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Abstract 

The university course timetabling is an NP-hard (non-deterministic polynomial-time hard) optimization problem to create a 

course timetable without conflict. It must assign a set of subject classes to a fixed number of timeslots with physical 

resources, including rooms and teachers. Avoiding hard constraints creates an executable timetable, whereas the removal of 

different soft constraints creates a satisfactory timetable. The most common way to resolve this problem is through the use 

of a hybrid genetic algorithm. The multi-objective fuzzy-based adaptive memetic algorithm, a population-based hybrid 

genetic approach, is proposed by combining genetic algorithm with local search with tabu search and various artificial 

intelligence techniques. It starts with generating a random population by using the hyper-heuristics and initial repairing 

method. By using the hill-climbing algorithm, it iteratively generates new offspring from the population by applying fuzzy-

based adaptive crossover and mutation operations. If the solution still contains some conflicts, then the tabu search improves 

it by applying the most appropriate candidate repeatedly. While getting the workable solution, the algorithm tries to 

maximize multiple objective functions to get manageable solutions with different perspectives. It efficiently allocates all the 

required resources to subject classes and generates optimal solutions for the datasets provided by the University of 

Management & Technology, Lahore. It shows 96.29% accuracy in resolving conflicts compare with that of the simple and 

hybrid genetic algorithms. A web-based dynamic timetable manager visually represents a timetable and also provides options 

to adjust conflicts manually. 
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1. Introduction

The timetable is an essential and crucial document in any 

educational institute to manage classes of various subjects by 

allocating resources at the maximum level with minimum 

conflicts among them. It is a timetabling problem that has 

been defined first by Gotlib [1] as allocating time and space  
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to settle a meeting between student and teacher for fixed 

timeslots while satisfying different constraints. Constraints, a 

set of rules, must be satisfied to create an optimal and 

workable solution for the university course timetabling 

problem [2]. He also describes that the optimal solution must 

satisfy all the hard constraints and minimize all medium and 

soft constraints. 

EAI Endorsed Transactions on 
Scalable Information Systems 

04 2022 - 08 2022 | Volume 9 | Issue 4 | e4

mailto:usman.sattar@bnu.edu.pk
mailto:https://creativecommons.org/licenses/by/4.0/
mailto:https://creativecommons.org/licenses/by/4.0/


Abdul Ghaffar et al. 

2 

Most researchers categorize the timetabling problem into the 

school timetabling problem and university timetabling 

problems. The university timetabling problem is further 

categorized into the course timetabling problem and 

examination timetabling problem [1]. The university course 

timetabling problem is considered as an NP-hard (non-

deterministic polynomial-time hard) optimization problem 

that does not solve in polynomial time [2]. It is simply to 

allocate and distribute resources such as timeslot, room, and 

teacher by satisfying different hard and soft constraints to 

accommodate many subject classes [3]. It has more hard and 

soft constraints compared with those of the university 

examination timetabling problem. An optimized solution 

must satisfy these constraints by allocating limited resources 

to a fixed number of timeslots to accommodate many subject 

classes. Various searches apply many techniques to locate a 

workable and optimal solution to execute a timetable without 

conflict. However, it is not possible to get a fully optimized 

solution for this problem, as described by [4] . 

Heuristic approaches try to find the optimal solution by using 

some defined simple rules to search sequentially, but they 

cannot find the best solution to a problem [5]. These 

algorithms depend upon the defined heuristics and always 

return the same result and performance, as they find out every 

solution with those defined heuristics [2]. Optimization 

approaches such as graph theory[6], integer 

programming/linear programming [7], and constraint 

satisfaction programming [8], solve the university course 

timetabling problem by applying various heuristics. These 

approaches never return an efficient solution because of the 

complexity of satisfying various constraints in the timetabling 

problem [3]. So different intelligent algorithms reduce the 

computation of work and return a solution closer to a global 

optimal solution for complex combinational optimization and 

NP-hard problems. 

Meta-heuristics approaches are more efficient and intelligent 

than the heuristic approaches during selecting a suitable 

process to solve course timetabling problems [2]. These 

approaches are categorized into local search and population-

based approaches [9]. The local search normally refines the 

single solution repeatedly based on a pre-defined set of 

constraints and optimizes the solution. The population-based 

approaches perform various processes iteratively to get an 

optimal candidate from a set of candidates. He also describes 

single solution algorithm that lead toward local optima. Tabu 

search [10] , simulated annealing [11], and variable 

neighborhood search [12] are common single solution-based 

approaches. Tabu search, a famous local search meta-

heuristic technique, starts with an initial solution and tries to 

spot out an optimal solution by exploring the candidate 

solutions iteratively [5]. It is effective in removing hard 

constraints in less time and tries to exploit all the candidates 

to get the optimal solution in a vertical direction. Therefore, 

it will be expensive for the whole population. Genetic 

algorithm[12] , memetic algorithm [13], artificial bee colony 

[14], and particle swarm optimization [3] are common 

population-based techniques.  

Hyper-heuristics approaches can optimize a solution with 

more performance compared with those of meta-heuristics 

approaches [15], and they categorize hyper-heuristics into 

constructive and perturbative heuristics. These approaches 

can optimize the timetabling problem by generating low-level 

heuristics both in the development of an initial population and 

in the refinement of the population [16]. Construction 

heuristics develop an initial solution to eliminate the 

maximum of the constraints in the beginning, whereas 

perturbative heuristics increase the quality of the same 

solution iteratively.  

The use of heuristics and meta-heuristics approaches is 

further improved by using artificial intelligence (AI), 

memetic, and hybrid approaches.  The hybrid approach 

[1][17][18], memetic approach [14], and various AI 

techniques such as Fuzzy theory [19] and the neural network 

with different optimization algorithms optimize the 

timetabling problem in a very robust and intelligent way.  

All the optimization techniques normally minimize a single 

cost function, whereas multi-objective optimization 

techniques [20] seek to optimize a problem with multiple 

perspectives. These algorithms divide the cost function to 

calculate multiple objective functions and try to minimize 

their value as per the importance of those objectives. 

The proposed algorithm in this paper, the multi-objective 

fuzzy-based adaptive memetic algorithm (MO-FAMA), is a 

population-based genetic algorithm with local searches that is 

an effective global optimization solution compared with 

simple optimization. It tries to find an optimal solution by 

using the fuzzy logic rule base to create adaptive operations 

with different hyper-heuristics. It implements various 

techniques including genetic algorithm, tabu search, hill-

climbing, hyper-heuristics, and fuzzy logic. To optimize the 

timetabling solution with different perspectives, it also 

implements four objective functions in calculating the fitness 

of a solution. These objectives include hard fitness objectives 

and soft fitness objectives with the student, teacher, and 

management perspectives. 

The objective of this study is to provide an algorithm for 

university course timetabling problems to create a conflict-

free timetable by allocating all of the resources at their 

optimal level to fulfill the need of the student, teacher as well 

as management. The proposed algorithm could be the more 

realistic and dynamic approach to find an optimal solution, 

which resolves all of the conflicts before the actual 

implementation of the timetable. 

The remainder of this paper is structured as follows. Details 

about the techniques used in the proposed algorithm to solve 

the university course timetabling problem in Section 2. The 

problem statement describes the details about the problem 

discussed with the proposed algorithm in section 3. The 

details about the proposed algorithm are available in Section 

4. Section 5 presents the test plan specifications, followed by

the result discussions in Section 6. The conclusion is

presented in section 7.

2. Timetabling Optimization
Techniques
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The proposed optimization timetabling algorithm applies 

various optimization techniques to find the optimal solution. 

It tries to apply these techniques in a particular sequence and 

to implement different fuzzy logic controls to apply various 

hyper-heuristics to find the optimal solution for the 

timetabling problem. This section presents all the techniques 

that are used to implement the proposed algorithm. It includes 

creating an initial population, performing initial repairing, 

getting an optimal solution with a genetic algorithm, and 

improving the solution with local search [15].  

    The genetic algorithm (GA) is the most famous algorithm 

implemented by several researchers in optimizing problems 

and resolving timetabling problems. It was first implemented 

by Holland in 1969 [9], can find global solutions even in large 

and complex size search space. But it must not produce the 

best solution unless it combines with other techniques such as 

the hill-climbing algorithm used by Akkan & Gulcu[21] and 

Yusoff & Roslan [23]. A redesigned genetic algorithm, with 

altered crossover and mutation operators, is better at getting 

an optimized solution than the simple genetic algorithm [22]. 

As it never searches out all the solutions, so optimal solution 

may not be the best of all candidate solutions. Balan [23] uses 

a genetic algorithm with heuristics to generate an initial 

population to optimize the course timetabling problem. 

Tavakoli, Shirouyehzad, & Najafi [24] use various heuristics 

by defining various hard and soft constraints and 

implementing multiple stages with genetic algorithms and 

local search to solve the course timetabling problem. 

    In most cases, a greedy approach generates an initial 

population for the genetic algorithm, as implemented in [21] 

and [25]. Akkan & Gulcu [21] have used construction 

heuristics to construct an initial population. A Hybrid 

Immune Genetic Algorithm to Solve University Time Table 

Problems 2017) have performed an artificial immune system 

to initialize a population in the immune-genetic algorithm 

(IGA). Both algorithms perform well as compared with 

simple GA. Rjoub [26] claims the hill-climbing greedy 

algorithm performs better than a simple genetic algorithm and 

generates an optimal solution in less time. 

    Yongkai, Luo, & Liu [27] implement the genetic algorithm 

to solve the weekly course timetabling problem, and their 

algorithm produces better performance than those of other 

optimization techniques. The greedy and genetic fusion 

algorithm proposed by Wang, Shang, Liu, Lin, & Fu [27] that 

generates a high-quality initial population returns a fast 

convergence time as compared to a simple genetic algorithm. 

Soliman & Keshk [13] implement the genetic algorithm with 

multiple local searches by using a memetic approach, and it 

appears a significant improvement in getting a workable 

solution for the university course timetabling problem. 

    A hybrid algorithm with local search and GA is efficient in 

getting the local optimum and producing a more powerful 

algorithm to optimize the timetabling problem [18] describe 

the population-based optimization algorithms combine in 

different ways with different single solution-based algorithms 

to construct a hybrid approach to improve convergence time 

in solving the university course timetabling problem. Wang 

[28] implements a hybrid genetic algorithm (HGA) to solve

the university classroom arrangement problem and shows its

better performance at global search. A memetic hybrid 

algorithm is proposed by [4] with the use of parallel genetic 

algorithms by satisfying all the hard and soft constraints with 

local search. They test it with BenPaechter competition 

datasets and show better results. A memetic approach shows 

a fast convergence with an optimal solution in [29] that 

performs a global search with a genetic algorithm, which is 

further improved by local searches with simulated annealing 

and greedy random mutation with local search in GA. 

    Muklason, Irianti & Marom [15] have applied various 

hyper-heuristics with tabu search, whereas Rossi-Doria & 

Paechter [30] have implemented hyper-heuristics with a 

genetic algorithm. Both pieces of research claim a notable 

reduction of overall computational time with hyper-

heuristics. Burke & Kendall [31]implement constructive 

heuristics to initialize a population with the hill-climbing by 

using tabu search, and then performs perturbative hyper-

heuristics in GA to generate the best offspring. He identifies 

hyper-heuristics perform better than those of simple meta-

heuristics techniques. Phased-approach with multiple 

objectives shows significant performance improvement with 

a modified genetic algorithm followed by using hyper-

heuristic with a local search for the course timetabling 

problem [21] and [23]. Rezaeipanah, Samaneh & Ahmadi 

[17] propose a hybrid genetic algorithm with parallel genetic

algorithms and local search with low-level heuristics to

initialize an initial population in the first phase and show the

initial repairing method works well than random

initialization. Hyper-heuristics is implemented with tabu

search and variable neighborhood search in the greedy

algorithm, and it shows better performance of hyper-

heuristics techniques are better than manual timetable settings

[15].

    June, Obit, Leau, Bolongkikit, & Alfred [32] implement AI 

techniques with fuzzy logic rule base to create fuzzy 

controlled genetic parameters in GA to improve timetabling 

optimization problems. Eludire and Akanbi[19]  apply fuzzy 

logic with a genetic algorithm to schedule a timetabling 

problem by ranking different courses in order of difficulty 

level. Rjoub [26] proposes an application of the hill-climbing 

algorithm in various techniques of genetic algorithm for 

better performance of the genetic algorithm. Various 

intelligent techniques are used to customize mutation and 

crossover operators and it shows improvement in solution 

convergence [17]. A custom crossover technique is 

implemented with GA and shows a significant enhancement 

in performance [22]. 

    Zuoshan and Yingbo [13] describe it would not be 

workable to minimize overall cost function by using multiple 

objectives to get an optimal solution and he applies it to 

minimize the number of clashes and periods in an 

examination timetable using an evolutionary algorithm with 

elitism strategy. Their approach shows better performance in 

getting a workable solution than single-objective approaches. 

Eludire & Akanbi [19] and Akkan & Gulcu [21] apply bi-

objective hybrid genetic algorithms with local search to 

optimize the university course timetabling problem with less 

computation cost. 
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    The proposed algorithm is an AJAX-based dynamic and 

user-friendly interactive client application that is developed 

with JavaScript, JQuery, PHP, and MySQL.The next section 

will describe details related to the proposed algorithm.  

3. Problem statement

A timetable is a well-structured document to schedule classes 

of various subjects of a specific program/student group to 

several fixed timeslots. These timeslots are distributed in six 

working days from Monday to Saturday. Each weekday is 

further divided into seven timeslots of 90 minutes each. The 

fourth slot on Friday is declared off-slot because of the 

Jumma Prayer. So, there are 41 timeslots in a week to be 

allocated for all the required subject classes. Each timeslot is 

assigned to a fixed number of resources such as rooms, labs, 

or teachers to accommodate subject classes. A class is a 

functional group of students in a particular subject. Each class 

must allocate two timeslots and other resources in a week. 

Every resource Is allocated by following the associated 

constraints on them. Every teacher has a list of subjects to be 

taught and is available for a range of timeslots. Every room 

has a seating capacity to conduct a class, so it must be 

allocated to a class with certain registered students. Every 

room is categorized into a lecture room or laboratory, 

depending on the particular content of the subject. So, the 

proposed algorithm constructs a timetable by allocating 

available resources to a fixed number of timeslots by 

satisfying all the hard and soft constraints with student, 

teacher, and management perspectives as given in Table 1. 

Hard constraints are most important than soft constraints, so 

a higher weight of 100 is assigned to them, software 

constraints are divided into management, student, and teacher 

constraints which are assigned 50, 25, and 25 respectively as 

used in [28]. The required information must be loaded 

manually or through comma-separated values (CSV) files 

related to the resources with associated constraints and 

subject classes. Four different variations of genetic 

algorithms are used with a heuristic approach based on fuzzy 

logic and found memetic approach is better in optimizing 

multiple objectives. 

Table 1. List of hard and soft constraints 

Constraints Weight Description 

Hard constraints 

Room clash 100 Allocating a room for 

different classes in the same 

timeslot. 

Subject clash 100 The timeslot is assigned to 

subjects of the same 

program. 

Teacher clash 100 Teacher is assigned to 

different classes in the same 

timeslot. 

Teacher 100 Teacher is assigned 

subject clash subjects not in his domain. 

Soft management constraints 

Program off-

day 

50 Class is allocated in an off-

day of a program. 

Invalid 

program slot 

50 Class is assigned to invalid 

timeslots. 

Room 

overload 

50 Room capacity is less than 

class size. 

Room under-

load 

50 Room capacity is more than 

class size. 

Room invalid 50 Class is assigned to an 

invalid room type. 

Soft student constraints 

Consecutive 

class 

25 No class of same subject in 

consecutive days 

Same-day 

class gap 

25 All classes of the same 

subject must be consecutive 

in a day. 

Soft teacher constraints 

Teacher 

overload 

25 Teacher is assigned more 

classes than his limit. 

Teacher 

invalid slot 

25 Teacher is assigned in the 

undesirable timeslot. 

Teacher 

under-load 

25 Teacher is assigned less 

classes than his limit. 

3.1 Timetable constraints 

The proposed algorithm solves the university course 

timetabling problem within the domain of various constraints 

and the level of their severity into hard and soft constraints, 

as described [12]. The proposed algorithm implements more 

or less the same constraints as described by them. Hard 

constraints are physical limitations on the execution of a 

timetable and must be avoided for the smooth and workable 

execution of a timetable, i.e., room-timeslot conflicts, or 

subject slot allocations. Soft constraints are options to apply 

resources more effectively and desirably. They provide more 

flexibility to concerned stakeholders, so they have no issue 

with the execution of a timetable, i.e., teacher preference for 

timeslots, or convenience in attending lectures. The proposed 

algorithm categorizes soft constraints further into the student, 

teacher, and management perspectives. The proposed 

algorithm tries to avoid these constraints at the maximum 

level to optimize these objectives. 

    Different weights are suggested in for these constraints 

with the level of their severity, as hard constraints have more 

weight compared with those of soft constraints. Multiple 

objective functions processed these constraint violation 

weights to identify the fitness of a solution from various 

perspectives. A solution with maximum overall fitness value 

will be the workable solution against a solution with low 

fitness value. 

3.2 Problem formalization 

The university course timetabling problem, which is 
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discussed in this paper, is formalized as in[12]. It includes a 

set of n classes related to a set of program/student group p, 

scheduled into a set of 41 timeslots ns. Then it allocates 

resources from a set of rooms r with an associated feature set 

rf and a set of teachers t with an associated feature set tf by 

satisfying a set of constraints c to maximize objective 

functions given in a set obj. 

n = {n1, n2, n3 ...} 

ns = {ns1, ns2, ns3 …} 

p = {p1, p2, p3 ...} 

r = {r1, r2, r3 ...} 

rf = {rf1, rf2, rf3 …} 

t = {t1, t2, t3 …} 

tf = {tf1, tf2, tf3 ...} 

c = {h1, h2, h3 ..., s1, s2, s3 ...} 

obj = {h, st, ss, sm} 

3.3 Population structure 

A population is a set of random solutions to allocate different 

subject classes in a certain number of timeslots. Each solution 

in a population also called a chromosome, is a complete 

timetable. It divides each chromosome into subject classes. A 

single chromosome is a collection of genes that is an array of 

assigned resources of physical space and teacher to several 

fixed timeslots for a particular subject class, as shown in Fig. 

1. Each class is a vector of day, timeslot, room, and teacher.

There are two classes of every subject in a week, so a 4x2 size

array is used to accommodate the used to accommodate

vector of each subject class.

Figure 1. Population and chromosome structure 

3.4 Hyper-heuristics 

Hyper-heuristics are the changed form of the bin packing 

problem and graph coloring problem [15], as shown in Table 

2. These are types of conflicts, the number of conflicts, and

the size of fitness. These are applied while creating an initial

population and in performing various genetic operations by

using fuzzy logic. Hard constraints are the most important

candidate early to be avoided. Then soft constraints are

avoided in the sequence of soft student constraint, soft teacher

constraint, and soft management constraints. The slot with

more constraint violations must be taken over with the

candidate having fewer constraint violations. The slot with a

less objective function value must be replaced with the

candidate carrying a large objective function value. If there

are more hard constraint violations, then those must be

removed by calculating the objective function value. For

example, room-clash hard constraint must be selected first to

resolve against consecutive-class soft constraint, or a slot

having five conflicts must be resolved first instead of a slot

with one conflict.

Table 2. List of hyper-heuristics 

Hyper-heuristics Priority order 

Types of conflicts 
(Color-degree) 

1. Hard
2. Soft student
3. Soft teacher

4. Soft management

Number of conflicts 
(Largest-degree, Next-

fit-decreasing) 

1. Three or more conflicts
2. Two-conflicts
3. One-conflict

Size of fitness 
(Largest-fit-
decreasing) 

1.More than 80% violations
2. 80% or less violations
3. 50% or less violations

4. Proposed system

The proposed algorithm carries out a memetic approach to 

find an optimal solution by using numerous AI techniques 

such as genetic algorithm, fuzzy logic, hyper-heuristics, tabu 

search, and hill-climbing, as shown in Fig 2. It implements a 

genetic algorithm with the initial repairing method and 

performs fuzzy-based adaptive genetic operators with local 

searches. Then the tabu search improves the solution fitness 

by following the hill-climbing threshold to avoid local 

optima. The algorithm also tries to maximize various 
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objective functions to produce manageable solutions with 

different perspectives. 

Figure 2. The proposed algorithm flowchart 

4.1 Default algorithm parameters and 
interface settings 

The proposed algorithm will be constructed initially with the 

number of hard and soft constraints, as indicated in Table 1. 

It is also set up with default parameters to generate a 

customized timetable, as given in Fig 3. By default, all the 

constraints are active, but it can be turned off to build a 

customized timetable for an institute. For example, if there is 

no issue with consecutive day allocation of various timeslots 

for a subject, the consecutive-day parameter can be set to 1. 

It creates an array of days to configure the off-days before 

creating a timetable. If the whole day is off-day, then the 

default value will be * symbol. Comma-separated slot 

numbers are constructed for random off-slots. 

Figure 3. Default parameters in the proposed 
algorithm 

4.2 Fitness functions 

The fitness function is one of the important parameters to 

decide about the validity of resources allocated to various 

subject classes. It calculates overall solution fitness by 

Equation 5 [33], a weighted sum of all constraint violations 

used in multiple objective functions in Equation 1-4. The 

proposed algorithm tries to minimize the following 

objectives. 

Objective 1: Avoid all the hard constraints to 

execute a timetable. 

Objective 2: Seek to optimize all the soft constraints 

from a student perspective. 

Objective 3: Try to optimize all the soft constraints 

from a teacher's perspective. 

Objective 4: Seek to optimize all the soft constraints 

from a management perspective. 

𝑓ℎ(𝑥) = ∑ (
1

(1+∑ 𝑤𝐶ℎ
∞
𝑐=1 )

)
∞

𝑡=1
  (1) 

𝑓𝑠(𝑥) =∑ (
1

(1+∑ 𝑤𝐶𝑠𝑠
∞
𝑐=1 )

)
∞

𝑡=1
 (2) 

𝑓𝑡(𝑥) =∑ (
1

(1+∑ 𝑤𝐶𝑠𝑡
∞
𝑐=1 )

)
∞

𝑡=1
 (3) 

𝑓𝑚(𝑥) =∑ (
1

(1+∑ 𝑤𝐶𝑠𝑚
∞
𝑐=1 )

)
∞

𝑡=1
 (4) 

𝑓(𝑥) =∑ (
1

(1+∑ (𝑤𝐶ℎ+𝑤𝐶𝑠𝑠+𝑤𝐶𝑠𝑡+𝑤𝐶𝑠𝑚)
∞
𝑐=1 )

)
∞

𝑡=1
  (5) 

    The proposed algorithm calculates multiple objective 

functions in finding the fitness of a chromosome. An 

objective function is used to define the fitness value of a 

particular objective. It is a weighted sum of constraint 

violations for given timeslots in the same chromosome, 

whereas w is the constraint weight, the actual number of hard 

constraint violations ch, the soft student constraints css, the 

soft teacher constraint violations cst, and the soft 

management constraints csm. If there is no constraint 

violation, then it comes back one. In case of constraint 

violations of it, it returns less than one fitness value. A lower 

value means there are several constraint violations, whereas a 

higher fitness value will show a fewer number of constraint 

violations. Execution of timetable is not desirable in case of 

smaller fitness value. The overall objective function finds the 

overall fitness of a solution without the influence of any 

individual objective. If there is no hard or soft constraint 

violation, the objective function will return one that indicates 

an optimal solution for a problem. 

4.3. Initial population with initial repairing 
method 

First, the algorithm generates the initial population with the 

initial repairing method by allocating different resources to a 

fixed number of timeslots in a week to execute various 

classes. While creating an initial population, it randomly 
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allocates resources to random timeslots by avoiding invalid 

resources or timeslots as in [15]. Initial repairing of the 

population ensures the allocation of exactly two unique 

timeslots with the same teacher for each subject class. In 

short, it ensures the allocation of the required quantity of valid 

resources to valid timeslots in each instance of the population. 

The selection of the initial population is the most critical part 

of this algorithm, as getting an optimal solution largely 

depends upon the original fitness of a population. If the initial 

population already has fewer constraint violations, then it will 

take less time to identify an optimal solution. Without this, it 

takes a longer time to find the optimal solution or may skip 

the best optimal solution within the defined number of 

iterations. For this purpose, the algorithm applies the initial 

repairing method to the selected population to avoid some 

constraints by evaluating the objective function value of the 

newly generated offspring. So it rejects any invalid allocation 

at an early stage, helps to generate the finest offspring, and 

improves the GA convergence time. Without this, it will be 

slow in convergence for the unfitted initial population. For 

example, every subject must have two distinct classes in a 

week, and those classes must be assigned to the same teacher. 

Timeslot number 39 must not be allocated to any class 

because of the Jumma Prayer. 

4.4. Genetic algorithm 

The genetic algorithm, which is the core part of the proposed 

algorithm, selects parent chromosomes with the adaptive 

selection process from the initial population, as shown in Fig 

4. Adaptive process is a machine learning approach that

automatically selects the most efficient genetic operation by

evaluating the given heuristics. After the selection process, it

applies the crossover operator on the selected chromosomes

by applying a local search technique with the hill-climbing

algorithm. If new chromosomes have a better fitness value

than of its parents, then the mutation process is performed by

using the hill-climbing algorithm on it. The new chromosome

is compared with those of the previous population and

replaced with the least fitted chromosome if it has more

fitness value. Then genetic algorithm iterates for a certain

hill-climbing threshold or terminates if convergence is

achieved.

Figure 4. Genetic algorithm flowchart 

4.4.1 Fuzzy-based adaptive genetic operations 
The fuzzy logic The fuzzy logic rule base as implemented in 

[27], is used to implement adaptive genetic operations in the 

genetic algorithm. If the newly generated chromosome has 

more conflicts or its size is greater than a certain threshold, 

then the mutation probability will be greater. The one-point 

crossover will be preferable for chromosomes having a low 

fitness value, whereas the two-point crossover is preferable 

for chromosomes with a larger fitness value. 

4.4.2 Selection process 

The selection process is a way to get chromosomes with high 

fitness value from a population by its objective function 

value. If it has some constraint violations, then selected 

chromosomes can generate the best offspring. The adaptive 

selection strategy is applied to select fitted chromosomes with 

different selection strategies by using the fuzzy rule base, as 

defined in Table 3. 

Table 3. Fuzzy rule base for the selection process 
Time slots Number of conflicts Selection method 

Time 
slots 

Number of conflicts Selection 
method 

>= 50 >= 24 x subjects x 5% of the 
population 

Tournament 

>= 50 < 24 x subjects x 5% of the 
population 

Wheel 

< 50 >= 24 x subjects x 5% of the 
population 

Rank 

< 50 < 24 x subjects x 5% of the 
population 

Best 

Tournament selection, one of the efficient methods in finding 

the best parents, is used to select parent chromosomes by 

selecting a set of random chromosomes from a population. 

After that, selected chromosomes are entered in n size 
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tournament where chromosomes with the highest fitness 

value are selected as parents. The fuzzy logic rule base 

determines the tournament-size n, as defined in table 4. It 

repeats the above process three times to get parents with the 

highest fitness value. 

Table 4. Fuzzy rule base for tournament size 

Population size Fitness level Tournament size 

<=20 <= 50% 4 

<= 50 <= 50% 10 

> 50 <= 50% 16 

<=20 > 50% 6 

<= 50 > 50% 16 

> 50 > 50% 24 

    The best selection is a simple technique to find parent 

chromosomes. All the chromosomes in a population are 

sorted by their fitness value to pick the best chromosomes. It 

influences most fitted chromosomes and may ignore hidden 

fitness in some chromosomes. 

    Roulette wheel selection is a technique with equal 

opportunity to take parent chromosomes from a population. 

Chromosomes are mapped to their fitness percentage against 

the whole population and represented as space in the roulette 

wheel. If it has more space on the wheel, it will have more 

chance of selection. For this purpose, a random number is 

generated and incremented to a certain value that is used to 

get selected space on the roulette wheel to decide about 

parents. 

    Rank selection calculates the rank of each chromosome by 

calculating its fitness value in a specific range. Rank is 

selected randomly, and the most fitted chromosome is chosen 

from it. It gives an equal chance of selection for every 

chromosome and maintains diversity in the next generation, 

but its performance is slow for the same fitness value in most 

cases. 

   After the selection process, GA performs a crossover 

operation to create new offspring with having the best 

features of their parents. 

4.4.3 Crossover 
The crossover is just like a natural genetic operation to get 

inherited qualities of the parents in offspring by performing a 

cross between two or more parents. The adaptive crossover 

approach is used to select a crossover technique by using the 

fuzzy rule base, as shown in Table 5. In the proposed 

algorithm, any crossover method will exchange a gene as a 

class instead of bits in the gene [17]. In this way, it will create 

no new constraint violations in the new offspring. It applies 

the hill-climbing threshold to regenerate offspring with better 

features than their parents. It also generates a mirror offspring 

with the reverse process to avoid skipping the best offspring 

for mutation operation. 

Table 5. Fuzzy rule base for crossover 

Fitness level Constraint 
violations 

Crossover 
technique 

>= 50 >= 5 One-point 

>= 50 < 5 Two-point 

< 50 >= 5 Uniform 

    In a one-point crossover, a crossover point n is generated 

randomly between 2 to subjects-1. Then it is used to generate 

a new off-spring by copying all subject classes from 1 to n 

from the first parent and n+1 to n from the second parent, as 

shown in Fig 5. One-point is normally good for both parents 

to have nearly equal fitness value.  

Figure 5. One-point crossover 

    In a two-point crossover, two random locations, n1 and n2, 

are created between 2 to subjects-1. Then these are used to 

create a new off-spring by copying classes from 1 to 1-n1 and 

from n2+1 to n from the first parent. Then copy classes from 

n1+1 to n2 from the second parent, as shown in Fig 6. It 

performs well if constraint violation is less in the parents. 

   The uniform crossover technique is a preferable choice to 

get balanced features in offspring. It interchanges a group of 

random genes between two parents. It will be a better 

technique when both parents have different fitness values, so 

one offspring must have the finest properties of both parents. 

   After the crossover process, GA performs mutation 

operation to create new best features in the new offspring for 

optimal results. 
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Figure 6. Two-point crossover 

4.4.4 Mutation 
The mutation is the most important genetic operator as it 

produces random changes in the new offspring and adjusts its 

fitness level as in the guided mutation as discussed in [27]. It 

applies the hill-climbing threshold to get offspring with more 

fitness than its parents. Two different mutation procedures are 

applied in the proposed algorithm, such as the mutation type 

and mutation process. The selection of these depends upon 

the fitness level of offspring. The mutation process will be 

conducted in a gene/bit of the new offspring. It depends upon 

the size of constraint violations, mutation rate, and the 

number of genes/bits as defined by hyper-heuristics, as shown 

in Table 2. The Adaptive mutation technique performs to 

adjust the mutation process in the new offspring by using the 

fuzzy rule base, as shown in Table 6.  

   The algorithm first selects the mutation type that may be 

resource/bit or class/gene based on the previous fitness of the 

gene. The resource/bit mutation is performed to change the 

single resource, whereas the class/gene mutation is performed 

to change all the resources of that class. It adjusts the mutation 

probability between 5% to 20% for the resource/bit mutation 

and 2% - 10% for the class/gene mutation [34]. The critical 

conflict with the class/gene mutation is a teacher-subject 

clash that must be avoided before performing this mutation. 

Only classes having the same teacher are swapped to avoid 

the teacher-subject clash. The resource/bit mutation is 

preferable with a chromosome having a few constraint 

violations and can be used without violating any other 

constraint. 

Table 6. Fuzzy rule base for mutation 
Fitness level Constraint Violations Used slots 

Fitness 
level 

Constraint 
violations 

Used 
slots 

Mutation type 

>= 50% >= 5 >=80
% 

Class swap 

>= 50% < 5 >=80
% 

Resource swap 

< 50% >= 5 >=80
% 

Resource swap 

< 50% < 5 >=80% Resource swap 

>= 50% >= 5 <80% Class flip 

>= 50% < 5 <80% Resource flip 

< 50% >= 5 <80% Resource flip 

< 50% < 5 <80% Resource flip 

   The mutation process, as described in [4] with multiple 

heuristics, is selected to improve the fitness of the new 

offspring. If the fitness of the new offspring is less than that 

of its parents, thus it will reject new changes. In that case, the 

mutation process repeats to generate offspring by using the 

hill-climbing threshold. Flip mutation performs by flipping 

the random gene/bit in the new offspring, as shown in Fig 7. 

If several free timeslots or resources are available, then it will 

be a preferred technique, as claimed by [35]. It quickly 

improves the fitness level of a chromosome. With a fully 

congested chromosome, it will perform minor or no 

improvement. Swap mutation performs by interchanging two 

random genes/bits with each other, as shown in Fig 8 if the 

new fitness value of the gene/bit is more than its previous 

value. It is slow in convergence, but it will be the preferred 

technique if some free resources are available. The only 

related resource may swap with another resource in the case 

of the resource/bit swapping. 

Figure 7. Class flip mutation 

   After performing crossover and mutation operations, it will 

replace new offspring with the least fitted chromosome in the 

population by elitist selection if it has more fitness value than 

its parents. Elitist selection is a way to retain original parents 

in the later generation to avoid information loss while 

performing genetic operations. In this way, the genetic 

algorithm will never produce the population with the unfitted 

offspring in the later generation and will generate an optimal 

solution in less time. The hyper-heuristics, as defined in Table 

2, are used to select the unfitted chromosome to take over. All 

the above genetic operations generate offspring with higher 

fitness by using the hill-climbing threshold until it achieves 

convergence. If the genetic algorithm cannot bring about the 

best global optimal solution, then it will be further improved 

by tabu search [36]. 

Figure 8. Class swap mutation 

   The proposed algorithm applies the tabu search to improve 

the quality of the solution generated by GA, as shown in Fig. 

9. It iterates using the tabu_number to apply to a candidate

with a higher objective function value or terminates if there

is no fitted candidate.
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Figure 9. Tabu search flowchart 

4.5 Candidate List 

The candidate list contains many solutions with more fitness 

value than its parent chromosome and is used to replace less 

fitted genes in it. Constraint violation of each gene is 

calculated by using multiple fitness functions, as shown in 

Equation 1-4. The hyper-heuristics with fuzzy logic are 

applied to perform changes in resources allocated to the class. 

If the new fitness value of the candidate is more than its 

previous fitness, then it will be added to the candidate list. It 

performs the process for some random genes instead of 

traversing all of them. It is also organized in the sequence of 

hyper-heuristics mentioned in table 2 [37]. 

4.5.1 Aspiration condition 
The aspiration condition is the height fitness level that has 

been achieved so far in all the previous iterations of the tabu 

search. The aspiration condition will compare with the new 

candidate's fitness. If the candidate fitness value is more than 

the aspiration condition, then it may apply to the current 

solution and the tabu list. If it has more candidate solutions, 

then the same process will apply to the next candidate. 

4.5.2 Tabu list 
The tabu search traverses the candidate list to select a 

candidate with the highest fitness value. The move or swap 

operation performs to replace the selected candidate in a 

solution. The move operation shifts a timeslot having 

constraints with the chosen candidate slot, whereas the swap 

operation interchanges a timeslot with the selected candidate 

slot. If the candidate solution is not in the tabu list already, 

then it will be added to the tabu list. Without this, the 

candidate solution is rejected, and it selects the next candidate 

to repeat the same procedure. No timeslot in the tabu list may 

overwrite unless it is shifted to another timeslot already. If the 

candidate has more fitness value than candidates in tabu_list, 

thus it will be offered to be overwritten but must wait for 

tabu_unfit_number turns unless the candidate fitness is more 

than the aspiration condition. After each tabu iteration, it 

applies the selected candidate to the current solution and 

generates a new candidate list, if it has no better candidate. 

The process terminates on convergence, or at the end of tabu 

number iterations. The tabu_unfit_number explores the 

hidden fitness of a solution by applying a less fitted candidate 

to a solution. The adaptive tabu number, which is 

implemented by the fuzzy rule base, maintains a balance in 

conflict resolutions and computation time in the proposed 

algorithm. 

4.6 Visualize and review the timetable 

The web-based dynamic timetable manager visualizes the 

solution returned by the proposed algorithm. It displays all 

the allocated resources for all subject classes to the fixed 

timeslots in a week. It also represents various hard and soft 

constraints with different color tags for each timeslot block in 

case of any conflict. So it becomes easy to identify the 

constraint violations. It also provides a mechanism to adjust 

the timeslots to remove clashes or to improve resource 

utilization. The move-slot event transfers allocated subject 

class resources to another empty slot. The swap-slot event 

exchanges associated resources between two allocated 

timeslots. The delete-slot event removes all the resources 

from the timeslot. With missing resources, the add-resource 

event allocates all the required resources to the timeslot. 

4.7 Print or generating CSV file 

It provides an option to download the CSV format timetable 

for further processing in Microsoft Excel. It is also possible 

to display the customized timetable in HTML format with the 

web browser. The print-option is too available to print the 

hard copy of the weekly university timetable. 

4.8 Complexity of the proposed algorithm 

The proposed algorithm proposed algorithm is a combination 

of various optimization techniques with genetic algorithm 

and tabu search. Therefore, its complexity largely depends 

upon the size of generations, population size, number of 

conflicts, threshold size, and optimization techniques used 

[31]. 

O(MO-FAMA) = O(GA) + O(tabu)       (6) 

O(GA)=threshold*generations*population 

size*(O(selection) + crossover probability*O(crossover) + 

mutation probability* O(mutation))        (7) 
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O(Selection) = population size*conflicts*O(selection 

technique)                                               (8) 

O(Crossover) = chromosomes*genes*conflicts*O(fitness)      

(9) 

O(Mutation) = genes*bits*conflicts*O(fitness) (10) 

O(tabu)=threshold*population_size*conflicts*(O(conflicts*

chromosomes*candidate_list*tabu_list*O(fitness))) (11) 

If all variables used in the above equations are assumed as 

constant values, as executed in a fixed time, then we can 

obtain O(GA) = O(fitness) and O(tabu) = O(fitness), so the 

complexity of the proposed algorithm is equal to O(fitness). 

So fitness that is used to check the fitness of the population, 

will decide about the overall complexity of the proposed 

algorithm lies between O(n) to O(n2) depending upon the 

implementation of fitness function. The complexity of the 

fitness function will normally depend upon the actual 

application of the proposed algorithm in solving the 

university course timetabling problem. 

5. System testing

The proposed algorithm is a web-based application 

configured on the Linux Shared Server with a graphical user 

interface. A test is conducted, with the default parameters 

given in Fig 3, to confirm its accuracy with each dataset 

individually. Two sets of tests for each sample dataset, with 

variable population size, are performed with 25 iterations 

each. A set of 50, 100, 150, 200, and 250 population sizes, is 

applied to analyze the proposed algorithm. The test performs 

a comparison of the proposed algorithm for its performance 

and efficiency with the other three algorithms, simple GA, 

IGA [17], and simple HGA [22]. All the objective functions 

are calculated to get the fitness of the overall solution from 

multiple perspectives. All the genetic operations were also 

tested independently with the simple GA to explore their 

impact on overall performance. In the same way, all the 

individual techniques implemented in the proposed algorithm 

are also tested, individually. The average result of each 

dataset identifies its impact at the convergence time and 

overall fitness of the solution. All the results are further 

summarized to get the overall accuracy of the proposed 

algorithm. 

6. System Results
The test datasets are collected from four different schools of 

UMT Lahore for session 2021. These are in Microsoft Excel 

format and must be converted into the CSV format before 

uploading it to the system. Each dataset contains information 

about subjects, teachers, rooms, and classes to be executed, 

as shown in Table 7. These resources are allocated to create 

an executable and optimal timetable. Classes are divided into 

a number of sections to accommodate class strength and also 

categorized into various programs in that school. There is no 

issue in executing classes of different programs and sections 

at the same time. Some students from different programs can 

share the same class, which is an exceptional case, so that will 

be excluded while executing the proposed algorithm.  

Table 7. Sample test datasets 

Test Datasets Subjects Teachers Rooms Classes 

School of Business  & 
Economics (SBE) 

123 79 35 242 

School of Systems & 
Technology (SST) 

119 92 42 232 

School of Professional 
Advancement (SPA) 

62 31 18 106 

School of Textile Design 
(STD) 

115 83 42 224 

5.1 Results and discussion 

Table 8. Test results of the performance of the multi-objective fuzzy-based adaptive memetic algorithm 

Algorithm 

Populatio

n Size Conflicts 

Time 

(ms) 

Accuracy 

% 

Hard 

fitness 

Soft 

student 

fitness 

Soft 

teacher 

fitness 

Soft 

manage

ment 

fitness 

Overall 

fitness 

GA 50 19235 9012 45.18 0.000106 0.002169 0.015152 0.001695 0.00010 

GA 100 19853 13217 45.88 0.000102 0.002294 0.022727 0.001992 0.00010 
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GA 150 20047 14124 47.72 0.000105 0.002488 0.016129 0.002049 0.00010 

GA 200 20185 16721 45.98 0.000101 0.002151 0.021739 0.002016 0.00010 

GA 250 19959 33705 48.79 0.000109 0.002103 0.027027 0.002000 0.00010 

IGA 50 19235 14489 62.40 0.000155 0.002307 1.00000 0.002933 0.00010 

IGA 100 19853 18078 51.71 0.000116 0.002079 1.00000 0.001919 0.00010 

IGA 150 20047 17528 52.74 0.000116 0.002208 1.00000 0.002488 0.00010 

IGA 200 20185 18111 54.28 0.000120 0.001990 1.00000 0.002110 0.00011 

IGA 250 19959 31022 54.62 0.000120 0.002310 1.00000 0.002400 0.00011 

HGA 50 19235 12712 58.39 0.000140 0.002180 1.00000 0.003690 0.00012 

HGA 100 19853 18334 57.72 0.000130 0.002080 1.00000 0.002530 0.00012 

HGA 150 20047 19201 55.33 0.000120 0.002120 1.00000 0.002210 0.00011 

HGA 200 20185 22297 60.32 0.000140 0.002120 1.00000 0.002160 0.00012 

HGA 250 19959 37082 59.16 0.000140 0.002120 1.00000 0.001990 0.00012 

MO-FAMA 50 19235 10619 95.64 0.003021 0.003120 1.00000 0.005236 0.00120 

MO-FAMA 100 19853 15790 96.21 0.003436 0.003053 1.00000 0.007353 0.00130 

MO-FAMA 150 20047 20610 96.16 0.004405 0.002890 1.00000 0.005025 0.00130 

MO-FAMA 200 20185 16281 96.18 0.004255 0.003021 1.00000 0.004808 0.00130 

MO-FAMA 250 19959 23190 96.29 0.004329 0.003140 1.00000 0.005181 0.00140 

The comprehensive results of allocating classes of all of the 

schools are given in Table 8 which shows the objective 

function values are greater in the proposed algorithm 

compared with those of other algorithms. It shows a higher 

convergence time in a large size population than in a small 

size population, but there is no significant progress in 

solution fitness. Due to some unavoidable soft constraints, 

any optimization algorithm can never achieve 100% fitness 

in most cases. The proposed algorithm returns with 

satisfactory results overall allocation in schools as well as 

individual allocation of classes in schools, as shown in Fig 

10. It shows 96.29% accuracy with 250 size population in

resolving overall constraints compare with 48.79%

accuracy in resolving conflicts with the simple GA,

54.62% accuracy with the IGA in (Boonyopakorn and

Meesad, A Hybrid Immune Genetic Algorithm to Solve

University Time Table Problems 2017), and 59.16% with

the simple HGA [38]in with the same number of iterations.

Figure 10. The proposed algorithm performance 

The fitness value of new chromosomes improves quickly 

at the initial stage of the algorithm, but there is no 

substantial improvement in new chromosomes in the later 

stage, as shown in Fig 11. 

Figure 11. Conflict resolution in the genetic 
algorithm 

The drastic shift in the early stage is because of several 

conflicts in a population and to replace the low-fitted 

chromosomes with high fitness value chromosomes by 

using hyper-heuristics. The optimal solution will be a point 

where the rate of change of improvement zeros. A variation 

of mutation probability impacts convergence time, as 

shown in Fig 12 it takes more time to converge with a high 

rate of mutation probability instead of resolving more 

conflicts.  
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Figure 12. Effect of mutation probability on the time 

The performance of the genetic algorithm in resolving with 

hard and soft constraints highly depends upon the 

techniques used in it.[39] The efficiency of these ultimately 

improves or degrades overall algorithm performance 

[40].The adaptive approach, to perform various genetic 

operations in the genetic algorithm, is also tested to observe 

the impact of these on the solution fitness and convergence 

time. These greatly affect the performance of the proposed 

algorithm, as shown in Table 9. The adaptive crossover and 

mutation techniques in the genetic algorithm work well 

compared with those of others. The adaptive selection 

strategy is just behind the tournament selection, which is 

the best selection strategy in the GA, but it takes more time 

than the adaptive selection technique. 

Table 9. Results of genetic techniques in GA 

Genetic 
technique 

Initial 
conflicts 

Time 
(ms) 

Confl
icts 

Overall 
fitness 

Selection techniques 

Adaptive 19254 5899 10675 0.000094 

Best 19254 5724 10890 0.000092 

Rank 19254 5967 10741 0.000093 

Tournamen
t 

19254 6728 10587 0.000094 

Wheel 19254 5880 10982 0.000091 

Crossover techniques 

Adaptive 19520 4731 10172 0.000098 

One-Point 19520 5309 10388 0.000096 

Two-Point 19520 4681 10829 0.000092 

Uniform 19520 4922 10823 0.000092 

Mutation types 

Class/Gene 18912 5402 10552 0.000095 

Resource/
Bit 

18912 4711 11512 0.000087 

Adaptive 18912 4692 10344 0.000097 

Mutation process 

Adaptive 19194 4901 10279 0.000097 

Flip 19194 5681 10619 0.000094 

Swap 19194 5499 10550 0.000095 

Using a genetic algorithm alone is not well for solving the 

timetabling problem, so implementing a memetic 

algorithm with local search improves the solution fitness, 

as indicated in Fig 10. However, its excessive use 

negatively affects computation time [41].It increases 

computation time from 7.6 seconds to 8.3 seconds as the 

tabu_number change from 50 to 250, as illustrated in Fig 

13. A deep search takes more processing time with an

optimal solution as compared to a narrow search takes less

time without a workable solution[42].

Figure 14. Effect of tabu numbers on the tabu 
search 

Using hyper-heuristics also corrects the performance of the 

genetic algorithm and tabu search. A significant 

improvement in the convergence time of these algorithms 

is because of hyper-heuristics, as shown in Fig 14. 
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Figure 13. Effect of tabu numbers on the tabu 
search 

A large size population returns a low rate of convergence 

in the proposed algorithm. It takes 23 seconds in the 250-

size population compared with 10 seconds in the 50-size 

population, as shown in Table 8.[41] The accuracy of the 

proposed algorithm is 95.91% in the 50-size population as 

compared with 96.42% in the 250-size population. It also 

has more fitness for a large size population than for a small 

size population, but it increases processing time. 

7. Conclusion

The results obtained through the proposed memetic 

algorithm are satisfactory and adequate in optimizing the 

university course timetabling problem. The proposed 

algorithm minimizes several conflicts and optimizes a 

manageable timetable from the student, teacher, and 

management perspectives. It returns an efficient and 

workable timetabling solution by implementing a genetic 

algorithm with adaptive genetic operations with hyper-

heuristics and tabu search. The use of initial repairing, local 

search, and hill-climbing algorithms affect the solution 

convergence time. A simple genetic algorithm is an 

effective optimization technique, but it seldom generates 

an optimal and workable solution, depending upon the 

input data. Therefore, it must be combined with local 

search optimization techniques to form a population-based 

hybrid algorithm to generate a more accurate solution as 

the proposed algorithm in this paper. It is also impossible 

to find an optimal solution by satisfying all the hard and 

soft constraints due to the physical limits of resources. So 

achieving a single objective is not a desirable approach and 

multiple objective functions implemented in the proposed 

algorithm effectively optimize the solution from different 

perspectives. The proposed multi-objective fuzzy-based 

adaptive memetic algorithm is a well-organized and 

structured solution to generate an optimal and applicable 

solution for the university course timetabling problem. 

Future work includes fuzzy-based controls to select a 

suitable optimization algorithm from a set of global and 

local search algorithms. 
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