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Abstract

This paper employs deep learning technique to perform the research of text mining for power grid networks,
focusing on fundamental elements such as loss and activation functions. Through some analysis and formulas,
we explain how these functions contribute to deep learning. We also introduce major deep learning training
models, including CNN and RNN, and provide visual aids to aid understanding. To demonstrate the impact
of various factors on deep learning training, we employ control variable experiments to analyze the influence
of factors such as learning rate, batch size, and data noise on model training trends. While the influence of
hyperparameters and data noise are covered in this paper, other factors such as CPU and memory frequency, as
well as GPU performance, also play a crucial role in deep learning training. Therefore, continuous adjustments
to various factors are necessary to achieve optimal training results for deep learning models in power grid
networks.
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1. Introduction
As a typical form of Internet of Things (IoT) networks
[1–3], the power grid network is a critical infrastructure
that provides electricity to consumers across various
regions. Research on power grid networks focuses on
improving the efficiency, reliability, and resilience of
the network while also ensuring the safety of the
users and the environment. Recent research in this
field has explored the integration of renewable energy
sources, such as wind and solar, into the power
grid network. This requires the development of new
technologies to manage and balance the fluctuating
supply of renewable energy, which can affect the
stability of the grid. Another area of research in power
grid networks is the use of smart grid technologies.
Smart grids incorporate advanced communication and
control systems that enable real-time monitoring and
optimization of the power grid network [4–6]. This
allows for more efficient energy distribution, reduced
energy waste, and improved grid reliability[7, 8].
Research is also being conducted to address the
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cybersecurity threats to power grid networks. As power
grid networks become more interconnected and reliant
on digital technologies, the risk of cyber attacks
increases. Developing effective cybersecurity measures
is crucial to ensuring the safety and reliability of the
power grid network.

Text mining plays an important role in the power
grid networks, which is useful for the system oper-
ation and running [9–11]. Text mining is a research
field that focuses on using computational techniques to
extract useful information and knowledge from large
collections of textual data. This field encompasses a
range of techniques and applications, including natural
language processing (NLP), machine learning, and data
mining. One area of active research in text mining is
sentiment analysis. Sentiment analysis aims to automat-
ically identify the sentiment of a text, such as positive,
negative, or neutral. This is important for applications
such as opinion mining, customer feedback analysis,
and social media monitoring. Researchers are develop-
ing new algorithms and techniques to improve the accu-
racy and effectiveness of sentiment analysis. Another
area of research in text mining is topic modeling, to
identify latent topics in a collection of documents. This
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is useful for tasks such as information retrieval, doc-
ument clustering, and trend analysis. Researchers are
exploring new methods to improve the efficiency and
scalability of topic modeling, such as distributed and
parallel algorithms. Named entity recognition (NER)
is another area of active research in text mining [12–
14]. NER is the process of identifying and classify-
ing named entities, such as people, organizations, and
locations, in text. This is important for applications
such as information extraction and text summarization.
Researchers are developing new methods to improve
the accuracy and robustness of NER, such as deep
learning-based approaches. Finally, researchers in text
mining are exploring new applications of the field, such
as fake news detection, biomedical text mining, and
social media analysis. These applications are becoming
increasingly important in today’s data-driven world,
and researchers are developing new techniques to
address the unique challenges posed by these domains.
In a word, the current research in the text mining is
focused on developing new algorithms and techniques
to extract useful information and knowledge from large
collections of textual data.

Deep learning-based models have already surpassed
classical machine learning-based approaches in various
text mining fields [15–17]. One of the key steps in
traditional machine learning is to extract features,
but feature extraction has a disadvantage of relying
mainly on human labor and each extraction method is
not universal. Deep learning dose not rely on human
for feature extraction, but is automatically extracted
by machines, which gives deep learning excellent
expressiveness. Not only that, deep learning is highly
dependent on data, the larger the amount of data
the better it performs, and sometimes the upper limit
can be raised by tuning the parameters, even in some
text mining fields it has already exceeded the human
performance. It has a wide range of applications, such
as the ability to answer questions, handle spam, chat
on electronic devices, and more. The most popular
model is the transformer model, which is widely used
in the field of natural language processing (NLP), such
as the famous BERT and GPT-3 models. In recent
years, a new algorithm for analyzing written language,
named Neural Analysis of Sentiment (NaSent), has been
proposed to better understand the emotions that flow
between words.

Motivated by the above literature review, this paper
employs the deep learning technique to perform the
research of text mining for power grid networks,
focusing on fundamental elements such as loss and
activation functions. Through images and formulas,
we explain how these functions contribute to deep
learning. We also introduce major deep learning
training models, including CNN and RNN, and provide
visual aids to aid understanding. To demonstrate the

impact of various factors on deep learning training,
we employ control variable experiments to analyze
the influence of factors such as learning rate, batch
size, and data noise on model training trends. While
the influence of hyperparameters and data noise are
covered in this paper, other factors such as CPU and
memory frequency, as well as GPU performance, also
play a crucial role in deep learning training. Therefore,
continuous adjustments to various factors are necessary
to achieve optimal training results for deep learning
models in power grid networks.

2. Basic Priciple of Deep Learning
Text mining is theoretically based on statistics and
computer linguistics. Deep learning-based text mining
is a process that relies on information retrieval
techniques to extract meaningful, implicit and useful
information from large amounts of text data. The basic
principle is to transform text data into sequences that
describe the content of the text, and then use techniques
such as classification and clustering to classify the text
into organised groups and discover new concepts and
corresponding relationships based on the structure.

The main steps of deep learning-based text mining
are as follows: in the first step, the creation of
the dataset is necessary. In the second step, dataset
needs to be scaled down to improve the operational
efficiency. In the third step, the classification or
clustering operation should be performed to form the
corresponding knowledge patterns. In the fourth step,
the evaluation of the quality of the knowledge patterns
should be performed, to analyze modify one of the
previous links and then further mining. Here we take
word2vec as an example to explain the deep learning
based text mining and processing.

2.1. Word2Vec
In Word2Vec, the CBOW (Continuous Bag of Words)
and the Skip-Gram model can quickly train word-
embeddings and calculate word vectors to operations,
where the principle of CROW and Skip-Gram are
shown in Fig. 1 and Fig. 2, respectively. The concept of
word-embedding is that the text can be scattered and
embedded into another discrete space. Most supervised
machine learning models can be summarized as the
functional form

f (x) = y, (1)

and so can word2vec. The ultimate goal of word2vec
is to be able to obtain the word vector matrix after the
model has been trained. The CBOW model is equivalent
to predicting the current word by context, i.e., using
wt−2, wt−1, wt+1, wt+2 to predict wt . In contrast, the
SkipGram model is equivalent to predicting context by
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Figure 2. Principle of SkipGram

the current word, i.e., using wt to predict wt−2, wt−1,
wt+1, wt+2.

As shown in Fig. 3, deep learning-based text-mining
uses one-hot encoding as the input value to multiply
with the weight matrix from the input layer to the

Figure 3. Principle of deep learning based text mining.

hidden layer, which also enables to obtain the N -
dimensional word vector of the input words.

h = WT ∗ X = vTwI (2)

The N -dimensional word vector is then multiplied with
the weight matrix from the hidden layer to the output
layer to obtain a score for the input word, with higher
scores representing more accurate predictions.

u = W
′T ∗ h. (3)

3. ACTIVATION FUCTIONS
Activation functions are mathematical operations
applied to the output of a neural network layer
to introduce nonlinearity into the network. In deep
learning, activation functions are used in almost every
neural network layer to help the network learn complex
representations of data. There are several activation
functions used in deep learning, including:

• Sigmoid function: This function maps any input
to a value between 0 and 1, which is useful for
binary classification problems, given by [4, 18, 19]

sigmoid(x) = 1/(1 + exp(−x)). (4)

• ReLU function: The Rectified Linear Unit (ReLU)
function maps any negative input to zero and any
positive input to the input value. ReLU is popular
because it’s simple and computationally efficient,
given by

ReLu(x) = max(0, x). (5)

• Tanh function: The Hyperbolic Tangent (tanh)
function maps any input to a value between -1
and 1, which is useful for multi-class classification
problems, given by

tanh(x) = (exp(x) − exp(−x))/(exp(x) + exp(−x)).
(6)
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• Softmax function: The Softmax function maps a
vector of input values to a probability distribution
over a set of classes, making it ideal for multi-class
classification problems, given by

sof tmax(xi) = exp(xi)/
N∑
n=1

(exp(xn)). (7)

• Leaky ReLU function: Leaky ReLU is a variation of
ReLU where the negative input values are mapped
to a small, non-zero value instead of zero, to
prevent dead neurons in the network.

• ELU function: Exponential Linear Unit (ELU)
function is similar to the Leaky ReLU, but with
negative input values, it maps them to a small,
non-zero value, which is scaled by an exponential
factor.

• Swish function: Swish function is a new activation
function that is similar to the ReLU function, but
has a smoothly varying output, which can result in
a better performance in certain types of models.

Choosing the right activation function depends on the
type of problem to be solved and the properties of the
data. In this work, we choose the ReLU function as the
activation function, without loss of generaltiy.

4. LOSS FUNCTIONS
The loss function is also a crucial part for deep learning
model training. Generally speaking, the objective
function of the deep learning model is to reduce the
error between the real value and the predicted value.
The smaller the error, the closer the predicted result
of the model is to the real value, and the better
the model performance will be. The loss function
plays an important role because it must faithfully
reduce aspects of the model to a single number, and
improvements in that number are used to measure
improvements in model performance. The choice of
loss function often determines whether the model can
achieve the performance results we want and whether it
can perform the tasks we need. Here are two commonly
used loss functions.

One loss function is based on the mean squared error
(MSE),

MSE =
1
n

n∑
i=1

(yi − ŷi)2, (8)

where yi is the true label and ŷi is the predicted label
for the ith sample, and n is the number of samples.

Another typical form is based on the binary cross-
entropy (BCE),

BCE = −1
n

n∑
i=1

[yi log(ŷi) + (1 − yi) log(1 − ŷi)], (9)

where yi is the true label (either 0 or 1) and ŷi is the
predicted probability that the ith sample belongs to the
positive class, and n is the number of samples. Note
that BCE loss is commonly used for binary classification
problems. In this work, we adopt BCE as the loss
function, without loss of generality.

5. Evaluation metrics and Influencing factors of
Training results in Deep Learning
In this part, we investigate the training result
performance by influencing factors and evaluation
metrics. The evaluation metrics are shown as

P recision =
T P

T P + FP
(10)

Recall =
T P

T P + FN
(11)

F1 − score =
2P recision ∗ Recall
P recision + Recall

(12)

Acc =
T P + TN

N
(13)

where T P is denoted as the number of samples which
are correctly classified into positive class, TN is the
number of the samples that are correctly classified into
negative classes, FN is the number of samples that are
misclassified into negative samples, FP is the number of
the samples that are misclassified into positive samples,
N is the number of samples, F1 − score is the reconciled
average of accuracy and recall, Acc describes how many
of all predicted positive cases match the actual situation
match.

In machine learning, training loss indicates the error
between the prediction result of the training set in the
model and the true result, and is used to measure the
fitting ability of the neural network model trained by
the training set. Valid loss denotes the error between the
prediction result of the validation set in the model and
the true result, and is used to measure the difference
between the effect of the neural network model on the
test set and the true situation, which can be regarded
as the generalization ability. Both the training and valid
loss are decreasing indicating that the neural network
is still learning, which is the best case; the training loss
is decreasing while the valid loss tends to be constant
indicating that the neural network is overfitting. When
both the training and valid loss tend to be constant,
it means that the learning of the neural network has
encountered some obstacles and the learning rate needs
to be reduced. When both the training and valid loss
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Figure 4. The trend of training loss affected by the learning rate.
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Figure 5. The trend of valid loss affected by the learning rate.

are increasing, it means that there is a problem in the
structural design of the neural network and the wrong
hyperparameters are used for training.

In our simulations, 38,507 samples were used for
the deep learning related competitions, where there
are 19222 positive data and 19285 negative data.
The experiment were PyTorch with GTX 1060 for
acceleration.

Fig. 4 and Fig. 5 show the trend of the training
loss and valid loss of the model during training with
the different values of learning rate. As seen in these
two figures, the training loss and valid loss decrease
as the number of training iterations increases at the
same learning rate. Note that the training loss and valid
loss decrease as the learning rate decrease at the same
iteration. The learning rate is one of the very important
hyperparameters in deep learning, which determines

8

Figure 6. The trend of training loss versus the number of epochs.

8

Figure 7. The trend of valid loss versus the number of epochs.

the step size of parameter update in each iteration. If
the learning rate is set too large, the step size of each
parameter update will also become too large, which
may lead to unstable oscillation. If the learning rate is
set too small, the step size of each parameter update
will also become too small, resulting in a slower training
speed and an increase in the number of iterations
required for the training process, which may even
cause the model to fail to reach the optimal point
or fall into a local optimum prematurely. A suitable
learning rate can ensure that the model converges to the
optimal point steadily during the training process, and
the training speed can also be guaranteed. In general,
the appropriate learning rate needs to be determined
according to the specific problem and model structure.
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Figure 8. The original data and the data after adding noise.

Fig. 6 shows the trend of training loss versus the
number of normalized epochs, where the batch size
is set to 4 or 8. Fig. 7 illustrates the trend of valid
loss versus the number of normalized epochs, with
batch size of 4 or 8. From Fig. 6, we can find that
the system training loss decreases with the number of
epochs, indicating the efficiency in the training process.
In particular, the training loss with 1 epoch is 0.065 or
0.05 when the batch size is 4 or 8; the training loss with
2 epochs is 0.023 or 0.017 when the batch size is 4 or 8;
the training loss with 3 epochs is 0.008 or 0.006 when
the batch size is 4 or 8. The similar observation can be
also found in Fig. 7, where the valid loss also decreases
with the number of epochs, indicating the efficiency in
the valid process. In particular, the valid loss with 1
epoch is 0.114 or 0.088 when the batch size is 4 or 8;
the valid loss with 2 epochs is 0.103 or 0.1 when the
batch size is 4 or 8; the valid loss with 3 epochs is 0.113
or 0.088 when the batch size is 4 or 8.

Fig. 8 shows how noise affects the raw data and its
impact on the deep learning model training. Note that
the noise in the data may make the model training
more difficult because the model needs to learn how
to distinguish between the signal and noise. In some
cases, noise may overfit the model because the model
will overfit the noise instead of the real data. As
a result, noise can degrade the performance of the
model. Although noise may degrade the performance
of the model, in some cases it may help improve the
generalization ability of the model. When the model
is able to learn the commonality of real data from the
noise, it will be more robust and able to handle new
data better. Understanding the laws affecting data noise
and adopting appropriate processing methods can help
improve the performance and generalization ability of
deep learning models.

6. Conclusion
This paper explored the application of deep learning in
text mining for power grid networks, with a focus on
important concepts like loss and activation functions.
Visual aids and mathematical expressions were used to
demonstrate how these functions contributed to deep
learning. To investigate the impact of various factors
on deep learning training, control variable experiments
were conducted, and the influence of factors such as
learning rate, batch size, and data noise on model
training trends was analyzed. While hyperparameters
and data noise were discussed in detail in this paper,
it should be noted that other factors such as CPU
and memory frequency, as well as GPU performance,
also played a critical role in deep learning training.
Therefore, constant adjustments to multiple factors are
necessary to achieve optimal training results for deep
learning models.
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