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Abstract 

INTRODUCTION: Effective Job Shop Scheduling (JSS) was required in the manufacturing industry to satisfy demand 
productivity, reduce production costs, and increase competitiveness in a market that was becoming more active and 
demanding of a variety of goods. 
OBJECTIVES: The Job Shop Scheduling Problem (JSSP) has gained importance in recent years as a result of rising customer 
demand across a variety of categories, shifting markets due to increased global competition, and the quick development of 
new technology. The proper scheduling and sequencing of jobs on machines was one of the fundamental and important 
issues that a shop or factory management faces. 
METHODS: Different machines can be found in a shop, and depending on the task, one or more of these equipment may 
need to be used in a particular order. The aim in correcting this issue might be to reduce the make span. For each machine, 
the jobs sequencing must be done once the make span had been reduced. 
RESULTS: To solve these issues, (GOA) was used to reduce make span time. Both jobs and machines were fed as an input 
to the proposed optimization and to found optimal job scheduling with low make span time. The outcome of the proposed 
work was compared the outcomes of various optimization strategies in JSSP in order to minimize the make span time. 
CONCLUSION:  The objective of optimization was to reduce the total amount of time or duration required to complete a 
task.  A proposed gannet optimization method was employed to reduce the make span time in various sectors to resolve the 
job shop scheduling problem. 
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1. Introduction

In order to improve production, various manufacturing tasks 
are allocated to machines at appropriate times. This is known 
as the job shop scheduling problem (JSSP), also termed as 
JSS [1]. The goal of JSSP is to determine the best timetable 
for distributing shared resources over time to competing tasks 
in order to decrease the total amount of time required to finish 
all tasks. Since 1950, scheduling has gained a lot of attention 
due to the direct impact it has on the productivity and 
expenses of a manufacturing system [23]. Scheduling is the 

process of allocating a group of resources to a group of 
activities over a predetermined period of time. In referring to 
machines, the tasks are referred to as operations and the 
resources as machines [2]. Thus, selecting a working order 
that optimises the production system is the process of 
scheduling. In a workshop, each task is carried out by each 
machine in a specific order, with each machine only able to 
handle one task at a time [3]. The vast majority of research 
focuses on decreasing make span time the total amount of 
time required to complete every operation on a schedule and 
improving flow, which is the amount of output or jobs 
produced per unit of time. The scheduling of shops is an 
illustration of a nondeterministic polynomial complete issue. 
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These issues are referred to be "Hard" issues since the 
processing time increases exponentially as the issue's size 
increases linearly [24]. The total duration indispensable for 
all shop floor machines to accomplish all operations on all 
tasks is referred to as make span time [4]. 

The main subject of present research in this field is the 
scheduling application of heuristics and meta-heuristics [5]. 
Genetic algorithm was first proposed by John Holland in 
1975 [9]. For the purpose of solving an optimization problem, 
a population of possible solutions is generated. A genetic 
procedure known as crossover combines two chromosomes 
to create a new chromosome. Implementing the mutation 
operation should come after crossing. Mutation protects the 
method from regional extreme points [10]. Although the 
genetic algorithm performs well, it is expensive, difficult to 
optimize and consuming much computation time for complex 
scheduling.   Afterward a PSO models is used to solve the 
JSSP. A flock of birds looking for food served as the model 
for the evolutionary algorithm known as PSO. A population 
of randomly generated particles with each having a velocity 
and position serve as the foundation for this population-based 
search procedure [11]. The enormously complicated nature of 
production scheduling problems is also addressed by fuzzy 
logic, genetic algorithms [6], simulated annealing [8] and 
particle swarm optimization with Cauchy distribution [7]. 

Convolutional approaches are the most efficient in cutting 
down on make-span time, but existing methods also have 
some minor drawbacks, such as slow convergence and a 
tendency to not provide an appropriate optimal solution, 
failure to identify the best optimal value, and inability to 
identify any additional local optima after the local optima 
have been attained [12]. 

Job scheduling is the process of managing and executing 
tasks on a cloud computing platform, such as Google Cloud. 
Job scheduling can help you optimize your resource 
utilization, automate workflows, and improve performance 
and reliability. Quality of experience framework for Cloud 
computing (QoC) for monitoring the Quality of Experience 
(QoE) of the end user using video streaming services in the 
cloud computing [32], fog computing [33] ,IOT platform [34] 
,protect data in cloud computing [35], Quality Of Service 
(QoS)[36], Quality of Experience(QOE)[37],[38],[39] 
,[40],[41] to ensure the performance of executing tasks 
environment in job shop scheduling but consume more time 
in execution. 

To overcome these drawbacks, a novel proposed method 
is employed to determine optimal scheduling and minimize 
make span time. Jobs and machines are initialized to GOA in 
order to determine the optimal job shop scheduling with low 
make span time. The main contribution of a novel approach 
is discussed as follows. 

• The advanced gannet optimization algorithm (GOA) is
utilised to determine a typical job shop schedule which
can reduce the make span time in a sector.

• At first, a number of machines and the number of jobs
are given as an input to GOA.

• A single machine completes a task in a given period, and
a GOA analyses each machine's process and the entire
work volume to schedule task effectively.

• The performance of the proposed method is compared to
existing approaches, and the more efficient average
benchmark make span times provided by the proposed
GOA are more in line with the real average benchmark
make span times.

Rest of the manuscript structure are as follows; section 2 
describes several researches related to job shop scheduling 
and minimize make span time. Section 3 describes proposed 
method problem formulation. Section 4 describes proposed 
methodology for job shop scheduling. Section 5 describes 
proposed experimental investigation and discussion. Section 
6 describes conclusion. 

2. Literature Review

Many strategies are developed to increase production while 
reducing make span time. The following techniques for job 
shop scheduling and minimising make span time were 
covered. 

Kress and Müller [13] had presented a solution of FJSP via 
mathematical model. Two mathematical approaches were 
utilized to analyse the performance of the method namely, 
mixed-integer programming model and constraint 
programming model. An impact of the method is taking long 
time for calculating numerous number of machines and 
workers. Zhang, et al. [14] had presented an Evolving 
Scheduling Heuristics through Genetic Programming to solve 
flexible job-scheduling scheduling problem. The outcome 
showed the method was more efficaciously achieved 
interpretable scheduling heuristics with more minuscule size 
and less unique features. The method contains some 
constraints like that the rule is engender by CCGP up to the 
selective features. Due to the present of more features in rules, 
the method is arduous to explicate the rules. 

Wang and Zhu [15] had suggested a method of 
mathematical model to resolve the flexible job shop 
scheduling problem (FJSP). A hybrid algorithm which 
combines genetic algorithm and tabu search is to solve the 
FJSP-SDST-LT. The method gives same outcome as another 
perpetual models, however, the method is not fit for 
astronomically immense number of variables and equation 
since it takes more time to give a result. Juvin et al. [16] had 
presented Logic-Based Benders Decomposition for the Pre-
emptive Flexible Job-Shop Scheduling Problem. 
Mathematical and constraint programming models enable the 
resolution of this problem for small instances. However, as an 
NP-hard problem, the cost of solving grows rapidly when 
considering larger instances. In this regard, propose a logic-
based Benders decomposition that relies on an efficient 
branch-and-bound procedure to solve the sub problem 
representing a pure (non-flexible) pre-emptive job-shop 
scheduling problem. Yet, the dimension of a number of jobs 
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and machine in this method is not dependent on processing 
time so the scheduling time is erroneous. 

Dehghan-Sanej, et al. [17] had presented a simulation 
model to resolve JSSP as well as reducing make span time. 
The model had been minimizing the make span time using 
meta-heuristic algorithms. The method outcome is very well, 
yet it is only suited for diminutive quandaries since the 
simulation of immensely quandary take more execution time. 
Dai et al. [18] had developed an optimization model with 
numerous objectives was developed with the aim of reducing 
energy consumption and to solve a problem of make span 
with flexible workshop scheduling based on by transportation 
constraints. An improved genetic algorithm was used to 
completely resolve the problem. This model offers high 
precision and quick computation, but it falls short of 
effectively reducing energy usage since it does not account 
for unforeseen occasions like task cancellation, machine 
failure, and rush orders. 

Meng et al. [19] presented a method for solving the JSSP 
that makes use of six dynamic MILP models and an On/Off 
switching strategy. Numerical tests were performed using 
CPLEX SLOVER to confirm the accuracy and efficiency of 
each MILP model. But it is less effective and more difficult. 
Mihoubi, et al. [20] had represented that in order to the 
realistic FJSSP and resolve the RS, a GA-based 
computational technique be used to control the employment 
of a hybrid neural component and a DES model. The system, 
however, was unable to gather accurate and reliable data, 
which was necessary for it to produce results that were 
satisfactory. 

Caldeira and Gnanavelbabu [21] had suggested that an 
improved Jaya algorithm be created to address the issue of 
job shop scheduling. 203 benchmark instances were used to 
evaluate this method's performance. However, this approach 
is inappropriate for the industry's multi-objective job 
scheduling. Li, et al. [22] had presented to reduce the JSSP 
with transportation and setup times, the improved Jaya 
(IJaya) algorithm has been improved. An integer 
programming technique was created to reduce energy usage 
and achieve goals. However, this is overly intricate and does 
not offer greater precision. 

Wang, et al. [25] had developed an improved GA which 
utilised local search to efficiently and effectively solve 
Sudoku puzzles, but it is still needed to increase the 
performance of LSGA by integrating it with other Sudoku-
solving techniques. Li, J. Y et al. [26] had developed a novel 
three-layer DDE framework with adaptive resource 
allocation (DDE-ARA), including the algorithm layer for 
evolving various differential evolution (DE) populations, the 
dispatch layer for dispatching the individuals in the DE 
populations to different distributed machines, and the 
machine layer for accommodating distributed computers. 

 
Author 
name 

Techniques Advantage Disadvantage 

Ge, Yu et 
al. [27] 

distributed 
memetic 
algorithm  

Enhancing 
database 
privacy and 
utility 

Consume 
more time  

Li, Zhan 
et al. [28] 

DDEA 
framework 
with 
perturbation-
based 
ensemble 
surrogates  

Efficient 
mechanism to 
enhance 
performance 

But its 
expensive 

Ge, Caoa 
et al. [29] 

set-based 
adaptive 
distributed 
differential 
evolution 
algorithm 

An island 
model to 
maintain 
population 
diversity 

Hybrid 
mechanism is 
not work out. 

Ge, 
Wang et 
al. [30] 

information-
driven 
genetic 
algorithm 

To achieve 
optimal 
anonymization 
based on 
attribute 
generalization 
and record 
suppression. 

Consume 
more time  

Ge, 
Orlowska 
et al. [31] 

similarity-
based 
alignment 
operator 

To adjust the 
fragment 
orders in 
different 
database 
fragmentation 
solutions. 

complication 

 
          The above methods minimizes make-span time most 
effectively [17], [26] but also have some major drawbacks, 
take more time [13], [25] like slowdown convergence [21], 
[29] a tendency to not provide an appropriate optimal solution 
[16], difficulty to determine the best present optimal value 
[22], [31].To overcome these drawback proposed method is 
employed which find the optimal scheduling process with 
low make span time. 

3. Problem formulation 

The task of assigning a number of jobs to machines so that 
one or more criteria are optimised is termed as JSSP. A 
particular machine must process each piece of work 
continuously for a predetermined period of time. Arranging 
𝑗𝑗𝑡𝑡ℎ job on 𝑚𝑚𝑡𝑡ℎ machine with goal of abbreviating the 
scheduled low make span time of all jobs. Each of the 𝑗𝑗𝑡𝑡ℎ jobs 
consists of numerous tasks that must be completed on 𝑚𝑚𝑡𝑡ℎ 
various machines within a specified amount of time. Each 
work should be performed exactly once on each machine, and 
only one machine can perform the same task at once. To 
improve production efficiency, reduce expenses, and/or 
improve product quality, effective solutions to the JSSP are 
essential. Modelling of job shop scheduling is illustrated in 
figure 1. 
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Figure 1. Job scheduling in an industry. 

Let as consider, 𝑗𝑗 as task/jobs available in a 
company/industry, 𝑚𝑚 denote machines, 𝑛𝑛 and 𝑞𝑞 denotes 
number of machine and queue, and queues respectively. As 
𝑗𝑗𝑖𝑖(𝑡𝑡) denotes the 𝑖𝑖𝑡𝑡ℎ job with its processing time𝑡𝑡, and 𝑞𝑞𝑖𝑖 is 
termed as 𝑚𝑚𝑡𝑡ℎ machine 𝑗𝑗𝑡𝑡ℎ queue. Each machine has various 
execution time and scheduling time for complete a task. The 
jobs and machines of an industry is stated as below, 

 
𝐽𝐽 = 1,2,3, … . 𝑗𝑗, and 𝑀𝑀 = 1,2,3, … .𝑚𝑚             (1) 

 
And the queue is expressed as, 
 

𝑞𝑞 = 1,2,3, … . , 𝑗𝑗 × 𝑚𝑚, 𝑗𝑗 × 𝑚𝑚 + 1             (2) 
 

Where, 𝑗𝑗 × 𝑚𝑚 + 1 denotes the last operation of a machine. 
The make span time of a machine is stated as, 

 
min𝐹𝐹𝑛𝑛×𝑚𝑚+1                 (3) 

 
𝑠𝑠. 𝑡𝑡;  𝐹𝐹𝑘𝑘 < 𝐹𝐹𝑗𝑗 − 𝑇𝑇𝑗𝑗 ,   𝑗𝑗 = 1, 2, … . . ,𝑛𝑛 × 𝑚𝑚 + 1; 𝑘𝑘 ∈ 𝑃𝑃𝑗𝑗       (4) 

 
𝐹𝐹𝑗𝑗 ≥ 0,   𝑗𝑗 = 1, 2, … … ,𝑛𝑛 × 𝑚𝑚 + 1        (5) 

 
∑ 𝑒𝑒𝑗𝑗𝑚𝑚 ≤ 1,𝑗𝑗∈𝐴𝐴(𝑡𝑡)     𝑚𝑚 ∈ 𝑀𝑀; 𝑡𝑡 ≥ 0                        (6) 

 
The objective function used to reduce the make span time 

is indicated by Eqn. (3). Eqn. (4) denotes the order of priority 
among the process. A machine can only process one task at a 
time, according to equation (5), and Eqn. (6) define the non-
negative finishing times. Where, 𝐴𝐴(𝑡𝑡) represents the total 
number of tasks processed at any given time𝑡𝑡, and 𝐹𝐹𝑗𝑗 and 𝑇𝑇𝑗𝑗 
stand for the completion time and operation time of 
operation𝑗𝑗, correspondingly. When a job 𝑗𝑗 needs to be 
processed on a machine𝑚𝑚, 𝑒𝑒𝑗𝑗𝑚𝑚 is set to 1, else it is set to zero. 
The activities are interconnected, and due to given 
constraints, each action 𝑗𝑗 must be scheduled after all earlier 
operations 𝑃𝑃𝑗𝑗 have finished. Operation 𝑗𝑗 can only be planned 
if the relevant machine is idle. To obtain the optimal make 
span quickly and with fewer iterations, the estimation of an 
appropriate value and a quick solution to satisfying the 
problems are important. Utilize the fact that using a novel 
optimization to solve the problem quickly and minimizing the 
make span time. 

4. Proposed methodology for job shop 
scheduling 

Job shop scheduling and make span time reduction are 
significant issues for the industrial sector. A benchmark job 
schedule is designed to reduce make span time while 
maintaining high production. In order to reduce the make 
span time and assign the suitable job of a machine, a novel 
gannet optimization approach is introduced to schedule a job. 
The schedules are generated using a priority rule, where the 
novel gannet optimization algorithm determines the 
priorities. Both machine and jobs are initialized to find the 
optimal schedule which have low make span time. GOA 
analyses the input to plan the task at a low make span time by 
taking into account the total number of machines and jobs. 
Through GOA, the solutions are updated to discover the best 
one. Until the best ideal option is identified, the procedure is 
repeated. Effectively reducing the make span time is the 
suggested way. A detail study of proposed GOA is given 
below. 

4.1. Background of Gannet optimization 
algorithm 

This section will discuss the gannet optimization algorithm, a 
new meta-heuristic optimization technique that was inspired 
by gannets' predatory behaviour. To imitate the predatory 
behaviour of pond geese, two stages of exploration and 
exploitation are proposed in the pond goose optimization 
method. There are a total of four different predation 
behaviours present in the exploration and exploitation stages: 
V-shaped dive mode, U-shaped dive mode, rapid rotation, 
and random wandering. 

Initialization phase 
It starts with the collection of random results represented in 
Eq. (7), at that time the best solution is considered to be the 
optimal best solution. 
 

𝑋𝑋 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝑥𝑥1,1 …  𝑥𝑥1,𝑗𝑗 
𝑥𝑥2,1 … 𝑥𝑥2,𝑗𝑗 
⋮ ⋮ ⋮

   
… 𝑥𝑥1,𝐷𝐷𝑖𝑖𝑚𝑚−1     𝑥𝑥1,𝐷𝐷𝑖𝑖𝑚𝑚
… 𝑥𝑥2,𝐷𝐷𝑖𝑖𝑚𝑚−1     𝑥𝑥2,𝐷𝐷𝑖𝑖𝑚𝑚
⋮ ⋮ ⋮

⋯ ⋯ ⋯
⋮   ⋮ ⋮

𝑥𝑥𝑁𝑁−1,1 … 𝑥𝑥𝑁𝑁−1,𝑗𝑗
    
⋯ ⋯ ⋯
⋮ ⋮ ⋮
… 𝑥𝑥𝑁𝑁−1,𝐷𝐷𝑖𝑖𝑚𝑚−1 𝑥𝑥𝑁𝑁−1,𝐷𝐷𝑖𝑖𝑚𝑚

𝑥𝑥𝑁𝑁,1 … 𝑥𝑥𝑁𝑁,𝑗𝑗    … 𝑥𝑥𝑁𝑁,𝐷𝐷𝑖𝑖𝑚𝑚−1 𝑥𝑥𝑁𝑁,𝐷𝐷𝑖𝑖𝑚𝑚 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

         

(7) 
 

𝑥𝑥𝑖𝑖,𝑗𝑗 = 𝑟𝑟1 ∗ �𝑈𝑈𝐵𝐵𝑗𝑗 − 𝐿𝐿𝐵𝐵𝑗𝑗� + 𝐿𝐿𝐵𝐵, 𝑖𝑖 = 1,2 … ,𝑁𝑁, 𝑗𝑗 =
1,2, … ,𝐷𝐷𝑖𝑖𝑚𝑚     (8) 

 
Where, 𝑥𝑥𝑖𝑖 signifies the position of the 𝑖𝑖th gannet. Each 𝑥𝑥𝑖𝑖,𝑗𝑗 

in the matrix 𝑋𝑋 can be calculated by equation (8). 𝑁𝑁 is the 
number of individuals in the population. 𝑈𝑈𝐵𝐵𝑗𝑗  𝑎𝑎𝑛𝑛𝑎𝑎 𝐿𝐿𝐵𝐵𝑗𝑗  are the 
lower and upper bounds of the 𝑗𝑗 th dimension of the 
problem. 𝑟𝑟1 is a random number between 0 and 1, and 𝐷𝐷𝑖𝑖𝑚𝑚 
signifies the dimensional size of the problem. 

Exploration phase 
The depth of the prey's dive is taken into account when 
adjusting the gannet's dive pattern after it has located its prey 
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in the water. A long, deep U-shaped dive and a quick, shallow 
V-shaped dive are the two types of dives available. 
 

𝑡𝑡 = 1 − 𝐼𝐼𝑡𝑡
𝑇𝑇𝑚𝑚𝑇𝑇𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

                         (9) 
 

𝑎𝑎 = 2 ∗  𝑐𝑐𝑐𝑐𝑠𝑠 (2 ∗ 𝜋𝜋 ∗ 𝑟𝑟2) ∗ 𝑡𝑡             (10) 
 

𝑏𝑏 = 2 ∗ 𝑉𝑉 (2 ∗ 𝜋𝜋 ∗ 𝑟𝑟3) ∗ 𝑡𝑡                 (11) 
 

V(x) = �
− 1

𝜋𝜋
∗ x + 1, x ϵ (0,𝜋𝜋)

1
𝜋𝜋
∗ x − 1, x ϵ (𝜋𝜋, 2𝜋𝜋)

            (12) 

 
Where, 𝑇𝑇𝑚𝑚𝑎𝑎𝑥𝑥_𝑖𝑖𝑡𝑡𝑒𝑒𝑟𝑟  is the maximum number of iterations, 

𝐼𝐼𝑡𝑡 the number of current iterations,  𝑟𝑟2 and 𝑟𝑟3 are both random 
numbers between 0 and 1. 

Exploitation phase 
The gannet rushes into the water in the methods mentioned 
above, and two further actions are needed to take advantage 
of it. In order to catch the fish desperately attempting to 
escape, the gannet also expends a great deal of energy. 
Explain the capture capacity in equation (13). 
 

𝐶𝐶𝑎𝑎𝐶𝐶𝑡𝑡𝐶𝐶𝑟𝑟𝑎𝑎𝑏𝑏𝑖𝑖𝐶𝐶𝑖𝑖𝑡𝑡𝐶𝐶 = 1
𝑅𝑅∗𝑡𝑡2

              (13) 
 

𝑡𝑡2 = 1 + 𝐼𝐼𝑡𝑡
𝑇𝑇𝑚𝑚𝑇𝑇𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

               (14) 
 

𝑅𝑅 = 𝑀𝑀∗𝑣𝑣𝑣𝑣𝑣𝑣2

𝐿𝐿
                (15) 

 
𝐿𝐿 = 0.2 +  (2 − 0.2) ∗ 𝑟𝑟6             (16) 

 
Where 𝑣𝑣𝑒𝑒𝐶𝐶 = 1.5𝑚𝑚/𝑠𝑠 is the gannet's speed in the water 

while ignoring the current level of water resistance, 𝑀𝑀=2.5kg 
is the bird's weight, and 𝑟𝑟6 is a random number between 0 and 
1. If the gannet's capturing range is within the catchable prey's 
range, the location is updated with a sudden turn; otherwise, 
if the gannet is unable to catch the flexible fish, it will wander 
in a Levy way to look for its next target at random Eq (17). 

 
𝑀𝑀𝑋𝑋𝑖𝑖(𝑡𝑡 + 1) =

�
𝑡𝑡 ∗ 𝑎𝑎𝑒𝑒𝐶𝐶𝑡𝑡𝑎𝑎 ∗ �𝑋𝑋𝑖𝑖(𝑡𝑡) − 𝑋𝑋𝐵𝐵𝑣𝑣𝐵𝐵𝑡𝑡 (𝑡𝑡)� + 𝑋𝑋𝑖𝑖(𝑡𝑡),       𝐶𝐶𝑎𝑎𝐶𝐶𝑡𝑡𝐶𝐶𝑟𝑟𝑎𝑎𝑏𝑏𝑖𝑖𝐶𝐶𝑖𝑖𝑡𝑡𝐶𝐶 ≥ 𝑐𝑐
𝑋𝑋𝑏𝑏𝑣𝑣𝐵𝐵𝑡𝑡 (𝑡𝑡) − �𝑋𝑋𝑖𝑖(𝑡𝑡) − 𝑋𝑋𝐵𝐵𝑣𝑣𝐵𝐵𝑡𝑡 (𝑡𝑡)� ∗ 𝑃𝑃 ∗ 𝑡𝑡,     𝐶𝐶𝑎𝑎𝐶𝐶𝑡𝑡𝐶𝐶𝑟𝑟𝑎𝑎𝑏𝑏𝑖𝑖𝐶𝐶𝑖𝑖𝑡𝑡𝐶𝐶 < 𝑐𝑐

               

(17) 
 

𝑎𝑎𝑒𝑒𝐶𝐶𝑡𝑡𝑎𝑎 = 𝐶𝐶𝑎𝑎𝐶𝐶𝑡𝑡𝐶𝐶𝑟𝑟𝑎𝑎𝑏𝑏𝑖𝑖𝐶𝐶𝑡𝑡𝐶𝐶 ∗ |𝑋𝑋𝑖𝑖(𝑡𝑡) − 𝑋𝑋𝑏𝑏𝑣𝑣𝐵𝐵𝑡𝑡(𝑡𝑡)|        (18)      
             

𝑃𝑃 = 𝐿𝐿𝑒𝑒𝑣𝑣𝐶𝐶 (𝐷𝐷𝑖𝑖𝑚𝑚)         (19) 
 

Where 𝑋𝑋𝐵𝐵𝑣𝑣𝐵𝐵𝑡𝑡 (𝑡𝑡) is the best performing individual in the 
current population, 𝑐𝑐=0.2 is a constant whose value was 
determined after several experiment and 𝐿𝐿𝑒𝑒𝑣𝑣𝐶𝐶 () is the Levy 
fight function, which can be obtained from eq. (19). 

 
𝐿𝐿𝑒𝑒𝑣𝑣𝐶𝐶 (𝐷𝐷𝑖𝑖𝑚𝑚) = 0.01 ∗ µ∗𝜎𝜎

|𝑣𝑣|
1
ᵝ
            (20) 

 

𝜎𝜎 = �
Ґ(1+ᵝ)∗   𝐵𝐵𝑖𝑖𝑛𝑛�𝜋𝜋ᵝ2 �

1
ᵝ

Ґ�1+ᵝ2 �∗ᵝ∗2
ᵝ−1
2

�            (21) 

 

4.2. GOA based optimal job shop scheduling 
for minimizing make span time 

Step 1: Initialization 
The GOA population's random solution is initiated at this 
moment, and the best solution is considered to be the best 
overall solution. Based on this initialize, the random selection 
of number of machine (𝑚𝑚) and number of jobs(𝑗𝑗) are 
initialized to find the best optimal scheduling solution. 
 

𝐽𝐽 = �𝐽𝐽1, 𝐽𝐽2, … , 𝐽𝐽𝑛𝑛� and 𝑀𝑀 = {𝑀𝑀1,𝑀𝑀2, … ,𝑀𝑀𝑧𝑧}       (22) 
 

Where, 𝑛𝑛 and 𝑧𝑧 denotes number of populations. 
Step 2: Fitness function 
The objective function is a way to find the optimum solution 
by maximising or minimising the functions. In the proposed 
model, the fitness function is considered as a make span time. 
 

𝐹𝐹𝑖𝑖𝑡𝑡𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠 = min 𝐹𝐹𝑛𝑛∗𝑚𝑚+1               (23) 
 

Step 3: Update the solution 
The two phases of GOA's design are exploration and 
development. The exploration process contains the U- and V-
shaped diving patterns of gannets to determine the best area, 
while the development phase uses a sudden rotation and 
random walk to develop a better solution. The fitness value 
of each iterations are updated to find the best solution. Using 
eq. (17) to update the solution to find the best one. Figure 2 
shows the Flow chart of proposed job scheduling model. 
Step 4: Process will stop to get a best global optimal value 

 
 

Figure 2. Flow chart of proposed job scheduling 
model. 
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5. Experimental investigation and 
discussion 

This section examines 23 different benchmark problems and 
the impact of three different optimization approaches, 
including DE, SSO, and ESSO. Comparing the 
GOA methodology to other JSSP algorithms, it takes the least 
amount of time to complete the task. When compared to other 
conventional approaches, it is clear that soft computing 
techniques have a larger potential for solving Job Shop 
Scheduling Problems (JSSP). Proposed methodology seems 
to have a faster calculation time than traditional problem-
solving techniques, which is its main advantage. The 
complete proposed model is implemented, and the 
performance is analysed using MATLAB platform. Table -1 
displays the computational outcomes of several techniques on 
benchmark problems. It shows that GOA method 
outperforms other algorithms. 

23 benchmark problems are taken from table1 (a) and 1(b) 
to calculate the make span time in various algorithms. A 
comparison is made between the ant colony optimization 
algorithm (ACA), the hybrid generic algorithm (HGA), the 
differential evolutionary algorithm (DE), and the social 
spider optimization algorithm (SSO), genetic algorithm 
(GO), particle swarm optimization (PSO), opposition based 
genetic algorithm, the greedy randomised adaptive search 
procedure algorithm (GRASP), and opposition-based particle 
swarm optimization with Cauchy distribution.  Only a low 
span is provided by the suggested solution, which also 
resolves all JSSP quandaries. The appropriate GOA solution 
for the benchmark problems LA 12, LA 13, LA 14, LA 15, 
LA 17, LA 18, LA 19, LA 20, LA 22, LA 23, LA 24, LA 25, 
LA 26, LA 28, LA 29, LA 30, LA 32, LA 33, LA 34, LA 35, 
LA 37, LA 38, and LA 39 is 1038, 1149, 1291, 1206, 783, 
843, 841, 900, 925, 1029, 944, 975, 1214, 1215, 1160, 1353, 
1848, 1717, 1720, 1886, 1395, 1190, 1232. 

 
Table 1 (a). Investigating state -of -the art methodologies on benchmark problems 

Problem B.M HGA ACA GRASP DE SSO ESSO 
LA 12 1139 1039 1039 1039 1039 1039 1039 
LA 13 1350 1150 1150 1150 1150 1150 1150 
LA 14 1492 1292 1292 1292 1292 1292 1292 
LA 15 1307 1207 1207 1207 1207 1207 1207 
LA 17 794 784 789 784 789 788 785 
LA 18 899 848 848 848 848 848 848 
LA 19 887 844 842 842 842 842 842 
LA 20 955 907 902 907 902 902 902 
LA 22 972 935 938 960 934 934 927 
LA 23 1088 1032 1032 1032 1032 1032 1032 
LA 24 987 953 959 978 951 947 947 
LA 25 997 981 977 1028 977 977 977 
LA 26 1318 1218 1218 1271 1218 1218 1218 
LA 28 1316 1216 1227 1293 1227 1217 1217 
LA 29 1252 1160 1177 1293 1177 1170 1164 
LA 30 1455 1355 1355 1368 1355 1355 1355 
LA 32 1950 1850 1850 1850 1850 1850 1850 
LA 33 1819 1719 1719 1719 1719 1719 1719 
LA 34 1821 1721 1725 1753 1725 1723 1723 
LA 35 1988 1888 1888 1888 1888 1888 1888 
LA 37 1497 1407 1412 1457 1408 1403 1397 
LA 38 1296 1196 1196 1267 1196 1196 1196 
LA 39 1333 1233 1240 1290 1238 1238 1233 

Table 1 (b). Investigating state-of -the art methodologies on benchmark problems 

Problem GA OGA PSO OPSO GOA 
LA 12 1039 1039 1039 1039 1038 
LA 13 1150 1150 1150 1150 1149 
LA 14 1292 1292 1292 1292 1291 
LA 15 1207 1207 1207 1207 1206 
LA 17 788 787 787 786 783 
LA 18 848 848 848 848 843 

EAI Endorsed Transactions on 
Scalable Information Systems 

| Volume 10 | Issue 5 |



LA 19 842 842 842 842 841 
LA 20 902 902 902 902 900 
LA 22 934 933 932 931 925 
LA 23 1032 1031 1032 1032 1029 
LA 24 978 979 965 964 944 
LA 25 980 979 978 977 975 
LA 26 1229 1220 1219 1218 1214 
LA 28 1293 1277 1267 1239 1215 
LA 29 1293 1290 1287 1100 1160 
LA 30 1368 1360 1358 1357 1353 
LA 32 1850 1849 1849 1850 1848 
LA 33 1719 1718 1719 1719 1717 
LA 34 1753 1769 1755 1724 1720 
LA 35 1888 1889 1887 1889 1886 
LA 37 1399 1398 1396 1397 1395 
LA 38 1198 1197 1195 1194 1190 
LA 39 1256 1245 1244 1237 1232 

Similar to this, different standard deviation conditions are 
used to compute the benchmark issues. As shown in Table2, 
the terms actual make span time, best GOA, worst, average, 
standard deviation, and ARPD refer to the variables, 
respectively. The proposed model standard deviation denotes 

the consistency and dependability of each benchmark 
problem. A low standard deviation value indicates that the 
algorithm is more stable and dependable when searching for 
the best solution. 
 

Table 2. Investigating the performance of GOA with different standard measures 

 
Problem 

 
Actual 
make span 
time 

 
Best 
GOA 

 
Worst 

 
Average 

 
Std. 
Deviation 

 
ARPD 

LA 12 1139 1038 1225 1082 79.8289 0.237247 
LA 13 1350 1149 1236 1193 35.5183 0.295217 
LA 14 1492 1291 1365 1328.5 30.2112 0.214009 
LA 15 1307 1206 1347 1277 57.5634 0.528998 
LA 17 794 783 952 868.5 68.9955 0.892994 
LA 18 899 843 989 918.5 59.6159 0.709316 
LA 19 887 841 987 914.5 59.6047 0.780285 
LA 20 955 900 1058 980 64.5049 0.679047 
LA 22 972 925 1049 988 50.6249 0.582524 
LA 23 1088 1029 1153 1092.5 50.6277 0.460756 
LA 24 987 944 1090 1018.5 59.6084 0.647307 
LA 25 997 975 1098 1037.5 50.2167 0.467247 
LA 26 1318 1214 1422 1320 84.9208 0.655993 
LA 28 1316 1215 1569 1393 144.5206 1.211586 
LA 29 1252 1160 1396 1280 96.3512 0.72122 
LA 30 1455 1353 1765 1560 168.1989 1.05572 
LA 32 1950 1848 2059 1954.5 86.1416 0.373514 
LA 33 1819 1717 2068 1893.5 143.2959 0.86911 
LA 34 1821 1720 2012 1867.5 119.2105 0.595183 
LA 35 1988 1886 2225 2056.5 138.3969 0.673199 
LA 37 1497 1395 1823 1610 174.7309 1.551181 
LA 38 1296 1190 1426 1311 96.3569 0.627508 
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LA 39 1333 1232 1562 1397.5 134.7221 0.999189 

The average relative percentage deviation (ARPD) is the 
objective of reducing the overall time delay by properly 
assigning and ordering the work on the same machine. The 
following equation is used to determine ARPD: 

 ARPD =  ∑ (Best Solution i−Well known Solution) 
Well known Solution

R
i=1  × �100

R
� 

Where, 𝐵𝐵𝑒𝑒𝑠𝑠𝑡𝑡 𝑠𝑠𝑐𝑐𝐶𝐶𝐶𝐶𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛 is the make spam by GOA 
algorithm in each run, 𝑊𝑊𝑒𝑒𝐶𝐶𝐶𝐶 𝑘𝑘𝑛𝑛𝑐𝑐𝑘𝑘𝑛𝑛 𝑆𝑆𝑐𝑐𝐶𝐶𝐶𝐶𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛 is the optimal 
or lowest known upper bound for instances and 𝑅𝑅 is the 
number of runs. 

Analysis of three optimization algorithm’s 
convergence performance on 23 different benchmark issues. 
Through a continuous number of iterations, these 
investigations are carried out to determine three optimization 
strategies function. It is clear from the results that the 
proposed GOA outperforms existing methods in terms of 
obtaining values with a minimum make span time and a 
higher speed of convergence throughout the process. The 
effectiveness of the implemented optimization techniques is 
depicted in the following graphical representation. The 
convergence graph for LA 12, LA13, LA14, and LA15 is 
shown in Figure 3. At the start of the iteration in LA 12 
proposed method reach make span time 1040 in 90 iteration. 
But the existing method ESSO, SSO reach 1040 make span 
time in 200 iteration and DE reach 1040 make span time in 
250 iteration. In LA 13 proposed method reach 1150 at 55 
iteration, but ESSO and SSO reach 240 and 260 iteration and 
DE reach 280 iteration. In LA14 proposed method reach 1295 
make span time at 60 iteration, but existing method ESSO and 
SSO, DE reach 285 iteration. In LA 15 proposed method 
reach make span time 1208  its 100 iteration .But existing 
method ESSO reach make span time 1209 on its 200 iteration  
,SSO and DE reach 240 iteration. 

   
LA12                              LA13 

   
LA14                             LA15 

 
Figure 3. Convergence graph for LA 12, LA 13, LA 14, 

LA15. 

Figure 4 present the convergence graph for LA 16, LA 17, 
LA 18, and LA 19. In LA16 proposed method reach make 
span time 783 on its 220 iteration. But existing method ESSO 
reach make span time 785 on its 260 iteration and SSO reach 
make span time 788 on its 290 iteration and DE reach make 
span time 789 on its 290 iteration. In LA17 proposed method 
reach make span time 843 on its 60 iteration. But existing 
method ESSO reach make span time 849 on its 220 iteration 
and SSO, DE reach 280 iteration. In LA 18 proposed method 
reach make span time 841 on its 140 iteration and existing 
method ESSO reach make span time 842 on its 220 iteration 
and SSO, DE reach make span time 843 on its 280 iteration 
.In LA 19 proposed method reach make span time 900 on its 
160 iteration .But existing method ESSO reach make span 
time 902 on its 120 iteration and SSO reach make span time 
903 on its 260 iteration, DE reach make span time 903 on its 
280 iteration. 

   
LA16                                    LA17 

   
LA18                                LA19 

 
Figure 4. Convergence graph for LA 16, LA 17, LA 18, 

LA19 

Figure 5 present convergence graph for LA 20, LA 21, LA 
22, and LA23. In LA 20 proposed method reach make span 
time 926 on its 60 iteration. But existing method ESSO reach 
make span time 927 on its 100 iteration and SSO reach make 
span time 936 on its 100 iteration, DE reach make span time 
937 on its 120 iteration. In LA 21 proposed method reach 
make span time 1030 on its 80 iteration. But existing method 
ESSO reach make span time 1033 on its 80 iteration and SSO 
reach make span time 1033 on its 260 iteration, DE reach 
make span time 1033 on its 260 iteration. In LA 22 proposed 
method reach make span time 945 on its 80 iteration. But 
existing method ESSO reach make span time 948 on its 240 
iteration and SSO reach on its 240 iteration respectively ,DE 
reach make span time 951 on its 240 iteration. In LA 23 
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proposed method reach make span time 975 on its 220 
iteration. But existing method 

    
LA20                                   LA21 

    
LA22                                   LA23 

 
Figure 5. Convergence graph for LA 20, LA 21, LA 22, 

LA23 

Figure 6 present convergence graph for LA 24, LA 25, LA 
26, and LA27. In LA 24 proposed method reach make span 
time 1216 on its 60 iteration. But existing method ESSO 
reach make span time 1220 on its 80 iteration and SSO reach 
on its 80 iteration respectively, DE reach make span time 
1222 on its 80 iteration. In LA 25 proposed method reach 
make span time 1216 on its 60 iteration. But existing method 
ESSO reach make span time 1218 on its 80 iteration and SSO 
reach make span time 1219 on its 240 iteration, DE reach 
make span time 1230 on its 260 iteration. In LA 26 proposed 
method reach make span time 1160 on its 80 iteration. But 
existing method ESSO reach make span time 1164 on its 100 
iteration and SSO reach on its 1170 on its 100 iteration  ,DE 
reach make span time 1178 on its 120 iteration. In L27 
proposed method reach make span time 1354 on its 100th 
iteration. But existing method ESSO reach make span time 
1356 on its 100 iteration and SSO reach 1356 on its 260 
iteration and DE reach make span time 1358 on its 260 
iteration. 

    
LA24                                   LA25 

     
   LA26                                       LA27 

 
Figure 6. Convergence graph for LA 24, LA 25, LA 26, 

LA27 

Figure 7 present convergence graph for LA 28, LA 29, LA 
30, and LA31. In LA 28 proposed method reach make span 
time 1850 on its 100 iteration. But existing method ESSO 
reach make span time 1852 on its 280 iteration and SSO reach 
make span time 1858 on its 260 iteration respectively, DE 
reach make span time 1859 on its 260 iteration. In LA 29 
proposed method reach make span time 1719 on its 60 
iteration. But existing method ESSO reach make span time 
1720 on its 100 iteration and SSO reach make span time 
1722on its 120 iteration, DE reach make span time 1730 on 
its 140 iteration. In LA 30 proposed method reach make span 
time 1720 on its 160 iteration. But existing method ESSO 
reach make span time 1724 on its 80 iteration and SSO reach 
on its 1170 on its 100 iteration, DE reach make span time 
1728 on its 200 iteration. In LA31 proposed method reach 
make span time 1388 on its 100 iteration. But existing method 
ESSO reach make span time 1389 on its 100 iteration and 
SSO reach 1404 on its 180 iteration and DE reach make span 
time 1409 on its 220 iteration. 

    
LA28                                 LA29 

    
LA30                                LA31 

 
Figure 7. Convergence graph for LA 28, LA 29, LA 30, 

LA31 
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Figure 8 present convergence graph for LA 32, LA 33, and 
LA 34. In LA 32 proposed method reach make span time 
1388 on its 100 iteration. But existing method ESSO reach 
make span time 1389 on its 100 iteration and SSO reach make 
span time 1404 on its 180 iteration respectively, DE reach 
make span time 1409 on its 240 iteration. In LA 33 proposed 
method reach make span time 1235 on its 100 iteration. But 
existing method ESSO reach make span time 1236 on its 240 
iteration and SSO reach make span time 1240 on its 260 
iteration, DE reach make span time 1240 on its 260 iteration. 
In LA 34 proposed method reach make span time 1880 on its 
180 iteration. But existing method ESSO reach make span 
time 1882on its 80 iteration and SSO reach on its 1886 on its 
230 iteration, DE reach make span time 1888 on its 230  
iteration. 

     
LA32                               LA33 

 
LA 34 

 
Figure 8. Convergence graph for LA 32, LA 33, LA 34 

Compared to existing convergence graph proposed method 
is effectively convergence on high speed and it is minimizing 
the make span time. It is used for all industrial application for 
job scheduling and minimize make span time. 

6. CONCLUSION 

Scheduling is important in the industries since it determines 
to perform task at a machine in time. Giving a machine a 
suitable job requires more time and effort when scheduling 
manually. An optimization strategy is used to schedule a work 
in a successful machine at a specific time in order to reduce 
make span time. Here, the make span time is effectively 
truncated using an advanced GOA method. By comparing the 
performance of GOA in JSSP to that of other optimization 
techniques, standard benchmark values are evaluated. The 
research ability is promoted by this algorithm, which causes 
optimization to reveal a wide range of solutions. 
Additionally, this architecture ensures that the proposed 

GOA algorithm always directs search units to examine the 
most promising areas of the search space, which further 
enables this approach to produce excellent results. The 
experimental results provide strong support for the GOA in 
JSSP measure with benchmark data. This study shows the 
GOA dominance in JSSP and its ability to produce far better 
solutions for make span time minimization. The GOA 
algorithm in JSSP provides information it can be used to 
assess the solution to other combinatorial optimization issues. 
In addition, future work concentrate on minimize make span 
time effectively using new novel approach. 
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