to catch the flexible fish, it will wander
in a Levy way to look for its next target at random Eq (17).

𝑀𝑀𝑋𝑋𝑖𝑖(𝑡𝑡 + 1) =

�
𝑡𝑡 ∗ 𝑎𝑎𝑒𝑒𝐶𝐶𝑡𝑡𝑎𝑎 ∗ �𝑋𝑋𝑖𝑖(𝑡𝑡) − 𝑋𝑋𝐵𝐵𝑣𝑣𝐵𝐵𝑡𝑡 (𝑡𝑡)� + 𝑋𝑋𝑖𝑖(𝑡𝑡), 𝐶𝐶𝑎𝑎𝐶𝐶𝑡𝑡𝐶𝐶𝑟𝑟𝑎𝑎𝑏𝑏𝑖𝑖𝐶𝐶𝑖𝑖𝑡𝑡𝐶𝐶 ≥ 𝑐𝑐
𝑋𝑋𝑏𝑏𝑣𝑣𝐵𝐵𝑡𝑡 (𝑡𝑡) − �𝑋𝑋𝑖𝑖(𝑡𝑡) − 𝑋𝑋𝐵𝐵𝑣𝑣𝐵𝐵𝑡𝑡 (𝑡𝑡)� ∗ 𝑃𝑃 ∗ 𝑡𝑡, 𝐶𝐶𝑎𝑎𝐶𝐶𝑡𝑡𝐶𝐶𝑟𝑟𝑎𝑎𝑏𝑏𝑖𝑖𝐶𝐶𝑖𝑖𝑡𝑡𝐶𝐶 < 𝑐𝑐

(17)

𝑎𝑎𝑒𝑒𝐶𝐶𝑡𝑡𝑎𝑎 = 𝐶𝐶𝑎𝑎𝐶𝐶𝑡𝑡𝐶𝐶𝑟𝑟𝑎𝑎𝑏𝑏𝑖𝑖𝐶𝐶𝑡𝑡𝐶𝐶 ∗ |𝑋𝑋𝑖𝑖(𝑡𝑡) − 𝑋𝑋𝑏𝑏𝑣𝑣𝐵𝐵𝑡𝑡(𝑡𝑡)| (18)

𝑃𝑃 = 𝐿𝐿𝑒𝑒𝑣𝑣𝐶𝐶 (𝐷𝐷𝑖𝑖𝑚𝑚) (19)

Where 𝑋𝑋𝐵𝐵𝑣𝑣𝐵𝐵𝑡𝑡 (𝑡𝑡) is the best performing individual in the
current population, 𝑐𝑐=0.2 is a constant whose value was
determined after several experiment and 𝐿𝐿𝑒𝑒𝑣𝑣𝐶𝐶 () is the Levy
fight function, which can be obtained from eq. (19).

𝐿𝐿𝑒𝑒𝑣𝑣𝐶𝐶 (𝐷𝐷𝑖𝑖𝑚𝑚) = 0.01 ∗ µ∗𝜎𝜎

|𝑣𝑣|
1
ᵝ
 (20)

𝜎𝜎 = �
Ґ(1+ᵝ)∗ 𝐵𝐵𝑖𝑖𝑛𝑛�𝜋𝜋ᵝ2 �

1
ᵝ

Ґ�1+ᵝ2 �∗ᵝ∗2
ᵝ−1
2

� (21)

4.2. GOA based optimal job shop scheduling
for minimizing make span time

Step 1: Initialization
The GOA population's random solution is initiated at this
moment, and the best solution is considered to be the best
overall solution. Based on this initialize, the random selection
of number of machine (𝑚𝑚) and number of jobs(𝑗𝑗) are
initialized to find the best optimal scheduling solution.

𝐽𝐽 = �𝐽𝐽1, 𝐽𝐽2, … , 𝐽𝐽𝑛𝑛� and 𝑀𝑀 = {𝑀𝑀1,𝑀𝑀2, … ,𝑀𝑀𝑧𝑧} (22)

Where, 𝑛𝑛 and 𝑧𝑧 denotes number of populations.
Step 2: Fitness function
The objective function is a way to find the optimum solution
by maximising or minimising the functions. In the proposed
model, the fitness function is considered as a make span time.

𝐹𝐹𝑖𝑖𝑡𝑡𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠 = min 𝐹𝐹𝑛𝑛∗𝑚𝑚+1 (23)

Step 3: Update the solution
The two phases of GOA's design are exploration and
development. The exploration process contains the U- and V-
shaped diving patterns of gannets to determine the best area,
while the development phase uses a sudden rotation and
random walk to develop a better solution. The fitness value
of each iterations are updated to find the best solution. Using
eq. (17) to update the solution to find the best one. Figure 2
shows the Flow chart of proposed job scheduling model.
Step 4: Process will stop to get a best global optimal value

Figure 2. Flow chart of proposed job scheduling
model.

EAI Endorsed Transactions on
Scalable Information Systems

| Volume 10 | Issue 5 |

5. Experimental investigation and
discussion

This section examines 23 different benchmark problems and
the impact of three different optimization approaches,
including DE, SSO, and ESSO. Comparing the
GOA methodology to other JSSP algorithms, it takes the least
amount of time to complete the task. When compared to other
conventional approaches, it is clear that soft computing
techniques have a larger potential for solving Job Shop
Scheduling Problems (JSSP). Proposed methodology seems
to have a faster calculation time than traditional problem-
solving techniques, which is its main advantage. The
complete proposed model is implemented, and the
performance is analysed using MATLAB platform. Table -1
displays the computational outcomes of several techniques on
benchmark problems. It shows that GOA method
outperforms other algorithms.

23 benchmark problems are taken from table1 (a) and 1(b)
to calculate the make span time in various algorithms. A
comparison is made between the ant colony optimization
algorithm (ACA), the hybrid generic algorithm (HGA), the
differential evolutionary algorithm (DE), and the social
spider optimization algorithm (SSO), genetic algorithm
(GO), particle swarm optimization (PSO), opposition based
genetic algorithm, the greedy randomised adaptive search
procedure algorithm (GRASP), and opposition-based particle
swarm optimization with Cauchy distribution. Only a low
span is provided by the suggested solution, which also
resolves all JSSP quandaries. The appropriate GOA solution
for the benchmark problems LA 12, LA 13, LA 14, LA 15,
LA 17, LA 18, LA 19, LA 20, LA 22, LA 23, LA 24, LA 25,
LA 26, LA 28, LA 29, LA 30, LA 32, LA 33, LA 34, LA 35,
LA 37, LA 38, and LA 39 is 1038, 1149, 1291, 1206, 783,
843, 841, 900, 925, 1029, 944, 975, 1214, 1215, 1160, 1353,
1848, 1717, 1720, 1886, 1395, 1190, 1232.

Table 1 (a). Investigating state -of -the art methodologies on benchmark problems

Problem B.M HGA ACA GRASP DE SSO ESSO
LA 12 1139 1039 1039 1039 1039 1039 1039
LA 13 1350 1150 1150 1150 1150 1150 1150
LA 14 1492 1292 1292 1292 1292 1292 1292
LA 15 1307 1207 1207 1207 1207 1207 1207
LA 17 794 784 789 784 789 788 785
LA 18 899 848 848 848 848 848 848
LA 19 887 844 842 842 842 842 842
LA 20 955 907 902 907 902 902 902
LA 22 972 935 938 960 934 934 927
LA 23 1088 1032 1032 1032 1032 1032 1032
LA 24 987 953 959 978 951 947 947
LA 25 997 981 977 1028 977 977 977
LA 26 1318 1218 1218 1271 1218 1218 1218
LA 28 1316 1216 1227 1293 1227 1217 1217
LA 29 1252 1160 1177 1293 1177 1170 1164
LA 30 1455 1355 1355 1368 1355 1355 1355
LA 32 1950 1850 1850 1850 1850 1850 1850
LA 33 1819 1719 1719 1719 1719 1719 1719
LA 34 1821 1721 1725 1753 1725 1723 1723
LA 35 1988 1888 1888 1888 1888 1888 1888
LA 37 1497 1407 1412 1457 1408 1403 1397
LA 38 1296 1196 1196 1267 1196 1196 1196
LA 39 1333 1233 1240 1290 1238 1238 1233

Table 1 (b). Investigating state-of -the art methodologies on benchmark problems

Problem GA OGA PSO OPSO GOA
LA 12 1039 1039 1039 1039 1038
LA 13 1150 1150 1150 1150 1149
LA 14 1292 1292 1292 1292 1291
LA 15 1207 1207 1207 1207 1206
LA 17 788 787 787 786 783
LA 18 848 848 848 848 843

EAI Endorsed Transactions on
Scalable Information Systems

| Volume 10 | Issue 5 |

LA 19 842 842 842 842 841
LA 20 902 902 902 902 900
LA 22 934 933 932 931 925
LA 23 1032 1031 1032 1032 1029
LA 24 978 979 965 964 944
LA 25 980 979 978 977 975
LA 26 1229 1220 1219 1218 1214
LA 28 1293 1277 1267 1239 1215
LA 29 1293 1290 1287 1100 1160
LA 30 1368 1360 1358 1357 1353
LA 32 1850 1849 1849 1850 1848
LA 33 1719 1718 1719 1719 1717
LA 34 1753 1769 1755 1724 1720
LA 35 1888 1889 1887 1889 1886
LA 37 1399 1398 1396 1397 1395
LA 38 1198 1197 1195 1194 1190
LA 39 1256 1245 1244 1237 1232

Similar to this, different standard deviation conditions are
used to compute the benchmark issues. As shown in Table2,
the terms actual make span time, best GOA, worst, average,
standard deviation, and ARPD refer to the variables,
respectively. The proposed model standard deviation denotes

the consistency and dependability of each benchmark
problem. A low standard deviation value indicates that the
algorithm is more stable and dependable when searching for
the best solution.

Table 2. Investigating the performance of GOA with different standard measures

Problem

Actual
make span
time

Best
GOA

Worst

Average

Std.
Deviation

ARPD

LA 12 1139 1038 1225 1082 79.8289 0.237247
LA 13 1350 1149 1236 1193 35.5183 0.295217
LA 14 1492 1291 1365 1328.5 30.2112 0.214009
LA 15 1307 1206 1347 1277 57.5634 0.528998
LA 17 794 783 952 868.5 68.9955 0.892994
LA 18 899 843 989 918.5 59.6159 0.709316
LA 19 887 841 987 914.5 59.6047 0.780285
LA 20 955 900 1058 980 64.5049 0.679047
LA 22 972 925 1049 988 50.6249 0.582524
LA 23 1088 1029 1153 1092.5 50.6277 0.460756
LA 24 987 944 1090 1018.5 59.6084 0.647307
LA 25 997 975 1098 1037.5 50.2167 0.467247
LA 26 1318 1214 1422 1320 84.9208 0.655993
LA 28 1316 1215 1569 1393 144.5206 1.211586
LA 29 1252 1160 1396 1280 96.3512 0.72122
LA 30 1455 1353 1765 1560 168.1989 1.05572
LA 32 1950 1848 2059 1954.5 86.1416 0.373514
LA 33 1819 1717 2068 1893.5 143.2959 0.86911
LA 34 1821 1720 2012 1867.5 119.2105 0.595183
LA 35 1988 1886 2225 2056.5 138.3969 0.673199
LA 37 1497 1395 1823 1610 174.7309 1.551181
LA 38 1296 1190 1426 1311 96.3569 0.627508

EAI Endorsed Transactions on
Scalable Information Systems

| Volume 10 | Issue 5 |

LA 39 1333 1232 1562 1397.5 134.7221 0.999189

The average relative percentage deviation (ARPD) is the
objective of reducing the overall time delay by properly
assigning and ordering the work on the same machine. The
following equation is used to determine ARPD:

 ARPD = ∑ (Best Solution i−Well known Solution)
Well known Solution

R
i=1 × �100

R
�

Where, 𝐵𝐵𝑒𝑒𝑠𝑠𝑡𝑡 𝑠𝑠𝑐𝑐𝐶𝐶𝐶𝐶𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛 is the make spam by GOA
algorithm in each run, 𝑊𝑊𝑒𝑒𝐶𝐶𝐶𝐶 𝑘𝑘𝑛𝑛𝑐𝑐𝑘𝑘𝑛𝑛 𝑆𝑆𝑐𝑐𝐶𝐶𝐶𝐶𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛 is the optimal
or lowest known upper bound for instances and 𝑅𝑅 is the
number of runs.

Analysis of three optimization algorithm’s
convergence performance on 23 different benchmark issues.
Through a continuous number of iterations, these
investigations are carried out to determine three optimization
strategies function. It is clear from the results that the
proposed GOA outperforms existing methods in terms of
obtaining values with a minimum make span time and a
higher speed of convergence throughout the process. The
effectiveness of the implemented optimization techniques is
depicted in the following graphical representation. The
convergence graph for LA 12, LA13, LA14, and LA15 is
shown in Figure 3. At the start of the iteration in LA 12
proposed method reach make span time 1040 in 90 iteration.
But the existing method ESSO, SSO reach 1040 make span
time in 200 iteration and DE reach 1040 make span time in
250 iteration. In LA 13 proposed method reach 1150 at 55
iteration, but ESSO and SSO reach 240 and 260 iteration and
DE reach 280 iteration. In LA14 proposed method reach 1295
make span time at 60 iteration, but existing method ESSO and
SSO, DE reach 285 iteration. In LA 15 proposed method
reach make span time 1208 its 100 iteration .But existing
method ESSO reach make span time 1209 on its 200 iteration
,SSO and DE reach 240 iteration.

LA12 LA13

LA14 LA15

Figure 3. Convergence graph for LA 12, LA 13, LA 14,

LA15.

Figure 4 present the convergence graph for LA 16, LA 17,
LA 18, and LA 19. In LA16 proposed method reach make
span time 783 on its 220 iteration. But existing method ESSO
reach make span time 785 on its 260 iteration and SSO reach
make span time 788 on its 290 iteration and DE reach make
span time 789 on its 290 iteration. In LA17 proposed method
reach make span time 843 on its 60 iteration. But existing
method ESSO reach make span time 849 on its 220 iteration
and SSO, DE reach 280 iteration. In LA 18 proposed method
reach make span time 841 on its 140 iteration and existing
method ESSO reach make span time 842 on its 220 iteration
and SSO, DE reach make span time 843 on its 280 iteration
.In LA 19 proposed method reach make span time 900 on its
160 iteration .But existing method ESSO reach make span
time 902 on its 120 iteration and SSO reach make span time
903 on its 260 iteration, DE reach make span time 903 on its
280 iteration.

LA16 LA17

LA18 LA19

Figure 4. Convergence graph for LA 16, LA 17, LA 18,

LA19

Figure 5 present convergence graph for LA 20, LA 21, LA
22, and LA23. In LA 20 proposed method reach make span
time 926 on its 60 iteration. But existing method ESSO reach
make span time 927 on its 100 iteration and SSO reach make
span time 936 on its 100 iteration, DE reach make span time
937 on its 120 iteration. In LA 21 proposed method reach
make span time 1030 on its 80 iteration. But existing method
ESSO reach make span time 1033 on its 80 iteration and SSO
reach make span time 1033 on its 260 iteration, DE reach
make span time 1033 on its 260 iteration. In LA 22 proposed
method reach make span time 945 on its 80 iteration. But
existing method ESSO reach make span time 948 on its 240
iteration and SSO reach on its 240 iteration respectively ,DE
reach make span time 951 on its 240 iteration. In LA 23

EAI Endorsed Transactions on
Scalable Information Systems

| Volume 10 | Issue 5 |

proposed method reach make span time 975 on its 220
iteration. But existing method

LA20 LA21

LA22 LA23

Figure 5. Convergence graph for LA 20, LA 21, LA 22,

LA23

Figure 6 present convergence graph for LA 24, LA 25, LA
26, and LA27. In LA 24 proposed method reach make span
time 1216 on its 60 iteration. But existing method ESSO
reach make span time 1220 on its 80 iteration and SSO reach
on its 80 iteration respectively, DE reach make span time
1222 on its 80 iteration. In LA 25 proposed method reach
make span time 1216 on its 60 iteration. But existing method
ESSO reach make span time 1218 on its 80 iteration and SSO
reach make span time 1219 on its 240 iteration, DE reach
make span time 1230 on its 260 iteration. In LA 26 proposed
method reach make span time 1160 on its 80 iteration. But
existing method ESSO reach make span time 1164 on its 100
iteration and SSO reach on its 1170 on its 100 iteration ,DE
reach make span time 1178 on its 120 iteration. In L27
proposed method reach make span time 1354 on its 100th
iteration. But existing method ESSO reach make span time
1356 on its 100 iteration and SSO reach 1356 on its 260
iteration and DE reach make span time 1358 on its 260
iteration.

LA24 LA25

 LA26 LA27

Figure 6. Convergence graph for LA 24, LA 25, LA 26,

LA27

Figure 7 present convergence graph for LA 28, LA 29, LA
30, and LA31. In LA 28 proposed method reach make span
time 1850 on its 100 iteration. But existing method ESSO
reach make span time 1852 on its 280 iteration and SSO reach
make span time 1858 on its 260 iteration respectively, DE
reach make span time 1859 on its 260 iteration. In LA 29
proposed method reach make span time 1719 on its 60
iteration. But existing method ESSO reach make span time
1720 on its 100 iteration and SSO reach make span time
1722on its 120 iteration, DE reach make span time 1730 on
its 140 iteration. In LA 30 proposed method reach make span
time 1720 on its 160 iteration. But existing method ESSO
reach make span time 1724 on its 80 iteration and SSO reach
on its 1170 on its 100 iteration, DE reach make span time
1728 on its 200 iteration. In LA31 proposed method reach
make span time 1388 on its 100 iteration. But existing method
ESSO reach make span time 1389 on its 100 iteration and
SSO reach 1404 on its 180 iteration and DE reach make span
time 1409 on its 220 iteration.

LA28 LA29

LA30 LA31

Figure 7. Convergence graph for LA 28, LA 29, LA 30,

LA31

EAI Endorsed Transactions on
Scalable Information Systems

| Volume 10 | Issue 5 |

Figure 8 present convergence graph for LA 32, LA 33, and
LA 34. In LA 32 proposed method reach make span time
1388 on its 100 iteration. But existing method ESSO reach
make span time 1389 on its 100 iteration and SSO reach make
span time 1404 on its 180 iteration respectively, DE reach
make span time 1409 on its 240 iteration. In LA 33 proposed
method reach make span time 1235 on its 100 iteration. But
existing method ESSO reach make span time 1236 on its 240
iteration and SSO reach make span time 1240 on its 260
iteration, DE reach make span time 1240 on its 260 iteration.
In LA 34 proposed method reach make span time 1880 on its
180 iteration. But existing method ESSO reach make span
time 1882on its 80 iteration and SSO reach on its 1886 on its
230 iteration, DE reach make span time 1888 on its 230
iteration.

LA32 LA33

LA 34

Figure 8. Convergence graph for LA 32, LA 33, LA 34

Compared to existing convergence graph proposed method
is effectively convergence on high speed and it is minimizing
the make span time. It is used for all industrial application for
job scheduling and minimize make span time.

6. CONCLUSION

Scheduling is important in the industries since it determines
to perform task at a machine in time. Giving a machine a
suitable job requires more time and effort when scheduling
manually. An optimization strategy is used to schedule a work
in a successful machine at a specific time in order to reduce
make span time. Here, the make span time is effectively
truncated using an advanced GOA method. By comparing the
performance of GOA in JSSP to that of other optimization
techniques, standard benchmark values are evaluated. The
research ability is promoted by this algorithm, which causes
optimization to reveal a wide range of solutions.
Additionally, this architecture ensures that the proposed

GOA algorithm always directs search units to examine the
most promising areas of the search space, which further
enables this approach to produce excellent results. The
experimental results provide strong support for the GOA in
JSSP measure with benchmark data. This study shows the
GOA dominance in JSSP and its ability to produce far better
solutions for make span time minimization. The GOA
algorithm in JSSP provides information it can be used to
assess the solution to other combinatorial optimization issues.
In addition, future work concentrate on minimize make span
time effectively using new novel approach.

Acknowledgements.
Funding
The authors declare that no funds, grants, or other support
were received during the preparation of this manuscript.
Conflict of Interest
The authors declared that they have no conflicts of interest to
this work. We declare that we do not have any commercial or
associative interest that represents a conflict of interest in
connection with the work submitted.
Availability of data and material
Not applicable
Code availability
Not applicable
Author contributions
The corresponding author claims the major contribution of
the paper including formulation, analysis and editing. The co-
author provides guidance to verify the analysis result and
manuscript editing.
Compliance with ethical standards
This article is a completely original work of its authors; it has
not been published before and will not be sent to other
publications until the journal’s editorial board decides not to
accept it for publication.

References

[1] Viana MS, Contreras RC, Morandin Junior O. A New
Frequency Analysis Operator for Population
Improvement in Genetic Algorithms to Solve the Job
Shop Scheduling Problem. Sens. 2022 Jun 17;
22(12):4561.

[2] Pourghaffari A, Barari M, Sedighian Kashi S. An
efficient method for allocating resources in a cloud
computing environment with a load balancing approach.
Concurr. Comput. Pract. Exp. 2019 Sep 10;
31(17):e5285.

[3] Zhang M, Tao F, Nee AY. Digital twin enhanced
dynamic job-shop scheduling. J. Manuf. Syst. 2021 Jan
1; 58:146-56.

[4] Gong X, De Pessemier T, Martens L, Joseph W. Energy-
and labor-aware flexible job shop scheduling under
dynamic electricity pricing: A many-objective
optimization investigation. J. Clean. Prod. 2019 Feb 1;
209:1078-94.

[5] Park J, Chun J, Kim SH, Kim Y, Park J. Learning to
schedule job-shop problems: representation and policy

EAI Endorsed Transactions on
Scalable Information Systems

| Volume 10 | Issue 5 |

learning using graph neural network and reinforcement
learning. Int. J. Prod. Res. 2021 Jun 3; 59(11):3360-77.

[6] Tafakkori K, Tavakkoli-Moghaddam R, Siadat A.
Sustainable negotiation-based nesting and scheduling in
additive manufacturing systems: A case study and multi-
objective meta-heuristic algorithms.
Eng. Appl. Artif. Intell. 2022 Jun 1; 112:104836.

[7] Anuar NI, Fauadi MH. A Study on Multi-Objective
Particle Swarm Optimization in Solving Job-Shop
Scheduling Problems. Int. J. Comput. Inf. Syst. Ind.
Manag. Appl. 2021; 13:051-61.

[8] Frausto-Solis J, Hernández-Ramírez L, Castilla-Valdez
G, González-Barbosa JJ, Sánchez-Hernández JP.
Chaotic multi-objective simulated annealing and
threshold accepting for job shop scheduling problem.
Math. Comput. Appl. 2021 Jan 12; 26(1):8.

[9] Zolpakar NA, Lodhi SS, Pathak S, Sharma MA.
Application of multi-objective genetic algorithm
(MOGA) optimization in machining processes.
InOptimization of manufacturing processes 2020 (pp.
185-199). Springer, Cham.

[10] Park JS, Ng HY, Chua TJ, Ng YT, Kim JW. Unified
genetic algorithm approach for solving flexible job-shop
scheduling problem. Appl. Sci. 2021 Jul 13;
11(14):6454.

[11] Anil Kumar KR, Das ER. Genetic Algorithm and Particle
Swarm Optimization in Minimizing MakeSpan Time in
Job Shop Scheduling. InProceedings of ICDMC 2019
2020 (pp. 421-432). Springer, Singapore.

[12] Anil A, Venkateswarlu K, Srinivasan M, Kumar S.
Solving Job Shop Scheduling Problem With the Aid of
Evolution of Cub to Predator (ECP). Int. j. adv. res. sci.
eng. technol. 2020;11(11).

[13] Kress D, Müller D. Mathematical models for a flexible
job shop scheduling problem with machine operator
constraints. IFAC-PapersOnLine. 2019 Jan 1; 52(13):94-
9.

[14] Zhang F, Mei Y, Nguyen S, Zhang M. Evolving
scheduling heuristics via genetic programming with
feature selection in dynamic flexible job-shop
scheduling. IEEE Trans Cybern. 2020 Oct 20;
51(4):1797-811.

[15] Wang Y, Zhu Q. A hybrid genetic algorithm for flexible
job shop scheduling problem with sequence-dependent
setup times and job lag times. IEEE Access. 2021 Jul 9;
9:104864-73.

[16] Juvin C, Houssin L, Lopez P. Logic-Based Benders
Decomposition for the Preemptive Flexible Job-Shop
Scheduling Problem. Available at SSRN 4068164.

[17] Dehghan-Sanej K, Eghbali-Zarch M, Tavakkoli-
Moghaddam R, Sajadi SM, Sadjadi SJ. Solving a new
robust reverse job shop scheduling problem by meta-
heuristic algorithms. Eng. Appl. Artif. Intell. 2021 May
1; 101:104207.

[18] Dai M, Tang D, Giret A, Salido MA. Multi-objective
optimization for energy-efficient flexible job shop
scheduling problem with transportation constraints.
Robot. Comput.-Integr. Manuf. 2019 Oct 1; 59:143-57.

[19] Meng L, Zhang C, Shao X, Ren Y. MILP models for
energy-aware flexible job shop scheduling problem. J.
Clean. Prod. 2019 Feb 10; 210:710-23.

[20] Mihoubi B, Bouzouia B, Gaham M. Reactive scheduling
approach for solving a realistic flexible job shop
scheduling problem. Int. J. Prod. Res. 2021 Oct 2;
59(19):5790-808.

[21] Caldeira RH, Gnanavelbabu A. Solving the flexible job
shop scheduling problem using an improved Jaya
algorithm. Comput Ind Eng. 2019 Nov 1; 137:106064.

[22] Li JQ, Deng JW, Li CY, Han YY, Tian J, Zhang B, Wang
CG. An improved Jaya algorithm for solving the flexible
job shop scheduling problem with transportation and
setup times. Knowl Based Syst. 2020 Jul 20;
200:106032.

[23]]Lu, Y., Lu, J., & Jiang, T. (2019). Energy-conscious
scheduling problem in a flexible job shop using a discrete
water wave optimization algorithm. IEEE Access, 7,
10156101574.

[24] Narayanan, P. S., Kumar, N. S., Potluru, R., &
Mohanavelu, T. (2022). Job shop scheduling using
heuristics through Python programming and excel
interface. Decision Making: Applications in
Management and Engineering, 5(2), 201-2018.

[25] Wang, C., Sun, B., Du, K. J., Li, J. Y., Zhan, Z. H., Jeon,
S. W., ... & Zhang, J. (2023). A Novel Evolutionary
Algorithm with Column and Sub-Block Local Search for
Sudoku Puzzles. IEEE Transactions on Games.

[26] Li, J. Y., Du, K. J., Zhan, Z. H., Wang, H., & Zhang, J.
(2022). Distributed differential evolution with adaptive
resource allocation. IEEE transactions on cybernetics.

[27] Ge, Y. F., Yu, W. J., Cao, J., Wang, H., Zhan, Z. H.,
Zhang, Y., & Zhang, J. (2020). Distributed memetic
algorithm for outsourced database fragmentation. IEEE
Transactions on Cybernetics, 51(10), 4808-4821.

[28] Li, J. Y., Zhan, Z. H., Wang, H., & Zhang, J. (2020).
Data-driven evolutionary algorithm with perturbation-
based ensemble surrogates. IEEE Transactions on
Cybernetics, 51(8), 3925-3937.

[29] Ge, Y. F., Cao, J., Wang, H., Chen, Z., & Zhang, Y.
(2021). Set-based adaptive distributed differential
evolution for anonymity-driven database fragmentation.
Data Science and Engineering, 6(4), 380-391.

[30] Ge, Y. F., Wang, H., Cao, J., & Zhang, Y. (2022,
November). An Information-Driven Genetic Algorithm
for Privacy-Preserving Data Publishing. In Web
Information Systems Engineering–WISE 2022: 23rd
International Conference, Biarritz, France, November 1–
3, 2022, Proceedings (pp. 340-354). Cham: Springer
International Publishing.

[31] Ge, Y. F., Orlowska, M., Cao, J., Wang, H., & Zhang, Y.
(2022). MDDE: multitasking distributed differential
evolution for privacy-preserving database fragmentation.
The VLDB Journal, 31(5), 957-975.

[32] Laghari, A. A., He, H., Khan, A., Kumar, N., & Kharel,
R. (2018). Quality of experience framework for cloud
computing (QoC). IEEE Access, 6, 64876-64890.

EAI Endorsed Transactions on
Scalable Information Systems

| Volume 10 | Issue 5 |

[33] Laghari, A. A., Jumani, A. K., & Laghari, R. A. (2021).
Review and state of art of fog computing. Archives of
Computational Methods in Engineering, 1-13.

[34] Laghari, A. A., Wu, K., Laghari, R. A., Ali, M., & Khan,
A. A. (2021). A review and state of art of Internet of
Things (IoT). Archives of Computational Methods in
Engineering, 1-19.

[35] Ali, M., Jung, L. T., Sodhro, A. H., Laghari, A. A.,
Belhaouari, S. B., & Gillani, Z. (2023). A
Confidentiality-based data Classification-as-a-Service
(C2aaS) for cloud security. Alexandria Engineering
Journal, 64, 749-760.

[36] Karim, S., He, H., Laghari, A. A., Magsi, A. H., &
Laghari, R. A. (2021). Quality of service (QoS):
measurements of image formats in social cloud
computing. Multimedia Tools and Applications, 80,
4507-4532.

[37] Laghari, A. A., He, H., Shafiq, M., & Khan, A. (2018).
Assessment of quality of experience (QoE) of image
compression in social cloud computing. Multiagent and
Grid Systems, 14(2), 125-143.

[38] Laghari, A. A., He, H., Karim, S., Shah, H. A., & Karn,
N. K. (2017). Quality of experience assessment of video
quality in social clouds. Wireless Communications and
Mobile Computing, 2017.

[39] Laghari, A. A., & Laghari, M. A. (2021). Quality of
experience assessment of calling services in social
network. ICT Express, 7(2), 158-161.

[40] Laghari, A. A., He, H., Memon, K. A., Laghari, R. A.,
Halepoto, I. A., & Khan, A. (2019). Quality of
experience (QoE) in cloud gaming models: A review.
multiagent and grid systems, 15(3), 289-304.

[41] Laghari, A. A., He, H., Khan, A., Laghari, R. A., Yin, S.,
& Wang, J. (2022). Crowdsourcing platform for QoE
evaluation for cloud multimedia services. Computer
Science and Information Systems, (00), 38-38.

EAI Endorsed Transactions on
Scalable Information Systems

| Volume 10 | Issue 5 |

