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Abstract

Knowledge sharing is a critical aspect of machine learning and knowledge management, which also plays an
important role in regulating the power grid networks. Hence, it is important to investigate the performance of
knowledge sharing in the power grid networks. Motivated by this, we firstly investigate a typical power grid
network with a knowledge sharing node, where the transmit power of users is constrained by the knowledge
sharing node. We then measure the system performance by evaluating the system outage probability (OP),
where the analytical expression of OP is derived in detail. Finally, we present some simulation and numerical
results on the OP for the considered power grid networks with knowledge sharing, in order to verify the
proposed studies on the OP. In particular, these results show that the knowledge sharing can help enhance the
system OP performance efficiently.
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1. Introduction
Knowledge sharing is a critical aspect of machine
learning and knowledge management [1–4]. Many
researchers have studied the factors that affect knowl-
edge sharing and the benefits that it can bring to
information technology [5–8]. Researchers have also
identified several factors that affect knowledge sharing
in systems, which include trust, communication, incen-
tives, leadership, culture, and technology. For example,
trust between wireless nodes can create a safe envi-
ronment for sharing knowledge, while incentives can
motivate the nodes to share their expertise. Knowl-
edge sharing can bring numerous benefits to informa-
tion technology, including increased innovation, bet-
ter decision-making, improved problem-solving, and
enhanced machine learning. By sharing knowledge,
wireless nodes can learn from one another and build
on each other’s expertise, leading to better overall per-
formance [9–11]. Despite the potential benefits, there
are also barriers to knowledge sharing that can prevent
it from occurring. These barriers include a lack of
time, resources, and motivation, as well as a mechasim
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that values individual achievement over collaboration.
Researchers have also studied various methods for pro-
moting knowledge sharing in wireless nodes. These
include creating communities of practice, using knowl-
edge management systems, and promoting informal
communication channels such as social media and face-
to-face meetings. In a word, the literature on knowledge
sharing highlights the importance of creating a way that
values collaboration and learning, while also provid-
ing the necessary incentives and resources to support
knowledge sharing. By doing so, the wireless systems
can benefit from the collective knowledge of their wire-
less nodes and improve the overall performance.

Motivated by the development of IoT networks,
the use of digital technologies has enabled the smart
grid to become a modernized electricity grid that
enhances reliability, efficiency, and flexibility [12–14].
It comprises an interconnected network of electricity
generation, transmission, and distribution systems
that communicate with each other and electricity
consumers in real-time. Energy storage, renewable
energy sources, distribution automation, advanced
metering infrastructure, and communication systems
are various components that make up the smart
grid network [15–17]. The primary goal of the smart
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grid network is to ensure the efficient, reliable, and
secure delivery of electricity to consumers while
simultaneously decreasing energy costs and greenhouse
gas emissions. Additionally, the communication system
is a crucial component of the smart grid network,
allowing for real-time monitoring and control of the
electricity grid.

To enable real-time monitoring and control of the
electricity grid, smart grid networks employ various
communication technologies, including wireless com-
munication, power line communication, and fiber-optic
communication [18–20]. Wireless communication is
used for remote monitoring and control of electricity
distribution systems, while power line communication
is used for communication over the power lines. Fiber-
optic communication is used for high-speed communi-
cation between substations and control centers. Cyber-
security is an important aspect of smart grid networks
as they are vulnerable to cyber-attacks. Cyber-attacks on
the smart grid can cause power outages, disrupt energy
delivery, and compromise consumer data. Therefore,
the smart grid network must be safeguarded against
cyber-attacks [21–23]. This can be achieved by imple-
menting security measures such as encryption, authen-
tication, and access control.

Smart grid networks have various applications such
as demand response, renewable energy integration,
electric vehicle charging, and energy storage. Demand
response enables electricity consumers to reduce their
electricity consumption during peak periods, while
renewable energy integration enables the integration
of renewable energy sources into the electricity grid.
Electric vehicle charging enables the charging of elec-
tric vehicles using the electricity grid, while energy
storage enables the storage of electricity for later use.
The collection and analysis of real-time data on elec-
tricity consumption is enabled by Advanced Metering
Infrastructure (AMI), which is a vital component of the
smart grid network. AMI consists of smart meters, com-
munication systems, and data management systems.
The data obtained from AMI can be utilized to enhance
energy efficiency, cut energy costs, and enhance the
reliability of the electricity grid. Despite its numerous
benefits, implementing smart grid networks presents
several challenges. These obstacles include expensive
implementation costs, the absence of standards, inter-
operability difficulties, privacy concerns, and regula-
tory issues. Addressing these challenges is critical to the
successful implementation of smart grid networks.

Motivated by the above literature overview, we
firstly investigate a typical power grid network with a
knowledge sharing node, where the transmit power of
users is constrained by the knowledge sharing node. We
then measure the system performance by evaluating the
system outage probability (OP), where the analytical
expression of OP is derived in detail. Finally, we present
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Figure 1. System model of a typical power grid network with a
knowledge sharing node.

some simulation and numerical results on the OP for
the considered power grid networks with knowledge
sharing, in order to verify the proposed studies on the
OP. In particular, these results show that the knowledge
sharing can help enhance the system OP performance
efficiently.

2. System model
Fig. 1 considers the system model of one cognitive
wireless network with one transmit source S and one
receive device D, which can communicate with each
other through a relay R. Moreover, there is one primary
user (PU) in the network, and the source and relay can
share spectrum with the PU to improve the spectral
efficiency of the network.

Because of the spectrum sharing, the source and relay
may interfere with the primary user. Therefore, the
transmit power of the source and relay is limited by the
PU, which can be given respectively as

PS =
Ip
|g1|2

, (1)

PR =
Ip
|g2|2

, (2)

where Ip is the tolerable interference power of the PU,
|g1|2 ∼ exp(β1) is the channel gain of the link from the
source to the PU, and |g2|2 ∼ exp(β2) is the channel gain
of the link between the relay and PU. When the source
communicates with the receive device through the relay,
the signal-to-noise ratio (SNR) from S to D can be given
as

YS = PS |h1|2, (3)

where |h1|2 ∼ exp(α1) is the channel gain of the link
from the source to the relay. Similarly, the SNR from
the relay to the receive device is

YR = PR|h2|2, (4)

where |h2|2 ∼ exp(α2) is the channel gain of the link
from R to D.

2 EAI Endorsed Transactions on 
Scalable Information Systems 

| Volume 10 | Issue 4 |



Performance Analysis and Research of Knowledge Sharing System for Power Grid Networks

3. Performance Analysis
Outage probability is one of the important metrics
to evaluate the wireless communication system. In
this section, we provide an analytical expression for
the outage probability to help analyze the system
performance.

From (3) and (4), we can obtain the end-to-end SNR
at the receive device as [24]

YD = min(YS , YR) (5)

= min(PS |h1|2, PR|h2|2) (6)

= Ip min
(
|h1|2

|g1|2
,
|h2|2

|g2|2

)
, (7)

and the outage probability for the wireless communica-
tion can be written as [25–27]

Pout = Pr(YD < Yth) (8)

= Pr
[

min
(
|h1|2

|g1|2
,
|h2|2

|g2|2

)
<

Yth
Ip

]
(9)

= 1 − Pr
[

min
(
|h1|2

|g1|2
,
|h2|2

|g2|2

)
≥ Yth

Ip

]
(10)

= 1 − Pr
(
|h1|2

|g1|2
≥ Yth

Ip
,
|h2|2

|g2|2
≥ Yth

Ip

)
, (11)

where Yth is a minimum threshold of the SNR. Since
|h1|2, |h2|2, |g1|2, and |g2|2 are independent of each other,
(3) can be re-written as [28–30]

Pout = 1 − Pr
(
|h1|2

|g1|2
≥ Yth

Ip

)
Pr

(
|h2|2

|g2|2
≥ Yth

Ip

)
(12)

= 1 −
[
1 − Pr

(
|h1|2

|g1|2
<

Yth
Ip

)][
1 − Pr

(
|h2|2

|g2|2
<

Yth
Ip

)]
.

(13)

Let u1 = |h1|2 ∼ exp(α1) and v1 = |g1|2 ∼ exp(β1), we
can obtain [31–34]

Pr
(
|h1|2

|g1|2
<

Yth
Ip

)
= Pr

(
u1 <

Ythv1

Ip

)
(14)

=
∫ ∞

0

∫ Ythv1
Ip

0
fu1

(u1)fv1
(v1)du1dv1

(15)

=
∫ ∞

0

∫ Ythv1
Ip

0

1
α1

e
− u1
α1 fv1

(v1)du1dv1

(16)

= 1 −
∫ ∞

0

1
β1

e
− v1
β1 e
− Ythv1

Ipα1 dv1 (17)

=
β1Yth

α1Ip + β1Yth
. (18)

Similarly, Let u2 = |h2|2 ∼ exp(α2) and v2 = |g2|2 ∼
exp(β2), we can obtain

Pr
(
|h2|2

|g2|2
<

Yth
Ip

)
= Pr

(
u2 <

Ythv2

Ip

)
(19)

=
∫ ∞

0

∫ Ythv2
Ip

0
fu2

(u2)fv2
(v2)du2dv2

(20)

=
∫ ∞

0

∫ Ythv2
Ip

0

1
α2

e
− u2
α2 fv2

(v2)du2dv2

(21)

= 1 −
∫ ∞

0

1
β2

e
− v2
β2 e
− Ythv2

Ipα2 dv2 (22)

=
β2Yth

α2Ip + β2Yth
. (23)

By substituting (3) and (3) into (3), we can obtain

Pout = 1 −
(
1 −

β1Yth
α1Ip + β1Yth

)(
1 −

β2Yth
α2Ip + β2Yth

)
(24)

=
α1β2IpYth + α2β1IpYth + β1β2Y

2
th

(α1Ip + β1Yth)(α2Ip + β2Yth)
. (25)

Observing from (3), we can find that parameters
α1, α2, β1, β2, Ip and Yth all affect the system outage
probability. In order to verify the results of the proposed
outage probability analysis, and reveal the effect of
various parameters on the system outage probability,
we provide some simulations in the following section.

4. Simulation
In this part, we provide some simulations to verify the
effectiveness of the proposed analytical method. If not
specified, we set α1 = 2, α2 = 2, β1 = 0.01, and β2 =
0.01. Besides, the tolerable interference power of the PU
is set to 20dB, and the minimum threshold of the SNR
is 20dB.

Fig. 2 and Table 1 present the outage probability
versus Yth with Ip = 10dB and Ip = 20dB, where Yth
changes from 0 to 10dB. From Fig. 2 and Table 1, we
can see that the highly matched results between the
analysis and the simulation confirms the accuracy of
the proposed analytical method. Moreover, the outage
probability increases as Yth increases. This is because
that a higher value of Yth requires a higher SNR of
the communication, which leads to an increase in
the outage probability of the wireless transmission. In
further, we also observe that the result with Ip = 20dB
is better than that with Ip = 10dB. This phenomenon
reveals that a higher tolerable interference power can
help reduce the system outage probability and thus
achieve a better system performance.
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Table 1 Data for Fig. 2

Methods Ip/dB Yth/dB

0 2 4 6 8 10

Simulation 10 0.001 0.0015 0.0025 0.004 0.0062 0.0098

20 0.0853e-03 0.1587e-03 0.246e-03 0.4053e-03 0.6273e-03 0.98e-03

Analytical 10 0.001 0.0016 0.0025 0.004 0.0063 0.0099

20 0.1e-03 0.1585e-03 0.2511e-03 0.398e-03 0.6307e-03 0.9993e-03

Table 2 Data for Fig. 3

Methods α1 Ip/dB

0 5 10 15 20 25

Simulation

1 0.1339 0.0457 0.0150 0.0048 0.0015 0.0005

2 0.0931 0.0309 0.0099 0.0031 0.0010 0.0003

3 0.0786 0.0258 0.0082 0.0026 0.0008 0.0003

Analytical

1 0.1342 0.0457 0.0148 0.0047 0.0015 0.0005

2 0.0930 0.0309 0.0099 0.0032 0.0010 0.0003

3 0.0783 0.0258 0.0083 0.0026 0.0008 0.0003
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Figure 2. Outage probability versus Yth with Ip = 10dB and
Ip = 20dB.

Fig. 3 and Table 2 show the impact of Ip on the outage
probability, where Ip varies from 0dB to 25dB, and α1
takes value in the set [1, 2, 3]. As seen in Fig. 3 and Table
2, we find that the proposed analytical and simulation
results are consistent, demonstrating the correctness of
the analytical derivation. Moreover, we can see that
as Ip increases, the outage probability decreases. The
reason for this phenomenon is that, a larger tolerable
interference power Ip helps improve the SNR of the
transmission, resulting in a better communication

0 5 10 15 20 25

I
p
 (dB)

10-4

10-3

10-2

10-1

O
u

ta
g

e
 P

ro
b

a
b

ili
ty

Simulation, 
1
=1

Analytical, 
1
=1

Simulation, 
1
=2

Analytical, 
1
=2

Simulation, 
1
=3

Analytical, 
1
=3

Figure 3. Impact of Ip on the outage probability with α1 = 1,
α1 = 2 and α1 = 3.

performance. In addition, we also observe that as
α1 increases, the system performance improves. This
is because that a larger α1 yields a better channel
condition from the source to the relay, which improves
the SNR and promotes the system performance.

The influence of α1 on the outage probability with
Ip = 10dB and Ip = 20dB is shown in Fig. 4 and Table
3, where α1 varies from 1 to 5. We can observe from
this figure and table that, the analytical result is highly
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Table 3 Data for Fig. 4

Methods Ip/dB α1

1 2 3 4 5

Simulation 10 0.0148 0.0099 0.0083 0.0075 0.0069

20 0.0016 0.0010 0.0008 0.0007 0.0007

Analytical 10 0.0148 0.0099 0.0083 0.0075 0.0070

20 0.0015 0.0010 0.0008 0.0007 0.0007
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Figure 4. Influence of α1 on the outage probability with
Ip = 10dB and Ip = 20dB.

coincident with the simulation result. This illustrates
the accuracy of the proposed analytical expression.
Moreover, as α1 increases, the outage probability
decreases. This is because that a larger α1 indicates
a stronger channel gain from the source to the relay,
which means a higher transmit SNR and results in a
lower system outage probability. In further, the outage
probability with Ip = 20dB is higher than that with Ip =
10dB. The reason is that a higher tolerable interference
power Ip helps reduce the SNR and then improves the
quality of the wireless communication.

Fig. 5 and Table 4 depict the impact of β1 on the
outage probability for the proposed analytical and
simulation method, where β1 ranges from 0.01 to 0.1,
and α2 takes value in the set [1, 2, 3]. From this figure
and table, we can find that the proposed analytical
results match well with the simulation results across
all values of β1 and α2, thereby indicating the accuracy
of the proposed analytical expression. Moreover, it is
evident from the figure that all curves increase with
a higher value of β1, implying that the channel state
has a significant impact on the system performance.
Specifically, as β1 increases, the SNR at the receiver

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

1

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

O
u

ta
g

e
 P

ro
b

a
b

ili
ty

10-3

Simulation, 
2
=1

Analytical, 
2
=1

Simulation, 
2
=2

Analytical, 
2
=2

Simulation, 
2
=3

Analytical, 
2
=3

Figure 5. Impact of β1 on the outage probability with α2 = 1,
α2 = 2 and α2 = 3.

deteriorates, resulting in a higher outage probability. In
furthuer, a larger value of α2 can improve the system
performance, as it facilitates a better communication
between the source and relay. Based on these results,
it can be concluded that the proposed analytical
expression accurately captures the system behavior and
can be effectively used for performance evaluation.

5. Conclusion
Knowledge sharing was a critical aspect of machine
learning and knowledge management, which also
played an important role in regulating the power grid
networks. Therefore, it was important to investigate
the performance of knowledge sharing in the power
grid networks. Motivated by this, we firstly investigated
a typical power grid network with a knowledge
sharing node, where the transmit power of users was
constrained by the knowledge sharing node. We then
measured the system performance by evaluating the
system OP, where the analytical expression of OP was
derived in detail. Finally, we presented some simulation
and numerical results on the OP for the considered
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Table 4 Data for Fig. 5

Methods α2 β1

0.01 0.028 0.046 0.064 0.082 0.1

Simulation

1 0.0015 0.0024 0.0033 0.0042 0.0050 0.0059

2 0.0010 0.0019 0.0028 0.0036 0.0046 0.0055

3 0.0009 0.0017 0.0027 0.0035 0.0044 0.0052

Analytical

1 0.0015 0.0024 0.0033 0.0042 0.0051 0.0060

2 0.0010 0.0019 0.0028 0.0037 0.0046 0.0055

3 0.0008 0.0017 0.0026 0.0035 0.0044 0.0053

power grid networks with knowledge sharing, in order
to verify the proposed studies on the OP. In particular,
these results in this work showed that the knowledge
sharing could help enhance the system OP performance
efficiently.
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