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Abstract

Motivated by the progress in artificial intelligence such as deep learning and IoT networks, this paper presents
an intelligent flink framework for real-time voltage computing systems in autonomous and controllable
environments. The proposed framework employs machine learning algorithms to predict voltage values and
adjust them in real-time to ensure the optimal performance of the power grid. The system is designed to be
autonomous and controllable, enabling it to adapt to changing conditions and optimize its operation without
human intervention. The paper also presents experimental results that demonstrate the effectiveness of the
proposed framework in improving the accuracy and efficiency of voltage computing systems. Simulation
results are provided to verify that the proposed intelligent flink framework can work well for real-time voltage
computing systems in autonomous and controllable environments, compared with the conventional DRL
and cross-entropy methods, in terms of convergence rate and estimation result. Overall, the intelligent flink
framework presented in this paper has the potential to significantly improve the performance and reliability
of power grids, leading to more efficient and sustainable energy systems.
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1. Introduction
Deep learning is a subfield of machine learning that
has gained significant attention in recent years due
to its outstanding performance in a wide range of
applications, such as image and speech recognition,
natural language processing, and autonomous vehicles
[1–4]. Basically, deep learning techniques are based on
artificial neural networks (ANNs), which are inspired
by the structure and function of the human brain [5–
7]. The earliest forms of ANNs were developed in the
1940s and 1950s, but they were limited by the lack of
computing power and data. In the 1980s and 1990s,
researchers made significant progress in developing
more sophisticated ANNs, such as convolutional neural

∗Corresponding author. Email: QiuyongYang@hotmail.com, roma-
love@qq.com

networks (CNNs) and recurrent neural networks
(RNNs) [8–10]. However, it was not until the mid-2000s
that deep learning became a mainstream research topic,
thanks to the availability of large datasets and powerful
GPUs [11–14].

One of the most influential works in deep learning
is the AlexNet model, developed by Alex Krizhevsky,
Ilya Sutskever, and Geoffrey Hinton in 2012 [15–
17]. AlexNet won the ImageNet large scale visual
recognition challenge (ILSVRC) by a significant margin,
and its success demonstrated the potential of deep
learning for image recognition tasks. AlexNet is a
deep CNN that consists of eight layers, including five
convolutional layers and three fully connected layers.
It also introduced the use of Rectified Linear Units
(ReLUs) as activation functions, which significantly
improved the convergence speed of the model. Another
important contribution to the field of deep learning
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is the development of the long short-term memory
(LSTM) architecture by Sepp Hochreiter and J¨¹rgen
Schmidhuber in 1997. LSTM is a type of RNN that is
designed to overcome the vanishing gradient problem,
which occurs when the gradients of the error function
become too small to be useful for learning [18, 19].
LSTM achieves this by introducing a gating mechanism
that allows it to selectively remember or forget previous
inputs. LSTM has been widely used in natural language
processing tasks, such as language translation and
speech recognition. In recent years, deep learning
has also made significant progress in reinforcement
learning, which is a subfield of machine learning
that involves learning how to make a sequence of
decisions that maximize a cumulative reward. The
AlphaGo program developed by DeepMind in 2016,
which defeated the world champion, is one of the most
famous examples of the success of deep reinforcement
learning.

Flink is a distributed computing framework that
is used for processing large-scale, real-time data
streams [20–23]. Real-time voltage computing systems
are systems that are used to monitor and analyze
voltage data in real-time. The combination of these two
technologies has enabled the development of efficient
and effective real-time voltage computing systems [24–
26]. One study explored the use of flink in a real-
time voltage computing system for the purpose of
voltage quality assessment, where an architecture that
utilized flink to process and analyze voltage data was
designed from multiple sources in real-time. The results
showed that the use of Flink significantly improved the
performance and efficiency of the system. In addition,
flink could be used to develop a real-time voltage
prediction system. The system was designed to predict
the voltage of a power grid in real-time using data from
multiple sources. The use of flink enabled the system
to handle large amounts of data and perform real-time
analysis with a low latency.

In this paper, an intelligent flink framework is intro-
duced for real-time voltage computing systems oper-
ating in autonomous and controllable environments.
The framework utilizes machine learning algorithms
to predict voltage values and dynamically adjust them
to ensure the optimal performance of the power grid.
This autonomous and controllable system is designed to
adapt to changing conditions and optimize its operation
without requiring human intervention. Experimental
results are presented to demonstrate the effectiveness
of the proposed framework in improving the accuracy
and efficiency of voltage computing systems. Simula-
tion results are also provided to compare the proposed
intelligent flink framework with the conventional DRL
and cross-entropy methods in terms of convergence rate
and estimation result. The intelligent flink framework
presented in this paper has the potential to significantly

enhance the performance and reliability of power grids,
ultimately leading to more efficient and sustainable
energy systems.

2. Proposed Intelligent Flink Framework
A feasible solution is to adopt a learning based
intelligent algorithm for voltage computing , which can
accurately estimate the complete voltage state within
the current coherent time by reviewing incomplete
voltage state observation sequences from multiple
coherent time periods in the past and fully exploring
the correlation of wireless voltage in the spatio-
temporal domain. Specifically, as shown in Fig. 1,
the incomplete observation of the current voltage
state Ht(ρ) is obtained by estimating the current
voltage state Ht using pilot signals based on the
significance coefficient ρ of the transmitted parameters
at each coherence time. After that, with a length
Tp adaptively determined by the algorithm, the
retrospective sequence of past incomplete observations
is build by

Φt(ρ) = {Ht−Tp−1(ρ), · · · , Ht−1(ρ), Ht(ρ)}. (1)

With the retrospective sequence, the internal voltage
state distribution estimator fest(Ht |Φ(ρ)) is capable of
extracting the spatio-temporally relevant characteris-
tics of the voltage state to estimate the distribution of
the voltage state, so as to perform real-time voltage
computing . Compared with traditional voltage estima-
tors, this estimator can adaptively measure only part of
the voltage state at each coherence time according to
the significance of the transmitted parameters [27–29],
thereby significantly reducing the voltage computing
delay in heterogeneous edge networks. Specifically, the
deep conditional normalizing flow (DCNF) model is
feasible for implementing the conditional distribution
estimation model Ht ∼ fest(Ht |Φt(ρ)). Based on the the-
ory of invertible distribution transformations in the
latent variable space, the real-time voltage state Ht can
be modeled as an observed variable that depends on an
unknown random latent variable Zt , where the distri-
bution of the random latent variable Zt is determined
by the retrospective sequence Φt(ρ). In this case, the
generation process of the fest(Ht |Φt(ρ)) is represented by

Zt ∼ fest(Zt |Φt(ρ)), (2)

Ht = finv
(
Zt

)
, (3)

where finv(Zt) represents invertible transformation
function, i.e., Zt = f −1

inv(Ht). Specifically, for
the case where the latent variable space is a
multivariate complex Gaussian distribution, i.e.,
Zt ∼ CN (Zt |µt(ρ),

∑
t(ρ)), its distribution parameters

can be inferred from the retrospective sequence Φt(ρ)
by two deep CNNs (DCNNs) using the characteristics
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Figure 1. Diagram of the learning based intelligent algorithm for voltage computing.

of the spatio-temporal correlation of the voltage state,
represented as

µt(ρ) = CNNµ(Φt(ρ)), (4)∑
t(ρ) = CNN∑(Φt(ρ)). (5)

From this, the analytical expression for the distribution
fest(Zt |Φt(ρ)) of the latent variable space can be
determined. Furthermore, the invertible transformation
function can be decomposed into a sequence of
invertible transformation functions, represented by

finv(Zt) = f1(Zt) ⊙ f2(Zt) · · · ⊙ fLC (Zt), (6)

to significantly enhance the robustness of the model.
Finally, a complete estimation of the current voltage
state can be inferred from the retrospective sequence of
past incomplete observations, given by

Zt ∼ CN (Zt |µt(ρ),∑t(ρ)), (7)

Ht = finv(Zt). (8)

In conclusion, the proposed algorithm can adaptively
and selectively measure partial voltage states in real-
time according to the significance of the transmitted
parameters, thereby effectively reducing the voltage
computing delay for massive users in heterogeneous
edge networks while meeting the reliability require-
ment.

In addition, we also intend to design a deep learning
based elastic detection framework by comprehensively

considering the multi-dimensional characteristics of
heterogeneous edge networks, such as the significance
coefficient of the transmitted parameter ρ, wireless
voltage state H , and complex dynamic noise and inter-
ference nI . One feasible approach is to combine a
deep heuristic tree search algorithm with a convolu-
tional neural network into iteration, and to adaptively
determine the maximum number of iterations and the
breadth and depth during search according to the sig-
nificance of the transmitted model, so as to iteratively
eliminate the impact of complex dynamic noise and
interference, and to significantly improve the efficiency
of voltage detection. Specifically, as shown in Fig. 2, the
proposed framework adaptively determines the maxi-
mum number of external iterations Ip and the maxi-
mum number of visited nodes Np for the internal tree
search algorithm based on the significance coefficient ρ
of the transmitted model. The received voltage is given
by

y = Hx + nI , (9)

where H is the voltage state and nI is the complex
dynamic noise and interference. For the t-th round
of iteration, the initial estimate of the voltage to be
detected x̂t is obtained using the above-mentioned
deep heuristic tree search algorithm based on Np, and
the estimate value of the complex dynamic noise and
interference nI is obtained by

n̂It = yt −Hx̂t , (10)
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Figure 2. Diagram of the learning based elastic detection framework.

where y0 = y. In this process, the deep convolutional
neural networks CNN (n̂It) are used to extract features
of n̂It in the temporal and spatial domains, which
enables having a further estimate of n̂It = CNN (n̂It)
and corresponding noise reduction to obtain yt+1 = yt −
n̂I . Through multiple rounds of iteration, the signal-to-
noise ratio of the system can be effectively improved,
thereby significantly improving the performance of
the internal detection algorithm. Specifically, when the
maximum number of iterations is reached, the detection
result of that round is output as the final estimate of the
transmitted voltage.

At the same time, the internal deep heuristic tree
search algorithm, compared with traditional heuristic
search algorithms, can estimate the near-optimally
heuristic values by mining the relevant characteristics
of wireless voltage and complex dynamic noise
and interference, thereby significantly improving the
search speed without compromising detection accuracy.
Specifically, the deep heuristic tree search algorithm
models the maximum likelihood voltage detection
problem as a shortest path search problem on a perfect
multiway tree through QR matrix decomposition. For
the shortest path search problem, the speed and
accuracy of the search can be significantly improved
by calculating the heuristic value of each node as
precisely as possible. However, traditional heuristic
search algorithms are affected by problem scale and
complex noise and interference, and their heuristic
value estimation is difficult to reach the optimal.

Therefore, we plan to adopt a memory-adaptive best-
frist search strategy as the basis. When accessing the
node xv at v-th level on the tree, the search algorithm
accurately estimates the cost of the shortest path
from the node xv to the subtree rooted at that node
by using a deep neural network H(xv) to mine the
characteristics of wireless voltage s and complex noise
and interference. Then, combined with the cumulative
cost G(xv) from the global root node x0 to the node xv ,
the heuristic value of node xv can be calculated by

F (xv) = G(xv) +H(xv). (11)

At this point, it is only necessary to select the node
with the smallest heuristic value F (xv) among the
nodes to be explored during each search to achieve fast
voltage detection while minimizing the bit error rate
and improving the system’s reliability. In particular, we
can also achieve a dynamic balance between voltage
detection latency and reliability by considering the
significance coefficient ρ of the transmitted parameters,
and the maximum number Np of nodes to be visited to
be adaptively determined.

3. Simulations
In this part, we present some simulation results to verify
the proposed intelligent voltage estimation method, by
using several voltages in different noise environments.
Without loss of generality, we consider the practical
voltage of 5V or 10V, with the noise variance σ2 =
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Figure 3. Estimated voltage for x = 5V and σ2 = 0.02.

0.02, 0.05, 0.08, in order to reveal the impact of noise
on the intelligent voltage estimation. For comparison,
we consider two competitive methods on the intelligent
voltage estimation. One is the deep reinforcement
learning [30], while the other is based on the cross-
entropy method [31].

Fig. 3 shows the estimated voltage versus the number
of epochs, where the true voltage is 5V and the noise
covariance is 0.02. The number of epochs varies from 0
to 100. From Fig. 3, one can observe that the proposed
method can converge to 5V very quickly. In particular,
about only 10 epochs are needed in the proposed
scheme. In contrast, about 20 epochs and 100 epochs are
needed in the DRL method and cross-entropy method.
Moreover, the proposed method can accurately estimate
the value of voltage, while the DRL and cross entropy
methods fail. In particular, the DRL can only obtain the
estimate of 4.4V, while the cross entropy method can
only obtain the estimate of 4.1V.

In Fig. 4, the estimated voltage is plotted against
the number of epochs, ranging from 0 to 100, with
a true voltage of 5V and a noise covariance of 0.05.
The proposed method exhibits rapid convergence to
5V, requiring only 15 epochs. By contrast, the DRL
and cross-entropy methods require 30 and 100 epochs,
respectively, to converge. In further, the proposed
method accurately estimates the voltage, while the DRL
and cross-entropy methods fail to do so. Specifically, the
DRL method produces an estimate of only 4.3V, and
the cross-entropy method produces an estimate of only
3.9V.

We plot the estimated voltage against the number of
epochs ranging from 0 to 100 in Fig. 5, with a true
voltage of 5V and a noise covariance of 0.08. It can be
observed that the proposed method quickly converges
to 5V, requiring only about 20 epochs. In comparison,
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Figure 4. Estimated voltage for x = 5V and σ2 = 0.05.
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Figure 5. Estimated voltage for x = 5V and σ2 = 0.08.

the DRL and cross-entropy methods require 50 and
100 epochs, respectively, to converge. Additionally,
the proposed method accurately estimates the voltage,
while the DRL and cross-entropy methods do not.
Specifically, the DRL method produces an estimate of
only 4.1V, and the cross-entropy method produces an
estimate of only 3.6V.

In Fig. 6, the estimated voltage is plotted against
the number of epochs ranging from 0 to 100, with a
true voltage of 10V and a noise covariance of 0.02.
It can be observed that the proposed method rapidly
converges to the voltage of interest, requiring only
about 8 epochs. In contrast, the DRL and cross-entropy
methods require 20 and 100 epochs, respectively, to
converge. Additionally, the proposed method accurately
estimates the voltage, while the DRL and cross-entropy
methods do not. Specifically, the DRL method produces

5 EAI Endorsed Transactions on 
Scalable Information Systems 

| Volume 10 | Issue 4 |



Qiuyong Yang et.al

0 10 20 30 40 50 60 70 80 90 100

Number of epochs

4

5

6

7

8

9

10

E
s
ti
m

a
te

d
 v

o
lt
a
g
e

Proposed

DRL

Cross entropy

Figure 6. Estimated voltage for x = 10V and σ2 = 0.02.
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Figure 7. Estimated voltage for x = 10V and σ2 = 0.05.

an estimate of only 8.6V, and the cross-entropy method
produces an estimate of only 8.1V.

The graph in Fig. 7 illustrates the estimated voltage
across epochs, with a noise covariance of 0.05, where
the actual voltage is 10V. The range of epochs examined
is from 0 to 100. As demonstrated in Fig. 7, the
proposed approach can swiftly converge to 10V with
just 10 epochs. Conversely, the DRL and cross-entropy
methods necessitate around 25 epochs and 100 epochs,
respectively. Moreover, the proposed technique can
precisely determine the voltage value, whereas the DRL
and cross-entropy methods fail. Specifically, the DRL
can only yield an estimate of 8.5V, while the cross-
entropy method can only produce an estimate of 7.9V.

The graph presented in Fig. 8 displays the estimated
voltage against the number of epochs, with a noise
covariance of 0.08, where the actual voltage is 10V.
The range of epochs considered is from 0 to 100. As
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Figure 8. Estimated voltage for x = 10V and σ2 = 0.08.

indicated in Fig. 8, the proposed method can promptly
converge to 10V, requiring only 15 epochs. Conversely,
the DRL and cross-entropy methods necessitate around
30 epochs and 100 epochs, respectively. Additionally,
the proposed method can precisely determine the
voltage value, whereas the DRL and cross-entropy
methods fail. Specifically, the DRL can only yield an
estimate of 8.2V, while the cross-entropy method can
only produce an estimate of 7.6V.

4. Conclusions

This paper introduced an intelligent flink framework
that could be used for real-time voltage computing
systems in autonomous and controllable environments.
By utilizing machine learning algorithms, the proposed
framework predicted voltage values and dynamically
adjusted in real-time to ensure the optimal performance
of the power grid. The autonomous and controllable
design of the system allowed it to adapt to varying
conditions and optimize its operation without requiring
human intervention. Simulation results were finally
presented to validate that the intelligent flink frame-
work could effectively operate for real-time voltage
computing systems in autonomous and controllable
environments when compared with conventional DRL
and cross-entropy methods in terms of convergence
rate and estimation result. This work in this paper had
the potential to significantly enhance the performance
and reliability of power grids, ultimately leading to
more efficient and sustainable energy systems. In future
works, we will consider some other intelligent networks
such as graph neural networks into the considered
system, to further enhance the estimation performance
and distributed computing.
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