
EAI Endorsed Transactions
on Scalable Information Systems Research Article

1

Multi-objective fuzzy-based adaptive memetic algorithm

with hyper-heuristics to solve university course

timetabling problem

Abdul Ghaffar1, Mian Usman Sattar2,*, Mubbasher Munir3, and Zarmeen Qureshi4

1 Department of Information Systems, University of Management and Technology, Lahore, Pakistan.

Email: abdul.ghafar@umt.edu.pk
2Assistant Professor, Department of Management Sciences, Beaconhouse National University, Lahore, Pakistan.

Email: usman.sattar@bnu.edu.pk
3 Department of Economics and Statistics, University of Management and Technology, Lahore, Pakistan.

Email: mubbasher.munir@umt.edu.pk
4Department of Management Sciences, School of Business, Beaconhouse National University, Lahore, Pakistan.

Email: zarmeen.qureshi25@gmail.com

Abstract

The university course timetabling is an NP-hard (non-deterministic polynomial-time hard) optimization problem to create a

course timetable without conflict. It must assign a set of subject classes to a fixed number of timeslots with physical

resources, including rooms and teachers. Avoiding hard constraints creates an executable timetable, whereas the removal of

different soft constraints creates a satisfactory timetable. The most common way to resolve this problem is through the use

of a hybrid genetic algorithm. The multi-objective fuzzy-based adaptive memetic algorithm, a population-based hybrid

genetic approach, is proposed by combining genetic algorithm with local search with tabu search and various artificial

intelligence techniques. It starts with generating a random population by using the hyper-heuristics and initial repairing

method. By using the hill-climbing algorithm, it iteratively generates new offspring from the population by applying fuzzy-

based adaptive crossover and mutation operations. If the solution still contains some conflicts, then the tabu search improves

it by applying the most appropriate candidate repeatedly. While getting the workable solution, the algorithm tries to

maximize multiple objective functions to get manageable solutions with different perspectives. It efficiently allocates all the

required resources to subject classes and generates optimal solutions for the datasets provided by the University of

Management & Technology, Lahore. It shows 96.29% accuracy in resolving conflicts compare with that of the simple and

hybrid genetic algorithms. A web-based dynamic timetable manager visually represents a timetable and also provides options

to adjust conflicts manually.

Keywords: Timetabling, Memetic Algorithm, Hybrid Genetic Algorithm, Hyper Heuristics, Tabu Search, Fuzzy Logic.

Received on 08 July 2021, accepted on 28 November 2021, published on 16 December 2021

Copyright © 2021 Abdul Ghaffar et al., licensed to EAI. This is an open access article distributed under the terms of the Creative

Commons Attribution license, which permits unlimited use, distribution and reproduction in any medium so long as the original work

is properly cited.

doi: 10.4108/eai.16-12-2021.172435

1. Introduction

The timetable is an essential and crucial document in any

educational institute to manage classes of various subjects by

allocating resources at the maximum level with minimum

conflicts among them. It is a timetabling problem that has

been defined first by Gotlib [1] as allocating time and space

*Corresponding author: usman.sattar@bnu.edu.pk

1

to settle a meeting between student and teacher for fixed

timeslots while satisfying different constraints. Constraints, a

set of rules, must be satisfied to create an optimal and

workable solution for the university course timetabling

problem [2]. He also describes that the optimal solution must

satisfy all the hard constraints and minimize all medium and

soft constraints.

EAI Endorsed Transactions on
Scalable Information Systems

04 2022 - 08 2022 | Volume 9 | Issue 4 | e4

mailto:usman.sattar@bnu.edu.pk
mailto:https://creativecommons.org/licenses/by/4.0/
mailto:https://creativecommons.org/licenses/by/4.0/

Abdul Ghaffar et al.

2

Most researchers categorize the timetabling problem into the

school timetabling problem and university timetabling

problems. The university timetabling problem is further

categorized into the course timetabling problem and

examination timetabling problem [1]. The university course

timetabling problem is considered as an NP-hard (non-

deterministic polynomial-time hard) optimization problem

that does not solve in polynomial time [2]. It is simply to

allocate and distribute resources such as timeslot, room, and

teacher by satisfying different hard and soft constraints to

accommodate many subject classes [3]. It has more hard and

soft constraints compared with those of the university

examination timetabling problem. An optimized solution

must satisfy these constraints by allocating limited resources

to a fixed number of timeslots to accommodate many subject

classes. Various searches apply many techniques to locate a

workable and optimal solution to execute a timetable without

conflict. However, it is not possible to get a fully optimized

solution for this problem, as described by [4] .

Heuristic approaches try to find the optimal solution by using

some defined simple rules to search sequentially, but they

cannot find the best solution to a problem [5]. These

algorithms depend upon the defined heuristics and always

return the same result and performance, as they find out every

solution with those defined heuristics [2]. Optimization

approaches such as graph theory[6], integer

programming/linear programming [7], and constraint

satisfaction programming [8], solve the university course

timetabling problem by applying various heuristics. These

approaches never return an efficient solution because of the

complexity of satisfying various constraints in the timetabling

problem [3]. So different intelligent algorithms reduce the

computation of work and return a solution closer to a global

optimal solution for complex combinational optimization and

NP-hard problems.

Meta-heuristics approaches are more efficient and intelligent

than the heuristic approaches during selecting a suitable

process to solve course timetabling problems [2]. These

approaches are categorized into local search and population-

based approaches [9]. The local search normally refines the

single solution repeatedly based on a pre-defined set of

constraints and optimizes the solution. The population-based

approaches perform various processes iteratively to get an

optimal candidate from a set of candidates. He also describes

single solution algorithm that lead toward local optima. Tabu

search [10] , simulated annealing [11], and variable

neighborhood search [12] are common single solution-based

approaches. Tabu search, a famous local search meta-

heuristic technique, starts with an initial solution and tries to

spot out an optimal solution by exploring the candidate

solutions iteratively [5]. It is effective in removing hard

constraints in less time and tries to exploit all the candidates

to get the optimal solution in a vertical direction. Therefore,

it will be expensive for the whole population. Genetic

algorithm[12] , memetic algorithm [13], artificial bee colony

[14], and particle swarm optimization [3] are common

population-based techniques.

Hyper-heuristics approaches can optimize a solution with

more performance compared with those of meta-heuristics

approaches [15], and they categorize hyper-heuristics into

constructive and perturbative heuristics. These approaches

can optimize the timetabling problem by generating low-level

heuristics both in the development of an initial population and

in the refinement of the population [16]. Construction

heuristics develop an initial solution to eliminate the

maximum of the constraints in the beginning, whereas

perturbative heuristics increase the quality of the same

solution iteratively.

The use of heuristics and meta-heuristics approaches is

further improved by using artificial intelligence (AI),

memetic, and hybrid approaches. The hybrid approach

[1][17][18], memetic approach [14], and various AI

techniques such as Fuzzy theory [19] and the neural network

with different optimization algorithms optimize the

timetabling problem in a very robust and intelligent way.

All the optimization techniques normally minimize a single

cost function, whereas multi-objective optimization

techniques [20] seek to optimize a problem with multiple

perspectives. These algorithms divide the cost function to

calculate multiple objective functions and try to minimize

their value as per the importance of those objectives.

The proposed algorithm in this paper, the multi-objective

fuzzy-based adaptive memetic algorithm (MO-FAMA), is a

population-based genetic algorithm with local searches that is

an effective global optimization solution compared with

simple optimization. It tries to find an optimal solution by

using the fuzzy logic rule base to create adaptive operations

with different hyper-heuristics. It implements various

techniques including genetic algorithm, tabu search, hill-

climbing, hyper-heuristics, and fuzzy logic. To optimize the

timetabling solution with different perspectives, it also

implements four objective functions in calculating the fitness

of a solution. These objectives include hard fitness objectives

and soft fitness objectives with the student, teacher, and

management perspectives.

The objective of this study is to provide an algorithm for

university course timetabling problems to create a conflict-

free timetable by allocating all of the resources at their

optimal level to fulfill the need of the student, teacher as well

as management. The proposed algorithm could be the more

realistic and dynamic approach to find an optimal solution,

which resolves all of the conflicts before the actual

implementation of the timetable.

The remainder of this paper is structured as follows. Details

about the techniques used in the proposed algorithm to solve

the university course timetabling problem in Section 2. The

problem statement describes the details about the problem

discussed with the proposed algorithm in section 3. The

details about the proposed algorithm are available in Section

4. Section 5 presents the test plan specifications, followed by

the result discussions in Section 6. The conclusion is

presented in section 7.

2. Timetabling Optimization
Techniques

EAI Endorsed Transactions on
Scalable Information Systems

04 2022 - 08 2022 | Volume 9 | Issue 4 | e4

Multi-objective fuzzy-based adaptive memetic algorithm with hyper-heuristics to solve university course timetabling problem

3

The proposed optimization timetabling algorithm applies

various optimization techniques to find the optimal solution.

It tries to apply these techniques in a particular sequence and

to implement different fuzzy logic controls to apply various

hyper-heuristics to find the optimal solution for the

timetabling problem. This section presents all the techniques

that are used to implement the proposed algorithm. It includes

creating an initial population, performing initial repairing,

getting an optimal solution with a genetic algorithm, and

improving the solution with local search [15].

 The genetic algorithm (GA) is the most famous algorithm

implemented by several researchers in optimizing problems

and resolving timetabling problems. It was first implemented

by Holland in 1969 [9], can find global solutions even in large

and complex size search space. But it must not produce the

best solution unless it combines with other techniques such as

the hill-climbing algorithm used by Akkan & Gulcu[21] and

Yusoff & Roslan [23]. A redesigned genetic algorithm, with

altered crossover and mutation operators, is better at getting

an optimized solution than the simple genetic algorithm [22].

As it never searches out all the solutions, so optimal solution

may not be the best of all candidate solutions. Balan [23] uses

a genetic algorithm with heuristics to generate an initial

population to optimize the course timetabling problem.

Tavakoli, Shirouyehzad, & Najafi [24] use various heuristics

by defining various hard and soft constraints and

implementing multiple stages with genetic algorithms and

local search to solve the course timetabling problem.

 In most cases, a greedy approach generates an initial

population for the genetic algorithm, as implemented in [21]

and [25]. Akkan & Gulcu [21] have used construction

heuristics to construct an initial population. A Hybrid

Immune Genetic Algorithm to Solve University Time Table

Problems 2017) have performed an artificial immune system

to initialize a population in the immune-genetic algorithm

(IGA). Both algorithms perform well as compared with

simple GA. Rjoub [26] claims the hill-climbing greedy

algorithm performs better than a simple genetic algorithm and

generates an optimal solution in less time.

 Yongkai, Luo, & Liu [27] implement the genetic algorithm

to solve the weekly course timetabling problem, and their

algorithm produces better performance than those of other

optimization techniques. The greedy and genetic fusion

algorithm proposed by Wang, Shang, Liu, Lin, & Fu [27] that

generates a high-quality initial population returns a fast

convergence time as compared to a simple genetic algorithm.

Soliman & Keshk [13] implement the genetic algorithm with

multiple local searches by using a memetic approach, and it

appears a significant improvement in getting a workable

solution for the university course timetabling problem.

 A hybrid algorithm with local search and GA is efficient in

getting the local optimum and producing a more powerful

algorithm to optimize the timetabling problem [18] describe

the population-based optimization algorithms combine in

different ways with different single solution-based algorithms

to construct a hybrid approach to improve convergence time

in solving the university course timetabling problem. Wang

[28] implements a hybrid genetic algorithm (HGA) to solve

the university classroom arrangement problem and shows its

better performance at global search. A memetic hybrid

algorithm is proposed by [4] with the use of parallel genetic

algorithms by satisfying all the hard and soft constraints with

local search. They test it with BenPaechter competition

datasets and show better results. A memetic approach shows

a fast convergence with an optimal solution in [29] that

performs a global search with a genetic algorithm, which is

further improved by local searches with simulated annealing

and greedy random mutation with local search in GA.

 Muklason, Irianti & Marom [15] have applied various

hyper-heuristics with tabu search, whereas Rossi-Doria &

Paechter [30] have implemented hyper-heuristics with a

genetic algorithm. Both pieces of research claim a notable

reduction of overall computational time with hyper-

heuristics. Burke & Kendall [31]implement constructive

heuristics to initialize a population with the hill-climbing by

using tabu search, and then performs perturbative hyper-

heuristics in GA to generate the best offspring. He identifies

hyper-heuristics perform better than those of simple meta-

heuristics techniques. Phased-approach with multiple

objectives shows significant performance improvement with

a modified genetic algorithm followed by using hyper-

heuristic with a local search for the course timetabling

problem [21] and [23]. Rezaeipanah, Samaneh & Ahmadi

[17] propose a hybrid genetic algorithm with parallel genetic

algorithms and local search with low-level heuristics to

initialize an initial population in the first phase and show the

initial repairing method works well than random

initialization. Hyper-heuristics is implemented with tabu

search and variable neighborhood search in the greedy

algorithm, and it shows better performance of hyper-

heuristics techniques are better than manual timetable settings

[15].

 June, Obit, Leau, Bolongkikit, & Alfred [32] implement AI

techniques with fuzzy logic rule base to create fuzzy

controlled genetic parameters in GA to improve timetabling

optimization problems. Eludire and Akanbi[19] apply fuzzy

logic with a genetic algorithm to schedule a timetabling

problem by ranking different courses in order of difficulty

level. Rjoub [26] proposes an application of the hill-climbing

algorithm in various techniques of genetic algorithm for

better performance of the genetic algorithm. Various

intelligent techniques are used to customize mutation and

crossover operators and it shows improvement in solution

convergence [17]. A custom crossover technique is

implemented with GA and shows a significant enhancement

in performance [22].

 Zuoshan and Yingbo [13] describe it would not be

workable to minimize overall cost function by using multiple

objectives to get an optimal solution and he applies it to

minimize the number of clashes and periods in an

examination timetable using an evolutionary algorithm with

elitism strategy. Their approach shows better performance in

getting a workable solution than single-objective approaches.

Eludire & Akanbi [19] and Akkan & Gulcu [21] apply bi-

objective hybrid genetic algorithms with local search to

optimize the university course timetabling problem with less

computation cost.

EAI Endorsed Transactions on
Scalable Information Systems

04 2022 - 08 2022 | Volume 9 | Issue 4 | e4

Abdul Ghaffar et al.

4

 The proposed algorithm is an AJAX-based dynamic and

user-friendly interactive client application that is developed

with JavaScript, JQuery, PHP, and MySQL.The next section

will describe details related to the proposed algorithm.

3. Problem statement

A timetable is a well-structured document to schedule classes

of various subjects of a specific program/student group to

several fixed timeslots. These timeslots are distributed in six

working days from Monday to Saturday. Each weekday is

further divided into seven timeslots of 90 minutes each. The

fourth slot on Friday is declared off-slot because of the

Jumma Prayer. So, there are 41 timeslots in a week to be

allocated for all the required subject classes. Each timeslot is

assigned to a fixed number of resources such as rooms, labs,

or teachers to accommodate subject classes. A class is a

functional group of students in a particular subject. Each class

must allocate two timeslots and other resources in a week.

Every resource Is allocated by following the associated

constraints on them. Every teacher has a list of subjects to be

taught and is available for a range of timeslots. Every room

has a seating capacity to conduct a class, so it must be

allocated to a class with certain registered students. Every

room is categorized into a lecture room or laboratory,

depending on the particular content of the subject. So, the

proposed algorithm constructs a timetable by allocating

available resources to a fixed number of timeslots by

satisfying all the hard and soft constraints with student,

teacher, and management perspectives as given in Table 1.

Hard constraints are most important than soft constraints, so

a higher weight of 100 is assigned to them, software

constraints are divided into management, student, and teacher

constraints which are assigned 50, 25, and 25 respectively as

used in [28]. The required information must be loaded

manually or through comma-separated values (CSV) files

related to the resources with associated constraints and

subject classes. Four different variations of genetic

algorithms are used with a heuristic approach based on fuzzy

logic and found memetic approach is better in optimizing

multiple objectives.

Table 1. List of hard and soft constraints

Constraints Weight Description

Hard constraints

Room clash 100 Allocating a room for

different classes in the same

timeslot.

Subject clash 100 The timeslot is assigned to

subjects of the same

program.

Teacher clash 100 Teacher is assigned to

different classes in the same

timeslot.

Teacher 100 Teacher is assigned

subject clash subjects not in his domain.

Soft management constraints

Program off-

day

50 Class is allocated in an off-

day of a program.

Invalid

program slot

50 Class is assigned to invalid

timeslots.

Room

overload

50 Room capacity is less than

class size.

Room under-

load

50 Room capacity is more than

class size.

Room invalid 50 Class is assigned to an

invalid room type.

Soft student constraints

Consecutive

class

25 No class of same subject in

consecutive days

Same-day

class gap

25 All classes of the same

subject must be consecutive

in a day.

Soft teacher constraints

Teacher

overload

25 Teacher is assigned more

classes than his limit.

Teacher

invalid slot

25 Teacher is assigned in the

undesirable timeslot.

Teacher

under-load

25 Teacher is assigned less

classes than his limit.

3.1 Timetable constraints

The proposed algorithm solves the university course

timetabling problem within the domain of various constraints

and the level of their severity into hard and soft constraints,

as described [12]. The proposed algorithm implements more

or less the same constraints as described by them. Hard

constraints are physical limitations on the execution of a

timetable and must be avoided for the smooth and workable

execution of a timetable, i.e., room-timeslot conflicts, or

subject slot allocations. Soft constraints are options to apply

resources more effectively and desirably. They provide more

flexibility to concerned stakeholders, so they have no issue

with the execution of a timetable, i.e., teacher preference for

timeslots, or convenience in attending lectures. The proposed

algorithm categorizes soft constraints further into the student,

teacher, and management perspectives. The proposed

algorithm tries to avoid these constraints at the maximum

level to optimize these objectives.

 Different weights are suggested in for these constraints

with the level of their severity, as hard constraints have more

weight compared with those of soft constraints. Multiple

objective functions processed these constraint violation

weights to identify the fitness of a solution from various

perspectives. A solution with maximum overall fitness value

will be the workable solution against a solution with low

fitness value.

3.2 Problem formalization

The university course timetabling problem, which is

EAI Endorsed Transactions on
Scalable Information Systems

04 2022 - 08 2022 | Volume 9 | Issue 4 | e4

Multi-objective fuzzy-based adaptive memetic algorithm with hyper-heuristics to solve university course timetabling problem

5

discussed in this paper, is formalized as in[12]. It includes a

set of n classes related to a set of program/student group p,

scheduled into a set of 41 timeslots ns. Then it allocates

resources from a set of rooms r with an associated feature set

rf and a set of teachers t with an associated feature set tf by

satisfying a set of constraints c to maximize objective

functions given in a set obj.

n = {n1, n2, n3 ...}

ns = {ns1, ns2, ns3 …}

p = {p1, p2, p3 ...}

r = {r1, r2, r3 ...}

rf = {rf1, rf2, rf3 …}

t = {t1, t2, t3 …}

tf = {tf1, tf2, tf3 ...}

c = {h1, h2, h3 ..., s1, s2, s3 ...}

obj = {h, st, ss, sm}

3.3 Population structure

A population is a set of random solutions to allocate different

subject classes in a certain number of timeslots. Each solution

in a population also called a chromosome, is a complete

timetable. It divides each chromosome into subject classes. A

single chromosome is a collection of genes that is an array of

assigned resources of physical space and teacher to several

fixed timeslots for a particular subject class, as shown in Fig.

1. Each class is a vector of day, timeslot, room, and teacher.

There are two classes of every subject in a week, so a 4x2 size

array is used to accommodate the used to accommodate

vector of each subject class.

Figure 1. Population and chromosome structure

3.4 Hyper-heuristics

Hyper-heuristics are the changed form of the bin packing

problem and graph coloring problem [15], as shown in Table

2. These are types of conflicts, the number of conflicts, and

the size of fitness. These are applied while creating an initial

population and in performing various genetic operations by

using fuzzy logic. Hard constraints are the most important

candidate early to be avoided. Then soft constraints are

avoided in the sequence of soft student constraint, soft teacher

constraint, and soft management constraints. The slot with

more constraint violations must be taken over with the

candidate having fewer constraint violations. The slot with a

less objective function value must be replaced with the

candidate carrying a large objective function value. If there

are more hard constraint violations, then those must be

removed by calculating the objective function value. For

example, room-clash hard constraint must be selected first to

resolve against consecutive-class soft constraint, or a slot

having five conflicts must be resolved first instead of a slot

with one conflict.

Table 2. List of hyper-heuristics

Hyper-heuristics Priority order

Types of conflicts
(Color-degree)

1. Hard
2. Soft student
3. Soft teacher

4. Soft management

Number of conflicts
(Largest-degree, Next-

fit-decreasing)

1. Three or more conflicts
2. Two-conflicts
3. One-conflict

Size of fitness
(Largest-fit-
decreasing)

1.More than 80% violations
2. 80% or less violations
3. 50% or less violations

4. Proposed system

The proposed algorithm carries out a memetic approach to

find an optimal solution by using numerous AI techniques

such as genetic algorithm, fuzzy logic, hyper-heuristics, tabu

search, and hill-climbing, as shown in Fig 2. It implements a

genetic algorithm with the initial repairing method and

performs fuzzy-based adaptive genetic operators with local

searches. Then the tabu search improves the solution fitness

by following the hill-climbing threshold to avoid local

optima. The algorithm also tries to maximize various

EAI Endorsed Transactions on
Scalable Information Systems

04 2022 - 08 2022 | Volume 9 | Issue 4 | e4

Abdul Ghaffar et al.

6

objective functions to produce manageable solutions with

different perspectives.

Figure 2. The proposed algorithm flowchart

4.1 Default algorithm parameters and
interface settings

The proposed algorithm will be constructed initially with the

number of hard and soft constraints, as indicated in Table 1.

It is also set up with default parameters to generate a

customized timetable, as given in Fig 3. By default, all the

constraints are active, but it can be turned off to build a

customized timetable for an institute. For example, if there is

no issue with consecutive day allocation of various timeslots

for a subject, the consecutive-day parameter can be set to 1.

It creates an array of days to configure the off-days before

creating a timetable. If the whole day is off-day, then the

default value will be * symbol. Comma-separated slot

numbers are constructed for random off-slots.

Figure 3. Default parameters in the proposed
algorithm

4.2 Fitness functions

The fitness function is one of the important parameters to

decide about the validity of resources allocated to various

subject classes. It calculates overall solution fitness by

Equation 5 [33], a weighted sum of all constraint violations

used in multiple objective functions in Equation 1-4. The

proposed algorithm tries to minimize the following

objectives.

Objective 1: Avoid all the hard constraints to

execute a timetable.

Objective 2: Seek to optimize all the soft constraints

from a student perspective.

Objective 3: Try to optimize all the soft constraints

from a teacher's perspective.

Objective 4: Seek to optimize all the soft constraints

from a management perspective.

𝑓ℎ(𝑥) = ∑ (
1

(1+∑ 𝑤𝐶ℎ
∞
𝑐=1)

)
∞

𝑡=1
 (1)

𝑓𝑠(𝑥) =∑ (
1

(1+∑ 𝑤𝐶𝑠𝑠
∞
𝑐=1)

)
∞

𝑡=1
 (2)

𝑓𝑡(𝑥) =∑ (
1

(1+∑ 𝑤𝐶𝑠𝑡
∞
𝑐=1)

)
∞

𝑡=1
 (3)

𝑓𝑚(𝑥) =∑ (
1

(1+∑ 𝑤𝐶𝑠𝑚
∞
𝑐=1)

)
∞

𝑡=1
 (4)

𝑓(𝑥) =∑ (
1

(1+∑ (𝑤𝐶ℎ+𝑤𝐶𝑠𝑠+𝑤𝐶𝑠𝑡+𝑤𝐶𝑠𝑚)
∞
𝑐=1)

)
∞

𝑡=1
 (5)

 The proposed algorithm calculates multiple objective

functions in finding the fitness of a chromosome. An

objective function is used to define the fitness value of a

particular objective. It is a weighted sum of constraint

violations for given timeslots in the same chromosome,

whereas w is the constraint weight, the actual number of hard

constraint violations ch, the soft student constraints css, the

soft teacher constraint violations cst, and the soft

management constraints csm. If there is no constraint

violation, then it comes back one. In case of constraint

violations of it, it returns less than one fitness value. A lower

value means there are several constraint violations, whereas a

higher fitness value will show a fewer number of constraint

violations. Execution of timetable is not desirable in case of

smaller fitness value. The overall objective function finds the

overall fitness of a solution without the influence of any

individual objective. If there is no hard or soft constraint

violation, the objective function will return one that indicates

an optimal solution for a problem.

4.3. Initial population with initial repairing
method

First, the algorithm generates the initial population with the

initial repairing method by allocating different resources to a

fixed number of timeslots in a week to execute various

classes. While creating an initial population, it randomly

EAI Endorsed Transactions on
Scalable Information Systems

04 2022 - 08 2022 | Volume 9 | Issue 4 | e4

Multi-objective fuzzy-based adaptive memetic algorithm with hyper-heuristics to solve university course timetabling problem

7

allocates resources to random timeslots by avoiding invalid

resources or timeslots as in [15]. Initial repairing of the

population ensures the allocation of exactly two unique

timeslots with the same teacher for each subject class. In

short, it ensures the allocation of the required quantity of valid

resources to valid timeslots in each instance of the population.

The selection of the initial population is the most critical part

of this algorithm, as getting an optimal solution largely

depends upon the original fitness of a population. If the initial

population already has fewer constraint violations, then it will

take less time to identify an optimal solution. Without this, it

takes a longer time to find the optimal solution or may skip

the best optimal solution within the defined number of

iterations. For this purpose, the algorithm applies the initial

repairing method to the selected population to avoid some

constraints by evaluating the objective function value of the

newly generated offspring. So it rejects any invalid allocation

at an early stage, helps to generate the finest offspring, and

improves the GA convergence time. Without this, it will be

slow in convergence for the unfitted initial population. For

example, every subject must have two distinct classes in a

week, and those classes must be assigned to the same teacher.

Timeslot number 39 must not be allocated to any class

because of the Jumma Prayer.

4.4. Genetic algorithm

The genetic algorithm, which is the core part of the proposed

algorithm, selects parent chromosomes with the adaptive

selection process from the initial population, as shown in Fig

4. Adaptive process is a machine learning approach that

automatically selects the most efficient genetic operation by

evaluating the given heuristics. After the selection process, it

applies the crossover operator on the selected chromosomes

by applying a local search technique with the hill-climbing

algorithm. If new chromosomes have a better fitness value

than of its parents, then the mutation process is performed by

using the hill-climbing algorithm on it. The new chromosome

is compared with those of the previous population and

replaced with the least fitted chromosome if it has more

fitness value. Then genetic algorithm iterates for a certain

hill-climbing threshold or terminates if convergence is

achieved.

Figure 4. Genetic algorithm flowchart

4.4.1 Fuzzy-based adaptive genetic operations
The fuzzy logic The fuzzy logic rule base as implemented in

[27], is used to implement adaptive genetic operations in the

genetic algorithm. If the newly generated chromosome has

more conflicts or its size is greater than a certain threshold,

then the mutation probability will be greater. The one-point

crossover will be preferable for chromosomes having a low

fitness value, whereas the two-point crossover is preferable

for chromosomes with a larger fitness value.

4.4.2 Selection process

The selection process is a way to get chromosomes with high

fitness value from a population by its objective function

value. If it has some constraint violations, then selected

chromosomes can generate the best offspring. The adaptive

selection strategy is applied to select fitted chromosomes with

different selection strategies by using the fuzzy rule base, as

defined in Table 3.

Table 3. Fuzzy rule base for the selection process
Time slots Number of conflicts Selection method

Time
slots

Number of conflicts Selection
method

>= 50 >= 24 x subjects x 5% of the
population

Tournament

>= 50 < 24 x subjects x 5% of the
population

Wheel

< 50 >= 24 x subjects x 5% of the
population

Rank

< 50 < 24 x subjects x 5% of the
population

Best

Tournament selection, one of the efficient methods in finding

the best parents, is used to select parent chromosomes by

selecting a set of random chromosomes from a population.

After that, selected chromosomes are entered in n size

EAI Endorsed Transactions on
Scalable Information Systems

04 2022 - 08 2022 | Volume 9 | Issue 4 | e4

Abdul Ghaffar et al.

8

tournament where chromosomes with the highest fitness

value are selected as parents. The fuzzy logic rule base

determines the tournament-size n, as defined in table 4. It

repeats the above process three times to get parents with the

highest fitness value.

Table 4. Fuzzy rule base for tournament size

Population size Fitness level Tournament size

<=20 <= 50% 4

<= 50 <= 50% 10

> 50 <= 50% 16

<=20 > 50% 6

<= 50 > 50% 16

> 50 > 50% 24

 The best selection is a simple technique to find parent

chromosomes. All the chromosomes in a population are

sorted by their fitness value to pick the best chromosomes. It

influences most fitted chromosomes and may ignore hidden

fitness in some chromosomes.

 Roulette wheel selection is a technique with equal

opportunity to take parent chromosomes from a population.

Chromosomes are mapped to their fitness percentage against

the whole population and represented as space in the roulette

wheel. If it has more space on the wheel, it will have more

chance of selection. For this purpose, a random number is

generated and incremented to a certain value that is used to

get selected space on the roulette wheel to decide about

parents.

 Rank selection calculates the rank of each chromosome by

calculating its fitness value in a specific range. Rank is

selected randomly, and the most fitted chromosome is chosen

from it. It gives an equal chance of selection for every

chromosome and maintains diversity in the next generation,

but its performance is slow for the same fitness value in most

cases.

 After the selection process, GA performs a crossover

operation to create new offspring with having the best

features of their parents.

4.4.3 Crossover
The crossover is just like a natural genetic operation to get

inherited qualities of the parents in offspring by performing a

cross between two or more parents. The adaptive crossover

approach is used to select a crossover technique by using the

fuzzy rule base, as shown in Table 5. In the proposed

algorithm, any crossover method will exchange a gene as a

class instead of bits in the gene [17]. In this way, it will create

no new constraint violations in the new offspring. It applies

the hill-climbing threshold to regenerate offspring with better

features than their parents. It also generates a mirror offspring

with the reverse process to avoid skipping the best offspring

for mutation operation.

Table 5. Fuzzy rule base for crossover

Fitness level Constraint
violations

Crossover
technique

>= 50 >= 5 One-point

>= 50 < 5 Two-point

< 50 >= 5 Uniform

 In a one-point crossover, a crossover point n is generated

randomly between 2 to subjects-1. Then it is used to generate

a new off-spring by copying all subject classes from 1 to n

from the first parent and n+1 to n from the second parent, as

shown in Fig 5. One-point is normally good for both parents

to have nearly equal fitness value.

Figure 5. One-point crossover

 In a two-point crossover, two random locations, n1 and n2,

are created between 2 to subjects-1. Then these are used to

create a new off-spring by copying classes from 1 to 1-n1 and

from n2+1 to n from the first parent. Then copy classes from

n1+1 to n2 from the second parent, as shown in Fig 6. It

performs well if constraint violation is less in the parents.

 The uniform crossover technique is a preferable choice to

get balanced features in offspring. It interchanges a group of

random genes between two parents. It will be a better

technique when both parents have different fitness values, so

one offspring must have the finest properties of both parents.

 After the crossover process, GA performs mutation

operation to create new best features in the new offspring for

optimal results.

EAI Endorsed Transactions on
Scalable Information Systems

04 2022 - 08 2022 | Volume 9 | Issue 4 | e4

Multi-objective fuzzy-based adaptive memetic algorithm with hyper-heuristics to solve university course timetabling problem

9

Figure 6. Two-point crossover

4.4.4 Mutation
The mutation is the most important genetic operator as it

produces random changes in the new offspring and adjusts its

fitness level as in the guided mutation as discussed in [27]. It

applies the hill-climbing threshold to get offspring with more

fitness than its parents. Two different mutation procedures are

applied in the proposed algorithm, such as the mutation type

and mutation process. The selection of these depends upon

the fitness level of offspring. The mutation process will be

conducted in a gene/bit of the new offspring. It depends upon

the size of constraint violations, mutation rate, and the

number of genes/bits as defined by hyper-heuristics, as shown

in Table 2. The Adaptive mutation technique performs to

adjust the mutation process in the new offspring by using the

fuzzy rule base, as shown in Table 6.

 The algorithm first selects the mutation type that may be

resource/bit or class/gene based on the previous fitness of the

gene. The resource/bit mutation is performed to change the

single resource, whereas the class/gene mutation is performed

to change all the resources of that class. It adjusts the mutation

probability between 5% to 20% for the resource/bit mutation

and 2% - 10% for the class/gene mutation [34]. The critical

conflict with the class/gene mutation is a teacher-subject

clash that must be avoided before performing this mutation.

Only classes having the same teacher are swapped to avoid

the teacher-subject clash. The resource/bit mutation is

preferable with a chromosome having a few constraint

violations and can be used without violating any other

constraint.

Table 6. Fuzzy rule base for mutation
Fitness level Constraint Violations Used slots

Fitness
level

Constraint
violations

Used
slots

Mutation type

>= 50% >= 5 >=80
%

Class swap

>= 50% < 5 >=80
%

Resource swap

< 50% >= 5 >=80
%

Resource swap

< 50% < 5 >=80% Resource swap

>= 50% >= 5 <80% Class flip

>= 50% < 5 <80% Resource flip

< 50% >= 5 <80% Resource flip

< 50% < 5 <80% Resource flip

 The mutation process, as described in [4] with multiple

heuristics, is selected to improve the fitness of the new

offspring. If the fitness of the new offspring is less than that

of its parents, thus it will reject new changes. In that case, the

mutation process repeats to generate offspring by using the

hill-climbing threshold. Flip mutation performs by flipping

the random gene/bit in the new offspring, as shown in Fig 7.

If several free timeslots or resources are available, then it will

be a preferred technique, as claimed by [35]. It quickly

improves the fitness level of a chromosome. With a fully

congested chromosome, it will perform minor or no

improvement. Swap mutation performs by interchanging two

random genes/bits with each other, as shown in Fig 8 if the

new fitness value of the gene/bit is more than its previous

value. It is slow in convergence, but it will be the preferred

technique if some free resources are available. The only

related resource may swap with another resource in the case

of the resource/bit swapping.

Figure 7. Class flip mutation

 After performing crossover and mutation operations, it will

replace new offspring with the least fitted chromosome in the

population by elitist selection if it has more fitness value than

its parents. Elitist selection is a way to retain original parents

in the later generation to avoid information loss while

performing genetic operations. In this way, the genetic

algorithm will never produce the population with the unfitted

offspring in the later generation and will generate an optimal

solution in less time. The hyper-heuristics, as defined in Table

2, are used to select the unfitted chromosome to take over. All

the above genetic operations generate offspring with higher

fitness by using the hill-climbing threshold until it achieves

convergence. If the genetic algorithm cannot bring about the

best global optimal solution, then it will be further improved

by tabu search [36].

Figure 8. Class swap mutation

 The proposed algorithm applies the tabu search to improve

the quality of the solution generated by GA, as shown in Fig.

9. It iterates using the tabu_number to apply to a candidate

with a higher objective function value or terminates if there

is no fitted candidate.

EAI Endorsed Transactions on
Scalable Information Systems

04 2022 - 08 2022 | Volume 9 | Issue 4 | e4

Abdul Ghaffar et al.

10

Figure 9. Tabu search flowchart

4.5 Candidate List

The candidate list contains many solutions with more fitness

value than its parent chromosome and is used to replace less

fitted genes in it. Constraint violation of each gene is

calculated by using multiple fitness functions, as shown in

Equation 1-4. The hyper-heuristics with fuzzy logic are

applied to perform changes in resources allocated to the class.

If the new fitness value of the candidate is more than its

previous fitness, then it will be added to the candidate list. It

performs the process for some random genes instead of

traversing all of them. It is also organized in the sequence of

hyper-heuristics mentioned in table 2 [37].

4.5.1 Aspiration condition
The aspiration condition is the height fitness level that has

been achieved so far in all the previous iterations of the tabu

search. The aspiration condition will compare with the new

candidate's fitness. If the candidate fitness value is more than

the aspiration condition, then it may apply to the current

solution and the tabu list. If it has more candidate solutions,

then the same process will apply to the next candidate.

4.5.2 Tabu list
The tabu search traverses the candidate list to select a

candidate with the highest fitness value. The move or swap

operation performs to replace the selected candidate in a

solution. The move operation shifts a timeslot having

constraints with the chosen candidate slot, whereas the swap

operation interchanges a timeslot with the selected candidate

slot. If the candidate solution is not in the tabu list already,

then it will be added to the tabu list. Without this, the

candidate solution is rejected, and it selects the next candidate

to repeat the same procedure. No timeslot in the tabu list may

overwrite unless it is shifted to another timeslot already. If the

candidate has more fitness value than candidates in tabu_list,

thus it will be offered to be overwritten but must wait for

tabu_unfit_number turns unless the candidate fitness is more

than the aspiration condition. After each tabu iteration, it

applies the selected candidate to the current solution and

generates a new candidate list, if it has no better candidate.

The process terminates on convergence, or at the end of tabu

number iterations. The tabu_unfit_number explores the

hidden fitness of a solution by applying a less fitted candidate

to a solution. The adaptive tabu number, which is

implemented by the fuzzy rule base, maintains a balance in

conflict resolutions and computation time in the proposed

algorithm.

4.6 Visualize and review the timetable

The web-based dynamic timetable manager visualizes the

solution returned by the proposed algorithm. It displays all

the allocated resources for all subject classes to the fixed

timeslots in a week. It also represents various hard and soft

constraints with different color tags for each timeslot block in

case of any conflict. So it becomes easy to identify the

constraint violations. It also provides a mechanism to adjust

the timeslots to remove clashes or to improve resource

utilization. The move-slot event transfers allocated subject

class resources to another empty slot. The swap-slot event

exchanges associated resources between two allocated

timeslots. The delete-slot event removes all the resources

from the timeslot. With missing resources, the add-resource

event allocates all the required resources to the timeslot.

4.7 Print or generating CSV file

It provides an option to download the CSV format timetable

for further processing in Microsoft Excel. It is also possible

to display the customized timetable in HTML format with the

web browser. The print-option is too available to print the

hard copy of the weekly university timetable.

4.8 Complexity of the proposed algorithm

The proposed algorithm proposed algorithm is a combination

of various optimization techniques with genetic algorithm

and tabu search. Therefore, its complexity largely depends

upon the size of generations, population size, number of

conflicts, threshold size, and optimization techniques used

[31].

O(MO-FAMA) = O(GA) + O(tabu) (6)

O(GA)=threshold*generations*population

size*(O(selection) + crossover probability*O(crossover) +

mutation probability* O(mutation)) (7)

EAI Endorsed Transactions on
Scalable Information Systems

04 2022 - 08 2022 | Volume 9 | Issue 4 | e4

Multi-objective fuzzy-based adaptive memetic algorithm with hyper-heuristics to solve university course timetabling problem

11

O(Selection) = population size*conflicts*O(selection

technique) (8)

O(Crossover) = chromosomes*genes*conflicts*O(fitness)

(9)

O(Mutation) = genes*bits*conflicts*O(fitness) (10)

O(tabu)=threshold*population_size*conflicts*(O(conflicts*

chromosomes*candidate_list*tabu_list*O(fitness))) (11)

If all variables used in the above equations are assumed as

constant values, as executed in a fixed time, then we can

obtain O(GA) = O(fitness) and O(tabu) = O(fitness), so the

complexity of the proposed algorithm is equal to O(fitness).

So fitness that is used to check the fitness of the population,

will decide about the overall complexity of the proposed

algorithm lies between O(n) to O(n2) depending upon the

implementation of fitness function. The complexity of the

fitness function will normally depend upon the actual

application of the proposed algorithm in solving the

university course timetabling problem.

5. System testing

The proposed algorithm is a web-based application

configured on the Linux Shared Server with a graphical user

interface. A test is conducted, with the default parameters

given in Fig 3, to confirm its accuracy with each dataset

individually. Two sets of tests for each sample dataset, with

variable population size, are performed with 25 iterations

each. A set of 50, 100, 150, 200, and 250 population sizes, is

applied to analyze the proposed algorithm. The test performs

a comparison of the proposed algorithm for its performance

and efficiency with the other three algorithms, simple GA,

IGA [17], and simple HGA [22]. All the objective functions

are calculated to get the fitness of the overall solution from

multiple perspectives. All the genetic operations were also

tested independently with the simple GA to explore their

impact on overall performance. In the same way, all the

individual techniques implemented in the proposed algorithm

are also tested, individually. The average result of each

dataset identifies its impact at the convergence time and

overall fitness of the solution. All the results are further

summarized to get the overall accuracy of the proposed

algorithm.

6. System Results
The test datasets are collected from four different schools of

UMT Lahore for session 2021. These are in Microsoft Excel

format and must be converted into the CSV format before

uploading it to the system. Each dataset contains information

about subjects, teachers, rooms, and classes to be executed,

as shown in Table 7. These resources are allocated to create

an executable and optimal timetable. Classes are divided into

a number of sections to accommodate class strength and also

categorized into various programs in that school. There is no

issue in executing classes of different programs and sections

at the same time. Some students from different programs can

share the same class, which is an exceptional case, so that will

be excluded while executing the proposed algorithm.

Table 7. Sample test datasets

Test Datasets Subjects Teachers Rooms Classes

School of Business &
Economics (SBE)

123 79 35 242

School of Systems &
Technology (SST)

119 92 42 232

School of Professional
Advancement (SPA)

62 31 18 106

School of Textile Design
(STD)

115 83 42 224

5.1 Results and discussion

Table 8. Test results of the performance of the multi-objective fuzzy-based adaptive memetic algorithm

Algorithm

Populatio

n Size Conflicts

Time

(ms)

Accuracy

%

Hard

fitness

Soft

student

fitness

Soft

teacher

fitness

Soft

manage

ment

fitness

Overall

fitness

GA 50 19235 9012 45.18 0.000106 0.002169 0.015152 0.001695 0.00010

GA 100 19853 13217 45.88 0.000102 0.002294 0.022727 0.001992 0.00010

EAI Endorsed Transactions on
Scalable Information Systems

04 2022 - 08 2022 | Volume 9 | Issue 4 | e4

Abdul Ghaffar et al.

12

GA 150 20047 14124 47.72 0.000105 0.002488 0.016129 0.002049 0.00010

GA 200 20185 16721 45.98 0.000101 0.002151 0.021739 0.002016 0.00010

GA 250 19959 33705 48.79 0.000109 0.002103 0.027027 0.002000 0.00010

IGA 50 19235 14489 62.40 0.000155 0.002307 1.00000 0.002933 0.00010

IGA 100 19853 18078 51.71 0.000116 0.002079 1.00000 0.001919 0.00010

IGA 150 20047 17528 52.74 0.000116 0.002208 1.00000 0.002488 0.00010

IGA 200 20185 18111 54.28 0.000120 0.001990 1.00000 0.002110 0.00011

IGA 250 19959 31022 54.62 0.000120 0.002310 1.00000 0.002400 0.00011

HGA 50 19235 12712 58.39 0.000140 0.002180 1.00000 0.003690 0.00012

HGA 100 19853 18334 57.72 0.000130 0.002080 1.00000 0.002530 0.00012

HGA 150 20047 19201 55.33 0.000120 0.002120 1.00000 0.002210 0.00011

HGA 200 20185 22297 60.32 0.000140 0.002120 1.00000 0.002160 0.00012

HGA 250 19959 37082 59.16 0.000140 0.002120 1.00000 0.001990 0.00012

MO-FAMA 50 19235 10619 95.64 0.003021 0.003120 1.00000 0.005236 0.00120

MO-FAMA 100 19853 15790 96.21 0.003436 0.003053 1.00000 0.007353 0.00130

MO-FAMA 150 20047 20610 96.16 0.004405 0.002890 1.00000 0.005025 0.00130

MO-FAMA 200 20185 16281 96.18 0.004255 0.003021 1.00000 0.004808 0.00130

MO-FAMA 250 19959 23190 96.29 0.004329 0.003140 1.00000 0.005181 0.00140

The comprehensive results of allocating classes of all of the

schools are given in Table 8 which shows the objective

function values are greater in the proposed algorithm

compared with those of other algorithms. It shows a higher

convergence time in a large size population than in a small

size population, but there is no significant progress in

solution fitness. Due to some unavoidable soft constraints,

any optimization algorithm can never achieve 100% fitness

in most cases. The proposed algorithm returns with

satisfactory results overall allocation in schools as well as

individual allocation of classes in schools, as shown in Fig

10. It shows 96.29% accuracy with 250 size population in

resolving overall constraints compare with 48.79%

accuracy in resolving conflicts with the simple GA,

54.62% accuracy with the IGA in (Boonyopakorn and

Meesad, A Hybrid Immune Genetic Algorithm to Solve

University Time Table Problems 2017), and 59.16% with

the simple HGA [38]in with the same number of iterations.

Figure 10. The proposed algorithm performance

The fitness value of new chromosomes improves quickly

at the initial stage of the algorithm, but there is no

substantial improvement in new chromosomes in the later

stage, as shown in Fig 11.

Figure 11. Conflict resolution in the genetic
algorithm

The drastic shift in the early stage is because of several

conflicts in a population and to replace the low-fitted

chromosomes with high fitness value chromosomes by

using hyper-heuristics. The optimal solution will be a point

where the rate of change of improvement zeros. A variation

of mutation probability impacts convergence time, as

shown in Fig 12 it takes more time to converge with a high

rate of mutation probability instead of resolving more

conflicts.

EAI Endorsed Transactions on
Scalable Information Systems

04 2022 - 08 2022 | Volume 9 | Issue 4 | e4

Multi-objective fuzzy-based adaptive memetic algorithm with hyper-heuristics to solve university course timetabling problem

13

Figure 12. Effect of mutation probability on the time

The performance of the genetic algorithm in resolving with

hard and soft constraints highly depends upon the

techniques used in it.[39] The efficiency of these ultimately

improves or degrades overall algorithm performance

[40].The adaptive approach, to perform various genetic

operations in the genetic algorithm, is also tested to observe

the impact of these on the solution fitness and convergence

time. These greatly affect the performance of the proposed

algorithm, as shown in Table 9. The adaptive crossover and

mutation techniques in the genetic algorithm work well

compared with those of others. The adaptive selection

strategy is just behind the tournament selection, which is

the best selection strategy in the GA, but it takes more time

than the adaptive selection technique.

Table 9. Results of genetic techniques in GA

Genetic
technique

Initial
conflicts

Time
(ms)

Confl
icts

Overall
fitness

Selection techniques

Adaptive 19254 5899 10675 0.000094

Best 19254 5724 10890 0.000092

Rank 19254 5967 10741 0.000093

Tournamen
t

19254 6728 10587 0.000094

Wheel 19254 5880 10982 0.000091

Crossover techniques

Adaptive 19520 4731 10172 0.000098

One-Point 19520 5309 10388 0.000096

Two-Point 19520 4681 10829 0.000092

Uniform 19520 4922 10823 0.000092

Mutation types

Class/Gene 18912 5402 10552 0.000095

Resource/
Bit

18912 4711 11512 0.000087

Adaptive 18912 4692 10344 0.000097

Mutation process

Adaptive 19194 4901 10279 0.000097

Flip 19194 5681 10619 0.000094

Swap 19194 5499 10550 0.000095

Using a genetic algorithm alone is not well for solving the

timetabling problem, so implementing a memetic

algorithm with local search improves the solution fitness,

as indicated in Fig 10. However, its excessive use

negatively affects computation time [41].It increases

computation time from 7.6 seconds to 8.3 seconds as the

tabu_number change from 50 to 250, as illustrated in Fig

13. A deep search takes more processing time with an

optimal solution as compared to a narrow search takes less

time without a workable solution[42].

Figure 14. Effect of tabu numbers on the tabu
search

Using hyper-heuristics also corrects the performance of the

genetic algorithm and tabu search. A significant

improvement in the convergence time of these algorithms

is because of hyper-heuristics, as shown in Fig 14.

EAI Endorsed Transactions on
Scalable Information Systems

04 2022 - 08 2022 | Volume 9 | Issue 4 | e4

Abdul Ghaffar et al.

14

Figure 13. Effect of tabu numbers on the tabu
search

A large size population returns a low rate of convergence

in the proposed algorithm. It takes 23 seconds in the 250-

size population compared with 10 seconds in the 50-size

population, as shown in Table 8.[41] The accuracy of the

proposed algorithm is 95.91% in the 50-size population as

compared with 96.42% in the 250-size population. It also

has more fitness for a large size population than for a small

size population, but it increases processing time.

7. Conclusion

The results obtained through the proposed memetic

algorithm are satisfactory and adequate in optimizing the

university course timetabling problem. The proposed

algorithm minimizes several conflicts and optimizes a

manageable timetable from the student, teacher, and

management perspectives. It returns an efficient and

workable timetabling solution by implementing a genetic

algorithm with adaptive genetic operations with hyper-

heuristics and tabu search. The use of initial repairing, local

search, and hill-climbing algorithms affect the solution

convergence time. A simple genetic algorithm is an

effective optimization technique, but it seldom generates

an optimal and workable solution, depending upon the

input data. Therefore, it must be combined with local

search optimization techniques to form a population-based

hybrid algorithm to generate a more accurate solution as

the proposed algorithm in this paper. It is also impossible

to find an optimal solution by satisfying all the hard and

soft constraints due to the physical limits of resources. So

achieving a single objective is not a desirable approach and

multiple objective functions implemented in the proposed

algorithm effectively optimize the solution from different

perspectives. The proposed multi-objective fuzzy-based

adaptive memetic algorithm is a well-organized and

structured solution to generate an optimal and applicable

solution for the university course timetabling problem.

Future work includes fuzzy-based controls to select a

suitable optimization algorithm from a set of global and

local search algorithms.

Acknowledgements.
The authors thank reviewers for their valuable feedback

and anonymous comments.

References

[1] H. Babaei, J. Karimpour, and A. Hadidi, “A survey of

approaches for university course timetabling problem,”

Comput. Ind. Eng., vol. 86, pp. 43–59, 2015, doi:

10.1016/j.cie.2014.11.010.

[2] M. C. Chen, S. N. Sze, S. L. Goh, N. R. Sabar, and G.

Kendall, “A Survey of University Course Timetabling

Problem: Perspectives, Trends and Opportunities,”

IEEE Access, vol. 9, pp. 106515–106529, 2021, doi:

10.1109/ACCESS.2021.3100613.

[3] P. Boonyopakorn and P. Meesad, “A hybrid immune

genetic algorithm to solve university time table

problems,” Walailak J. Sci. Technol., vol. 14, no.

10Special Issue, pp. 825–835, 2017, doi:

10.14456/vol14iss9pp%p.

[4] A. A. Gozali and S. Fujimura, “Solving University

Course Timetabling Problem Using Multi-Depth

Genetic Algorithm,” SHS Web Conf., vol. 77, no.

October 2019, p. 01001, 2020, doi:

10.1051/shsconf/20207701001.

[5] “Using Reinforcement Learning in Solving Exam

Timetabling Problems Queen ’ s University Belfast

October 2018 COPYRIGHT © 2018 BY KEHAN

HAN,” 2018.

[6] G. A. Neufeld and J. Tartar, “Graph Coloring

Conditions for the Existence of Solutions to the

Timetable Problem,” Commun. ACM, vol. 17, no. 8, pp.

450–453, 1974, doi: 10.1145/361082.361092.

[7] G. H. G. Fonseca, H. G. Santos, E. G. Carrano, and T.

J. R. Stidsen, “Integer programming techniques for

educational timetabling,” Eur. J. Oper. Res., vol. 262,

no. 1, pp. 28–39, 2017, doi: 10.1016/j.ejor.2017.03.020.

[8] Z. Lixi and L. SimKim, “Constructing university

timetable using constraint satisfaction programming

approach,” Proc. - Int. Conf. Comput. Intell. Model.

Control Autom. CIMCA 2005 Int. Conf. Intell. Agents,

Web Technol. Internet, vol. 2, no. November, pp. 55–

60, 2005, doi: 10.1109/cimca.2005.1631445.

[9] W. Alomoush and W. Banzhaf, “A Comprehensive

Review of Uncapacitated University.”

[10] F. Glover, “Artificial intelligence, heuristic frameworks

EAI Endorsed Transactions on
Scalable Information Systems

04 2022 - 08 2022 | Volume 9 | Issue 4 | e4

Multi-objective fuzzy-based adaptive memetic algorithm with hyper-heuristics to solve university course timetabling problem

15

and tabu search,” Manag. Decis. Econ., vol. 11, no. 5,

pp. 365–375, 1990, doi: 10.1002/mde.4090110512.

[11] P. Bangert, “Optimization: Simulated Annealing,”

Optim. Ind. Probl., vol. 220, no. 4598, pp. 165–200,

2012, doi: 10.1007/978-3-642-24974-7_7.

[12] A. Colorni, M. Dorigo, and V. Maniezzo, “A genetic

algorithm to solve the timetable problem,” Politec. di

Milano, Milan, …, pp. 1–24, 1992, [Online]. Available:

http://www.researchgate.net/publication/2253354_A_G

enetic_Algorithm_To_Solve_The_Timetable_Problem/

file/9fcfd50ff95b8c862d.pdf.

[13] M. Joudaki, M. Imani, and N. Mazhari, “Using

improved memetic algorithm and local search to solve

university Course Timetabling problem (UCTP),” Proc.

2011 Int. Conf. Artif. Intell. ICAI 2011, vol. 2, pp. 501–

506, 2011.

[14] A. L. A. Bolaji, A. T. Khader, M. A. Al-Betar, and M.

A. Awadallah, “A hybrid nature-inspired artificial bee

colony algorithm for uncapacitated examination

timetabling problems,” J. Intell. Syst., vol. 24, no. 1, pp.

37–54, 2015, doi: 10.1515/jisys-2014-0002.

[15] A. Muklason, R. G. Irianti, and A. Marom, “Automated

course timetabling optimization using tabu-variable

neighborhood search based hyper-heuristic algorithm,”

Procedia Comput. Sci., vol. 161, pp. 656–664, 2019,

doi: 10.1016/j.procs.2019.11.169.

[16] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E.

Özcan, and J. R. Woodward, “A Classification of

Hyper-Heuristic Approaches : Revisited.”

[17] A. Rezaeipanah, S. S. Matoori, and G. Ahmadi, “A

hybrid algorithm for the university course timetabling

problem using the improved parallel genetic algorithm

and local search,” Appl. Intell., vol. 51, no. 1, pp. 467–

492, 2021, doi: 10.1007/s10489-020-01833-x.

[18] C. Ding, L. Chen, and B. Zhong, “Exploration of

intelligent computing based on improved hybrid genetic

algorithm,” Cluster Comput., vol. 22, no. s4, pp. 9037–

9045, 2019, doi: 10.1007/s10586-018-2049-7.

[19] A. Eludire and C. Akanbi, “A Conceptual Approach to

Resources Allocation Scheduling,” J. Adv. Math.

Comput. Sci., vol. 25, no. 6, pp. 1–12, 2017, doi:

10.9734/jamcs/2017/32569.

[20] Z. Li and Y. Li, “Application of multi-objective

optimization problem based on genetic algorithm,” J.

Phys. Conf. Ser., vol. 2037, no. 1, 2021, doi:

10.1088/1742-6596/2037/1/012021.

[21] C. Akkan and A. Gülcü, “A bi-criteria hybrid genetic

algorithm with robustness objective for the course

timetabling problem,” PATAT 2016 - Proc. 11th Int.

Conf. Pract. Theory Autom. Timetabling, pp. 451–456,

2016.

[22] N. G. A. H. Saptarini, P. I. Ciptayani, and I. B. I.

Purnama, “A custom-based crossover technique in

genetic algorithm for course scheduling problem,” TEM

J., vol. 9, no. 1, pp. 386–392, 2020, doi:

10.18421/TEM91-53.

[23] I. BALAN, “A New Genetic Approach for Course

Timetabling Problem,” J. Appl. Comput. Sci. Math.,

vol. 15, no. 1, pp. 9–14, 2021, doi:

10.4316/jacsm.202101001.

[24] M. M. Tavakoli, H. Shirouyehzad, F. H. Lotfi, and S. E.

Najafi, “Proposing a novel heuristic algorithm for

university course timetabling problem with the quality

of courses rendered approach; a case study,”

Alexandria Eng. J., vol. 59, no. 5, pp. 3355–3367,

2020, doi: 10.1016/j.aej.2020.05.004.

[25] K. Wang, W. Shang, M. Liu, W. Lin, and H. Fu, “A

Greedy and Genetic Fusion Algorithm for Solving

Course Timetabling Problem,” Proc. - 17th IEEE/ACIS

Int. Conf. Comput. Inf. Sci. ICIS 2018, pp. 344–349,

2018, doi: 10.1109/ICIS.2018.8466405.

[26] A. Rjoub, “Courses timetabling based on hill climbing

algorithm,” Int. J. Electr. Comput. Eng., vol. 10, no. 6,

pp. 6558–6573, 2020, doi:

10.11591/IJECE.V10I6.PP6558-6573.

[27] Y. Sun, X. Luo, and X. Liu, “Optimization of a

university timetable considering building energy

efficiency: An approach based on the building controls

virtual test bed platform using a genetic algorithm,” J.

Build. Eng., vol. 35, p. 102095, 2021, doi:

10.1016/j.jobe.2020.102095.

[28] H. Zhang, B. Xiao, J. Li, and M. Hou, “An improved

genetic algorithm and neural network-based evaluation

model of classroom teaching quality in colleges and

universities,” Wirel. Commun. Mob. Comput., vol.

2021, 2021, doi: 10.1155/2021/2602385.

[29] S. Susan and A. Bhutani, “A novel memetic algorithm

incorporating greedy stochastic local search mutation

for course scheduling,” Proc. - 22nd IEEE Int. Conf.

Comput. Sci. Eng. 17th IEEE Int. Conf. Embed.

Ubiquitous Comput. CSE/EUC 2019, no. August 2019,

pp. 254–259, 2019, doi:

10.1109/CSE/EUC.2019.00056.

[30] O. Rossi-doria and B. Paechter, “An hyperheuristic

EAI Endorsed Transactions on
Scalable Information Systems

04 2022 - 08 2022 | Volume 9 | Issue 4 | e4

Abdul Ghaffar et al.

16

approach to course timetabling problem using an

evolutionary algorithm,” Evol. Comput., no. January

2014, 2003, [Online]. Available:

https://www.researchgate.net/publication/228724044.

[31] E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and

S. Schulenburg, “Hyper-Heuristics: An Emerging

Direction in Modern Search Technology,” Handb.

Metaheuristics, pp. 457–474, 2006, doi: 10.1007/0-306-

48056-5_16.

[32] T. L. June, J. H. Obit, Y. B. Leau, J. Bolongkikit, and

R. Alfred, “Sequential Constructive Algorithm

incorporate with Fuzzy Logic for Solving Real World

Course Timetabling Problem,” Lect. Notes Electr. Eng.,

vol. 603, no. February, pp. 257–267, 2020, doi:

10.1007/978-981-15-0058-9_25.

[33] F. G. Lobo, D. E. Goldberg, and M. Pelikan, “Time

complexity of genetic algorithms on exponentially

scaled problems,” Proc. Genet. Evol. Comput. Conf.,

no. June, pp. 151-- 158, 2000.

[34] M. Imran, M. U. Sattar, H. Wazirkhan, and A. Ghaffar,

“Selecting a Better Classifier Using Machine Learning

for.”

[35] A. Ghafar, N. Shah, and M. M. Iqbal, “Gender

Recognition for Urdu language Speakers Using

Composite and Multi-Layer Feature Approaches with

Fuzzy Logic,” Tech. J., vol. 24, no. 02, pp. 61–75,

2019.

[36] B. Ahmad et al., “Intelligent Digital Twin to make

Robot Learn the Assembly process through Deep

Learning,” 2021.

[37] M. U. Sattar, S. Palaniappan, A. Lokman, N. Shah, Z.

Riaz, and U. Khalid, “User experience design in virtual

reality medical training application,” J. Pak. Med.

Assoc., vol. 71, no. 7, pp. 1730–1735, 2021, doi:

10.5455/JPMA.22992.

[38] B. Wang, Y. Geng, and Z. Zhang, “Applying genetic

algorithm to university classroom arrangement

problem,” J. Phys. Conf. Ser., vol. 1325, no. 1, 2019,

doi: 10.1088/1742-6596/1325/1/012157.

[39] Y. F. Ge, J. Cao, H. Wang, Y. Zhang, and Z. Chen,

Distributed Differential Evolution for Anonymity-

Driven Vertical Fragmentation in Outsourced Data

Storage, vol. 12343 LNCS, no. October. Springer

International Publishing, 2020.

[40] Y. F. Ge et al., “Distributed Memetic Algorithm for

Outsourced Database Fragmentation,” IEEE Trans.

Cybern., vol. 51, no. 10, pp. 4808–4821, 2021, doi:

10.1109/TCYB.2020.3027962.

[41] Y. F. Ge, M. Orlowska, J. Cao, H. Wang, and Y.

Zhang, “Knowledge transfer-based distributed

differential evolution for dynamic database

fragmentation,” Knowledge-Based Syst., vol. 229, p.

107325, 2021, doi: 10.1016/j.knosys.2021.107325.

[42] Y. F. Ge, J. Cao, H. Wang, Z. Chen, and Y. Zhang,

“Set-Based Adaptive Distributed Differential Evolution

for Anonymity-Driven Database Fragmentation,” Data

Sci. Eng., vol. 6, no. 4, pp. 380–391, 2021, doi:

10.1007/s41019-021-00170-4.

EAI Endorsed Transactions on
Scalable Information Systems

04 2022 - 08 2022 | Volume 9 | Issue 4 | e4

