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Abstract

This paper aims to investigate an intrusion detection network for digital power grid networks, which consists
of an edge server and two computational nodes that work collaboratively to detect any potential intrusion in
the network. The primary objective of this study is to enhance the effectiveness of intrusion detection in the
network. To achieve this objective, we first define the outage probability of the intrusion detection system
under consideration. This is done to provide a measure of the probability that the system fails to detect
an intrusion when it occurs. We then derive a closed-form expression for the outage probability to enable
further analysis on the system behavior. Since the system resources, such as transmit power, are limited, we
further design a transmit power allocation strategy to improve the system performance. This strategy seeks
to optimize the allocation of transmit power across the different nodes of the intrusion detection network
to maximize the likelihood of detecting intrusions while minimizing the resource usage. Finally, to evaluate
the performance of the proposed system, we conduct simulations and provide results that demonstrate the
accuracy of the closed-form expression and the effectiveness of the transmit power allocation strategy. These
simulation results serve as evidence of the efficacy of the proposed approach in detecting intrusions in a
resource-constrained network, especially for the digital power grid networks.
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1. Introduction

In recent years, artificial intelligence (AI) has made
remarkable progress in fields such as image and speech
recognition, natural language processing, machine
translation, autonomous driving, and intelligent gam-
ing [1–3]. Meanwhile, with the development of new
technologies such as deep learning and reinforcement
learning, the scope and practicality of AI have been fur-
ther expanded, which has not only driven the upgrad-
ing and transformation of traditional industries but also
brought many new business opportunities and social
benefits [4, 5].

∗Corresponding author. Email: xubinlin2023@hotmail.com,
linxb2@csg.cn.

The widespread application of the Internet of Things
(IoT) has made wireless network security issues increas-
ingly important [6, 7]. In wireless network, the chan-
nel is the fundamental medium for data transmission,
and its stability and security are crucial for ensuring
communication quality [8, 9]. However, due to various
factors, the channel is often susceptible to interference
and intrusion attacks. Channel intrusion detection, as
an important part of wireless network security, aims
to discover and identify malicious behavior in the net-
work, in order to protect wireless networks from var-
ious threats and attacks. Channel intrusion detection
indicates the process of detecting unauthorized access
or activity within communication channels between
computing systems, such as a wireless or wired net-
work [10, 11]. In many cases, these channels repre-
sent critical pathways for transmitting sensitive data,
making them attractive targets for attackers seeking
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to compromise the confidentiality, integrity, and avail-
ability of an organization’s information. As intrusion
techniques continue to evolve and advance, traditional
intrusion detection methods are no longer able to meet
the practical security needs. Therefore, researchers
have started exploring new intrusion detection meth-
ods based on artificial intelligence, including machine
learning, deep learning, and other emerging technolo-
gies. In this field, the authors in [12] proposed a novel
approach for detecting insider threats in computer sys-
tems, where graph-based intelligence techniques were
used to analyze the interactions between users and
computer resources. In addition, a knowledge-driven
approach was proposed for discovering software vul-
nerabilities and predicting co-exploitation behaviors,
in which a hybrid approach combining data-driven
techniques with expert knowledge was used to iden-
tify potential vulnerabilities and their co-exploitation
behaviors [13]. In further, an integrated framework was
proposed for predicting the time-to-exploit vulnerabili-
ties in computer systems, where a dynamic imbalanced
learning approach was devised to exploit the evolving
nature of the system and the imbalanced distribution
of vulnerabilities [14]. These methods can detect and
prevent intrusion attacks by analyzing network traffic,
identifying abnormal behavior and pattern recognition,
and other techniques.

This paper focuses on the design and evaluation of
an intrusion detection system for digital power grid
networks. The system consists of an edge server and
two computational nodes that work collaboratively
to detect potential intrusions in the network. The
primary objective of the study is to enhance the
effectiveness of intrusion detection in the network
while considering resource constraints, such as limited
transmit power. To achieve this objective, the paper
first defines the outage probability of the intrusion
detection system, which provides a measure of the
probability that the system fails to detect an intrusion
when it occurs. The paper then derives a closed-
form expression for the outage probability, enabling
further analysis of the system behavior. To improve
the system’s performance, the paper designs a transmit
power allocation strategy to optimize the allocation
of transmit power across the different nodes of
the intrusion detection network. This strategy aims
to maximize the likelihood of detecting intrusions
while minimizing the resource usage. Finally, the
paper conducts simulations to evaluate the proposed
system’s performance and provides evidence of the
efficacy of the closed-form expression and the transmit
power allocation strategy in detecting intrusions in a
resource-constrained network. The simulation results
demonstrate the accuracy of the proposed approach and
highlight its effectiveness, particularly for digital power
grid networks.

The rest parts of this paper are summarized as
follows. Sec. 2 describes the system model of intrusion
detection for digital power grid networks, Sec. 3 defines
the outage probability in this considered network,
discusses the system optimization problem and designs
the system resource allocation strategy. Sec. 4 provides
some simulation results to verify the correctness of
the closed-form expression and the effectiveness of our
proposed transmit power allocation strategy. Sec. 5
gives the conclusion of this paper.

2. System model

Figure 1. System model of intrusion detection with two
computational nodes and an edge server for digital power grid
networks.

Fig. 1 shows the system model of the intrusion
detection with two computational nodes and an edge
server for digital power grid networks, where there
are two computational nodes {N1, N2} and one edge
server. Specifically, we assume that each computational
node is equipped with one antenna for communicating
with the edge server through an wireless link. Without
loss of generality, the edge server conducts the
intrusion detection of the computational nodes based
on the signal-to ratio (SNR). In this network, the
instantaneous SNR received by the edge server from the
computational node N1 is given by [15],

SNR1 =
P1|h1|2

σ2 , (1)
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where h1 ∼ CN (0, β1) denotes the channel parameter of
the wireless link from the computational node N1 to the
edge server. Moreover, P1 is the transmit power at the
computational node N1, and σ2 denotes the variance of
the additional white Gaussian noise (AWGN) at the edge
server.

In addition, the instantaneous SNR received by the
edge server from the computational node N2 is written
as,

SNR2 =
P2|h2|2

σ2 , (2)

where h2 ∼ CN (0, β2) is the channel gain of the wireless
link from the computational node N2 to the edge server,
and P2 denotes the transmit power at the computational
node N2. Particularly, P1 and P2 should satisfy the
following constraint [16, 17],

P1 + P2 = P , (3)

where P denotes the total transmit power of the
computational nodes.

Without loss of generality, we assume that the edge
server can successfully complete the intrusion detection
if and only if it can simultaneously satisfy the following
two constraints,

SNR1 ≥ γ1, (4)

SNR2 ≥ γ2, (5)

where γ1 and γ2 denote the SNR threshold received
by the edge server from the computational nodes N1
and N2, respectively. When SNR1 ≥ γ1 and SNR2 ≥ γ2
both hold, the edge server will successfully detect the
intrusion.

3. Problem formulation and optimization
In this section, we elaborate the system optimization
problem of the considered digital power grid networks.
Specifically, we firstly define the system outage
probability, which is equal to the probability of
failing the intrusion detection, and then derive the
corresponding closed-form expression. In further, we
aim to improve the system performance by minimizing
the system outage probability, through optimizing the
transmit power of the computational nodes N1 and N2.

From (4) and (5), the outage probability is defined as
the probability that SNR1 and SNR2 are less than the
associated SNR thresholds γ1 and γ2 respectively,

Pout = Pr(SNR1 < γ1 ∥ SNR2 < γ2), (6)

where SNR1 < γ1 and SNR2 < γ2 mean the outage
occurs at N1 and N2, respectively.

From (6), we can further derive as [18, 19],

Pout = Pr
(P1|h1|2

σ2 < γ1 ∥
P2|h2|2

σ2 < γ2

)
, (7)

According to (3) and (7), we can obtain,

Pout = Pr
(P1|h1|2

σ2 < γ1 ∥
(P − P1)|h2|2

σ2 < γ2

)
, (8)

= Pr
(P1|h1|2

σ2 < γ1

)
Pr

( (P − P1)|h2|2

σ2 < γ2

)
, (9)

= Pr
(
|h1|2 <

γ1σ
2

P1

)
Pr

(
|h2|2 <

γ2σ
2

(P − P1)

)
, (10)

=
∫ γ1σ

2

P1

0
f|h1 |2(x)dx

∫ γ2σ
2

P−P1

0
f|h2 |2(y)dy, (11)

where f|h1 |2(x) and f|h2 |2(y) denote the probability
density functions (PDF) of |h1|2 and |h2|2, respectively.
According to the |h1|2 ∼ Exp( 1

β1
), we can first get f|h1 |2

as,

f|h1 |2(x) =

 1
β1
e
− x
β1 , x > 0,

0, x ≤ 0.
(12)

Moreover, according to the |h2|2 ∼ Exp( 1
β2

), we can

also obtain f (|h2|2)(y) as,

f|h2 |2(y) =

 1
β2
e
− y
β2 , y > 0,

0, y ≤ 0.
(13)

From (11), (12) and (13), we can further derive Pout
as,

Pout =
∫ γ1σ

2

P1

0

1
β1

e
− x
β1 dx

∫ γ2σ
2

P−P1

0

1
β2

e
− y
β2 dy, (14)

=
(
1 − e−

γ1σ
2

β1P1

)(
1 − e−

γ2σ
2

β2(P−P1)

)
. (15)

In this way, we can obtain the closed-form expression
of the system outage probability in this considered
network. In further, we can improve the system perfor-
mance by minimizing the outage probability, through
optimizing the transmit power of the computational
nodes N1 and N2, given by,

min
{P1,P2}

(
1 − e−

γ1σ
2

β1P1

)(
1 − e−

γ2σ
2

β2(P−P1)

)
(16a)

s.t. C1 : 0 ≤ P1 ≤ P . (16b)

Specifically, constraint C1 indicates that the transmit
power of the computational node N1 should not exceed
the total system transmit power. In the following, we
will describe a transmit power allocation schemes to
solve the optimization problem.

In this section, we propose two transmit power
allocation schemes for the digital power grid networks
to improve the system performance, by minimizing the
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Table 1 Data for Fig. 2
P 5 10 15 20 25
Pro:γ1=0.1 (×e−06) 15.940 3.992 1.775 0.999 0.640
Bf:γ1=0.1 (×e−06) 15.940 3.992 1.775 0.999 0.640
Sim:γ1=0.1 (×e−06) 16.020 4.052 1.801 1.108 0.700
Pro:γ1=0.2 (×e−06) 31.800 7.976 3.548 1.997 1.278
Bf:γ1=0.2 (×e−06) 31.800 7.976 3.548 1.997 1.278
Sim:γ1=0.2 (×e−06) 31.800 7.968 3.542 1.997 1.269
Pro:γ1=0.3 (×e−06) 47.620 11.950 5.319 2.994 1.917
Bf:γ1=0.3 (×e−06) 47.620 11.950 5.319 2.994 1.917
Sim:γ1=0.3 (×e−06) 47.120 11.910 5.310 2.992 1.917

system outage probability. The details of two proposed
allocation scheme are elaborated in the follow.

Considering the fairness of each computational node,
we can uniformly allocate the transmit power to the
computational nodes, which can be described as,

P1 =
P
2
, (17)

P2 =
P
2
. (18)

Besides the uniform power allocation in the above,
we can also use the efficient dichotomy method to
perform the power allocation between the two users.
Specifically, the dichotomy method, also known as the
bisection method, is a numerical algorithm used to find
the roots of a continuous function. The method involves
repeatedly bisecting an interval and then selecting a
subinterval in which a root must lie, based on the
sign of the function at the endpoints of the interval.
The process is repeated until a root is found with a
desired level of accuracy. The dichotomy method is a
simple and robust algorithm that can be applied to a
wide range of functions. It does not require knowledge
of the derivative of the function, making it useful for
functions that are difficult or expensive to differentiate.
However, the method is relatively slow compared to
some other root-finding algorithms, especially when the
function has multiple roots or a steep slope near the
root. In addition to finding roots, the dichotomy method
can also be used to find the maximum or minimum
value of a unimodal function on a closed interval.
This is done by replacing the sign of the function
with its derivative in the algorithm, and modifying the
subinterval selection criteria accordingly.

4. Simulation
In this section, we present some experiments for
the digital power grid networks, to demonstrate
the effectiveness of our proposed resource allocation
schemes. If not specified, the total transmit power is set
to 15W.

Fig. 2 and Table 1 depict the impact of the total
transmit power on the system outage probability of
digital power grid networks, where β1 = 0.1, β2 = 0.2,
γ1 = 0.1, γ2 = 0.2, and the total transmit power varies
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Figure 2. Outage probability of the considered system versus the
total transmit power.
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Figure 3. Outage probability of the considered system versus
β1.

from 5W to 25W. For comparison, we provide the
result of “Brute force" scheme, which can find the
optimal solution by iterating over all feasible solutions.
As observed from this figure, we can see that the
outage probability decreases as the total transmit power
increases. This is because that a larger transmit power
can provide a larger SNR. Moreover, the analytical
results of our proposed scheme match well with the
simulated ones, which demonstrates the effectiveness
of the analytical expression. In further, our proposed
scheme can achieve the same performance as the “Brute
force”, which verifies that validity of our proposed
scheme.

Figs. 3 -4 and Table 2-3 show the impact of the rate
parameters of exponential distribution on the outage
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Table 2 Data for Fig. 3
β1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Pro:P=10 (×e−06) 3.992 1.997 1.332 0.999 0.799 0.666 0.571 0.499 0.444 0.400
Bf:P=10 (×e−06) 3.992 1.997 1.332 0.999 0.799 0.666 0.571 0.499 0.444 0.400
Sim:P=10 (×e−06) 4.052 2.001 1.328 0.999 0.798 0.665 0.569 0.498 0.444 0.400
Pro:P=15 (×e−06) 1.775 0.888 0.592 0.444 0.355 0.296 0.254 0.222 0.197 0.178
Bf:P=15 (×e−06) 1.775 0.888 0.592 0.444 0.355 0.296 0.254 0.222 0.197 0.178
Sim:P=15 (×e−06) 1.801 0.900 0.601 0.441 0.355 0.300 0.254 0.222 0.202 0.180
Pro:P=20 (×e−06) 0.999 0.500 0.333 0.250 0.200 0.167 0.143 0.125 0.111 0.100
Bf:P=20 (×e−06) 0.999 0.500 0.333 0.250 0.200 0.167 0.143 0.125 0.111 0.100
Sim:P=20 (×e−06) 1.108 0.498 0.332 0.248 0.199 0.167 0.140 0.122 0.109 0.099

Table 3 Data for Fig. 4
β2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Pro:P=10 (×e−06) 7.976 3.992 2.662 1.997 1.598 1.332 1.141 0.999 0.888 0.799
Bf:P=10 (×e−06) 7.976 3.992 2.662 1.997 1.598 1.332 1.141 0.999 0.888 0.799
Sim:P=10 (×e−06) 8.001 4.052 2.641 1.980 1.586 1.315 1.111 0.990 0.881 0.796
Pro:P=15 (×e−06) 3.548 1.775 1.184 0.888 0.710 0.592 0.508 0.444 0.395 0.355
Bf:P=15 (×e−06) 3.548 1.775 1.184 0.888 0.710 0.592 0.508 0.444 0.395 0.355
Sim:P=15 (×e−06) 3.520 1.801 1.200 0.890 0.710 0.603 0.510 0.441 0.401 0.351
Pro:P=20 (×e−06) 1.997 0.999 0.666 0.500 0.400 0.333 0.286 0.250 0.222 0.200
Bf:P=20 (×e−06) 1.997 0.999 0.666 0.500 0.400 0.333 0.286 0.250 0.222 0.200
Sim:P=20 (×e−06) 1.983 1.108 0.661 0.497 0.390 0.333 0.284 0.249 0.222 0.198

Table 4 Data for Fig. 5
γ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Pro:P=10 (×e−06) 3.992 7.976 11.952 15.920 19.880 23.833 27.777 31.714 35.642 39.563
Bf:P=10 (×e−06) 3.992 7.976 11.952 15.920 19.880 23.833 27.777 31.714 35.642 39.563
Sim:P=10 (×e−06) 4.052 7.973 11.715 16.000 19.797 23.699 27.681 31.714 36.001 39.610
Pro:P=15 (×e−06) 1.775 3.548 5.319 7.087 8.853 10.627 12.378 14.137 15.894 17.648
Bf:P=15 (×e−06) 1.775 3.548 5.319 7.087 8.853 10.627 12.378 14.137 15.894 17.648
Sim:P=15 (×e−06) 1.801 3.511 5.232 7.190 8.900 10.627 12.360 14.092 16.001 17.499
Pro:P=20 (×e−06) 0.999 1.997 2.994 3.990 4.985 5.979 6.972 7.964 8.955 9.945
Bf:P=20 (×e−06) 0.999 1.997 2.994 3.990 4.985 5.979 6.972 7.964 8.955 9.945
Sim:P=20 (×e−06) 1.108 1.979 2.976 3.970 4.969 6.005 6.960 8.000 8.959 9.945

Table 5 Data for Fig. 6
γ2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Pro:P=10 (×e−06) 1.997 3.992 5.985 7.976 9.965 11.952 13.937 15.920 17.901 19.880
Bf:P=10 (×e−06) 1.997 3.992 5.985 7.976 9.965 11.952 13.937 15.920 17.901 19.880
Sim:P=10 (×e−06) 1.971 4.052 5.973 7.981 9.952 12.000 13.937 15.918 17.901 19.880
Pro:P=15 (×e−06) 0.888 1.775 2.662 3.548 4.434 5.319 6.204 7.087 7.971 8.853
Bf:P=15 (×e−06) 0.888 1.775 2.662 3.548 4.434 5.319 6.204 7.087 7.971 8.853
Sim:P=15 (×e−06) 0.900 1.801 2.658 3.542 4.416 5.300 6.210 7.104 8.000 8.902
Pro:P=20 (×e−06) 0.500 0.999 1.498 1.997 2.496 2.994 3.492 3.990 4.488 4.985
Bf:P=20 (×e−06) 0.500 0.999 1.498 1.997 2.496 2.994 3.492 3.990 4.488 4.985
Sim:P=20 (×e−06) 0.499 1.108 1.500 1.979 2.490 2.970 3.492 3.990 4.492 4.967

probability of digital power grid networks, where γ1 =
0.1, γ2 = 0.2, P = 15W. Moreover, we set β1 = 0.1 in Fig.
3 and β2 = 0.2 in Fig. 4. In particular, Fig. 3 and Fig. 4
correspond to |h1|2 and |h2|2, respectively. As shown in
Figs. 3 -4 and Table 2-3, we can observe that the outage
probability decreases with the increasing value of β1
and β2, since the channel quality is improved when β1
and β2 are larger. In addition, the analytical results of
our proposed scheme fit well with the simulated ones,
indicating that correctness of our analytical expression
can be reliable. We can also see that the performance
of our proposed scheme is equal to that of the “Brute
force”, which proves the effectiveness of our proposed
scheme.

Figs. 5-6 and Table 4-5 present the impact of
SNR thresholds on the outage probability of digital

power grid networks, where β1 = 0.1, β2 = 0.2, P =
15W. Moreover, we set γ1 = 0.1 in Fig. 5 and γ2 = 0.2
in Fig. 6. Particularly, Fig. 5 and Fig. 6 correspond
to the computational nodes N1 and N2, respectively.
From Figs. 5-6 and Table 4-5, we can find that the
outage probability increases with a larger γ1 and
γ2, as the larger SNR threshold makes the intrusion
detection more difficult. Besides, the analytical results
of our proposed scheme match well with the simulated
ones, which verifies the correctness of out analytical
expression. We can also see that the performance of
our proposed scheme can achieve the same performance
as the “Brute force”, which further demonstrates the
effectiveness of our proposed scheme.
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Figure 4. Outage probability of the considered system versus
β2.
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Figure 5. Outage probability of the considered system versus
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5. Conclusion

In this paper, we investigated the intrusion detection
system with a edge server and two computational
nodes for the digital power grid networks. Moreover,
the edge server and computational nodes cooperatively
detect the intrusion. To improve the effectiveness of
the intrusion detection, we first defined the outage
probability of the considered system, and then derived
the closed-form expression. As the total transmit
power is limited, we further optimized the transmit
power allocation strategy to improve the system
performance. Finally, some simulation results were
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Figure 6. Outage probability of the considered system versus
γ2.

provided to demonstrate the correctness of the closed-
form expression and the effectiveness of our proposed
transmit power allocation strategy.
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