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Abstract

This paper proposes a real-time task fault-tolerant scheduling algorithm for a dynamic monitoring platform
of distribution network operation under overload of distribution transformers. The proposed algorithm is
based on wireless communication and mobile edge computing to address the challenges faced by distribution
networks in handling the increasing load demand. For the considered system, we evaluate the system
performance by analyzing the communication and computing latency, from which we then derive an
analytical expression of system outage probability to facilitate the performance evaluation. We further
optimize the system design by allocating computing resources for multiple mobile users, where a greedy-
based optimization scheme is proposed. The proposed algorithm is evaluated through simulations, and the
results demonstrate its effectiveness in reducing task completion time, improving resource utilization, and
enhancing system reliability. The findings of this study can provide a basis for the development of practical
solutions for the dynamic monitoring of distribution networks.
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1. Introduction
Motivated by the development of wireless communi-
cation and edge computing [1–4], real-time task fault-
tolerant scheduling (RTTFTS) is an important problem
in real-time systems, which aims to provide timely
execution of tasks even in the presence of failures [5–7].
In recent years, several studies have focused on devel-
oping efficient RTTFTS algorithms that can handle dif-
ferent types of faults, such as processor failures, mem-
ory failures, and communication failures. One of the
early studies in RTTFTS was a fault-tolerant schedul-
ing algorithm based on redundancy, where the algo-
rithm duplicated each task and assigned them to differ-
ent processors to ensure fault-tolerance. However, this

∗Corresponding author. Email: HancongHuangfu@126.com, huang-
fuhancong@gdfs.csg.cn.

approach suffers from high redundancy overheads and
may not be scalable for large systems. In a more recent
study, an RTTFTS algorithm was proposed based on
mixed-criticality scheduling (MCS), which can assign
different levels of criticality to tasks based on their
importance, and schedule them accordingly. It took
advantage of MCS to provide fault-tolerance by assign-
ing backup tasks to low criticality tasks. The results
showed that this algorithm could achieve a better fault-
tolerance than traditional approaches. Another recent
study was the RTTFTS algorithm that considered both
task-level and system-level fault-tolerance, where the
tasks were scheduled based on the deadlines and pri-
orities, while also considered the availability of redun-
dant resources. This algorithm was evaluated using
simulations and showed significant improvement in
fault-tolerance compared to traditional approaches. In a
different approach, an RTTFTS algorithm was proposed
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based on dynamic partial order reduction (DPOR),
which could reduce the search space of scheduling
algorithms by eliminating redundant schedules. This
algorithm used DPOR to efficiently handle faults and
reduced the computational overhead of scheduling. The
results showed that this algorithm could handle more
faults than traditional approaches, while also reducing
the scheduling overhead.

Wireless communication [8–10] and edge computing
[11–13] are two key technologies that are increasingly
being used in dynamic monitoring platforms. These
platforms are designed to collect, process, and analyze
data from a wide range of sensors and devices in
real-time, in order to provide insights and support
decision-making across a variety of industries and
applications [14–16]. One recent study examined the
use of a dynamic monitoring platform for agricultural
applications. This platform consisted of wireless sensor
nodes deployed throughout a vineyard, which collected
data on temperature, humidity, and soil moisture.
The data was then processed using edge computing
techniques, and the resulting insights were used to
optimize irrigation and fertilizer use. Another study
looked at a dynamic monitoring platform for traffic
management. The platform used a combination of
wireless sensors and edge computing to collect data
on traffic flow, speed, and congestion, and to provide
real-time feedback to drivers and traffic management
systems. It could be that the platform was effective
in reducing traffic congestion and improving overall
traffic flow. In the field of healthcare, dynamic
monitoring platforms are also being developed to
support remote patient monitoring and personalized
medicine. One recent study described the use of
a wireless, wearable device for monitoring glucose
levels in diabetic patients. The device collected data
in real-time and used edge computing techniques to
provide personalized feedback and recommendations
to patients based on their individual glucose profiles.

This paper presents a novel real-time task fault-
tolerant scheduling algorithm designed for a dynamic
monitoring platform of distribution network operation,
which is frequently subjected to overload from
distribution transformers. The proposed algorithm
utilizes wireless communication and mobile edge
computing to overcome the challenges associated with
the increasing load demand. For the considered system,
we evaluate the system performance by analyzing the
communication and computing latency, from which we
then derive an analytical expression of system outage
probability to facilitate the performance evaluation.
We further optimize the system design by allocating
computing resources for multiple mobile users, where
a greedy-based optimization scheme is proposed.
Through simulations, the effectiveness of the proposed
algorithm in reducing task completion time, improving

resource utilization, and enhancing system reliability
is demonstrated. The findings of this study offer
a practical solution for the dynamic monitoring of
distribution networks.

Figure 1. System model of multi-user MEC for dynamic
monitoring.

2. System Model
Fig. 1 depicts the system model of the multi-user MEC
network for dynamic monitoring, where N mobile users
have some latency sensitive computational tasks and
need to be offloaded to one edge server. Specifically,
U ≜ {U1,U2, . . . ,UN } is the N mobile users set, where
mobile user Un has one task with the task size of L that
needs to be offloaded and computed at the edge server.
Due to requirement on the latency sensitive tasks, all
tasks from N mobile users need to be finished under
a given latency threshold γt . In the following, we will
detail the system latency of considered MEC system.

In the MEC system, mobile user Un needs to offload
its task to the edge server. According to the Shannon
theorem, the data transmission rate of mobile user Un
can be given by [17–19]

Rn = B log2

(
1 +

p|hn|2

σ2

)
, (1)

where the channel parameter of the link between
mobile user Un and the edge server is represented
by hm, while the wireless bandwidth between them is
denoted as B. The transmit power of the mobile user
is represented by p, and σ2 is the variance of additive
white Gaussian noise (AWGN) [20–23]. From (1), we can
further give the transmission latency of mobile user Un
as [24, 25]

T trans
n =

L
Rn

. (2)

The edge server receives the tasks offloaded from
mobile users and then will compute the task. Assume
that the computational resource at the edge server can
be allocated to different tasks from all users, thus all
the received tasks can be computed in parallel. The
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corresponding computation latency of mobile user Un’s
task can be given by

T
comp
n =

ωL
fn

, (3)

where fn is the computational resource allocated to
mobile user Un’s task, which satisfies

∑N
n=1 ≤ ftotal , in

which ftotal is the total computational resource at the
edge server, and ω is the needed CPU cycle to compute
one bit of computational task.

Thus, the total task offloading latency of mobile user
Un can be given by [26, 27]

T total
n = T trans

n + T
comp
n . (4)

3. Outage Probability
In this section, we analyze the outage performance
for the considered MEC system. By defining the user
outage and system outage, we are able to analyze
system performance under a given latency threshold.
Specifically, the outage event of mobile user Un can
be defined as its total task offloading latency exceeds
the latency threshold γt . Therefore, the corresponding
outage probability can be given by

P out
n = Pr[T total

n ≥ γt]. (5)

From (5), we can further define the system outage
probability as

P out =
1
N

N∑
n=1

Pr[T total
n ≥ γt]. (6)

In the following, we will derive a closed-form outage
probability for both users and the considered MEC
system. Specifically, we can rewrite (5) as [28, 29]

P out
n = Pr[T trans

n + T
comp
n ≥ γt], (7)

= 1 − Pr[T trans
n + T

comp
n ≤ γt], (8)

= 1 − Pr

 L

B log2

(
1 + p|hn |2

σ2

) +
ωL
fn
≤ γt

 , (9)

= 1 − Pr

 L

B log2

(
1 + p|hn |2

σ2

) ≤ γt −
ωL
fn

 . (10)

After some manipulations, we can further have,

P out
n = 1 − Pr

|hn|2 ≥ 2

L

B
(
γth−

ωL
fn

)
− 1

p
σ2

 , (11)

= Pr

|hn|2 ≤ 2

L

B
(
γth−

ωL
fn

)
− 1

p
σ2

 . (12)

Note that mobile user Un experiences Rayleigh flat
fading in the offloading, with an average channel gain
of λn, and we further have

P out
n = 1 − exp


1 − exp

(
L ln 2

B
(
γth−ωL

fn

))
λnp
σ2

 , (13)

= 1 − exp


1 − exp

(
L ln 2

B
(
γth−ωL

fn

))
λnp
σ2

 . (14)

Then, substituting (14) into (6), we can obtain the MEC
system outage probability as

P out =
1
N

N∑
n=1

Pr[T total
n ≥ γt], (15)

=
1
N

N∑
n=1

1 − exp


1 − exp

(
L ln 2

B
(
γth−ωL

fn

))
λnp
σ2


 . (16)

In order to obtain more insight on the considered MEC
system, we use (16) to derive an asymptotic expression
of P out in high SNR case, which can be given by

P out =
1
N

N∑
n=1

1 − exp


1 − exp

(
L ln 2

B
(
γth−ωL

fn

))
λnp
σ2


 , (17)

≃ 1
N

N∑
n=1

1 −

1 −
exp

(
L ln 2

B
(
γth−ωL

fn

)) − 1

λnp
σ2


 , (18)

=
1
N

N∑
n=1


exp

(
L ln 2

B
(
γth−ωL

fn

)) − 1

λnp
σ2

 , (19)

= P
asym
out , (20)

where lim
w→0

e−w ≃ 1 − w is used.

With the asymptotic outage probability P
asym
out , several

insights on the MEC system can be obtained. Specifi-
cally, the system outage improves with an increase in B,
p, and λn, indicating that higher transmission rates can
enhance the system performance. Moreover, the system
outage deteriorates with a larger task size L, indicating
a larger tasks size will increase both the latency of task
transmission and computation. In further, the compu-
tational resource fn affect the system outage, since a
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larger allocated computational resource will cause less
computation latency.

According the above insights, we can find that it
is of vital importance to allocate the computational
resource. Thus, in the next section, we will propose
a greedy based method to solve the computational
resource allocation problem.

4. Greedy based computational resource allocation
In this section, we use a greedy based method to
allocate the total computational resource. We optimize
{f1, . . . , fN } to minimize the system outage.

First, we relax the total computational resource
constraint and assume that all mobile users can be
assigned with sufficient computational resource to
finish the computation within the latency threshold γt ,
given by

L

B log2

(
1 + p|hn |2

σ2

) +
ωL

f need
n

= γt , (21)

where f need
n is the required computational resource.

Then, we can calculate the required computational
resource f need

n as,

f need
n =

ωLγt − L

B log2

(
1+ p|hn |2

σ2

)

. (22)

If the total required computational resource
∑N

n=1 f
need
n

exceeds ftotal, we will drop the mobile users in
descending order of f need

n , and assign no computational
resource to them until the computational resource
constraint

∑N
n=1 ≤ ftotal is met.

5. Simulation
In this section, we provide some simulations to to
validate the proposed studies. If not specified, “Sim-
ulation", “Analysis", and “Asymptotic" are performed
with equally allocated bandwidth and computational
resource, and “Greedy" is the simulated outage with
the greedy based computational resource allocation.
Besides, we set the mobile user number N = 5, and set
the task size L = 50Mbits. Moreover, each mobile user’s
transmit power p is 1W and σ2 is 0.001. In further, the
total bandwidth is 30MHz, and it is equally allocated to
each mobile user. The total computational resource at
edge server is 5 GHz, and ω = 10. For the Rayleigh flat
fading channels, the average channel gain of each user
is uniformly distributed as λn ∈ U (0.5, 1.5).

Figure 2 and Table 1 depict the system outage
probability versus the transmit SNR for N = 3 and N =
5, where the transmit SNR ranges from 0 dB to 40
dB. This figure and table show that both the analytical
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Figure 2. System outage probability versus SNR.

Table 1 Numerical Pout versus SNR

SNR/db 0 10 20 30 40

Sim.
N=3

0.9673 0.3037 0.0358 0.0036 3.506e-4

Ana.
N=3

0.9673 0.3037 0.0358 0.0036 3.506e-4

Asy.
N=3

1 0.3652 0.0365 0.0037 3.512e-4

Greedy
N=3

0.9275 0.2722 0.0318 0.0031 3.311e-4

Sim.
N=5

0.9999 0.7161 0.1206 0.0128 0.0012

Ana.
N=5

0.9999 0.7161 0.1206 0.0128 0.0012

Asy.
N=5

1 0.9951 0.1291 0.0129 0.0013

Greedy
N=5

0.9980 0.5807 0.0872 0.0089 9.280e-4

results and simulation data for outage probability
have the same slope for both N = 3 and N = 5 cases.
Additionally, the asymptotic system outage probability
closely follows the analytical curve when the transmit
SNR is large, and the accuracy of the derived analytical
and asymptotic Pout is demonstrated. Moreover, the
results show that all metrics improve as the transmit
SNR increases, indicating that a higher transmit power
can enhance the task offloading. In further, the outage
performance is better for N = 3 than that for N = 5, as
fewer resources are allocated per user when there are
more mobile users, leading to an increased competition
among users. Furthermore, the proposed greedy based
method outperforms the uniform allocation, showing
its ability in utilizing the computational resource.
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Figure 3. Pout versus the bandwidth B.

Table 2 Numerical Pout versus B.

Btotal/MHz    20 25 30 35 40

Sim.
N=3

0.0822 0.0498 0.0358 0.0276 0.0224

Ana.
N=3

0.0822 0.0498 0.0358 0.0276 0.0224

Asy.
N=3

0.0822 0.0513 0.0365 0.0280 0.0226

Greedy
N=3

0.0677 0.0437 0.0318 0.0246 0.0201

Sim.
N=5

0.3568 0.1917 0.1206 0.0844 0.0638

Ana.
N=5

0.3568 0.1917 0.1206 0.0844 0.0638

Asy.
N=5

0.4450 0.2140 0.1290 0.0885 0.0659

Greedy
N=5

0.2481 0.1356 0.0872 0.0624 0.0481

In Fig. 3 and Table 2, the outage probability of
the system is shown against the wireless bandwidth,
with N = 3 and N = 5 mobile users. The total wireless
bandwidth ranges from 20 MHz to 40 MHz. This
figure and table indicate that the simulation, as well
as the analytical and asymptotic approaches, have the
same slope for both N = 3 and N = 5 cases. This
confirms the accuracy of the analytical and asymptotic
methods for calculating the system outage probability.
Moreover, a larger wireless bandwidth enhances the
system’s outage performance, indicating that a wider
wireless bandwidth can improve the transmission of
the task. It is also evident that the case with N =
3 users performs better than the case with N = 5
users because a smaller number of users can improve

task offloading. Furthermore, the proposed greedy-
based method outperforms the uniform allocation,
demonstrating its ability to allocate computational
resources effectively.
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Figure 4. System outage probability versus the number of mobile
user N .

Table 3 Data for Fig.4

N 3 4 5 6 7

0.0359 0.0668 0.1208 0.2155 0.3772

0.0359 0.0668 0.1208 0.2155 0.3772

Sim.
Btotal=30MHz 
Ana.
Btotal=30MHz 
Asy.

0.0365 0.0692 0.1290 0.2441 0.4779
Btotal=30MHz 
Greedy 
Btotal=30MHz

0.0317 0.0539 0.0872 0.1386 0.2188

0.0224 0.0383 0.0635 0.1039 0.1701

0.0224 0.0383 0.0635 0.1039 0.1701

Sim.
Btotal=40MHz 
Ana.
Btotal=40MHz 
Asy.

0.0226 0.0392 0.0659 0.1103 0.1876
Btotal=40MHz 
Greedy 
Btotal=40MHz 0.0199 0.0319 0.0480 0.0703 0.1013

Figure 4 and Table 3 illustrate how the system
outage probability is affected by the number of mobile
users for wireless bandwidths of 30MHz and 40MHz,
with the number of users ranging from 3 to 7. As
shown in the figure and table, the analytical and
asymptotic outage probability values derived for both
bandwidth cases converge well with simulation results,
validating their accuracy. Additionally, as the number of
mobile users increases, the system outage performance
deteriorates due to increased resource competition
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among users. Moreover, the curves with a larger
bandwidth outperform those with a smaller value,
indicating that a larger bandwidth improves offloading
performance. In further, the proposed greedy-based
method is more effective than uniform allocation in
allocating computational resources, demonstrating its
ability to optimize resource allocation.

2 2.5 3 3.5 4

Latency threshold 
t
 (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

O
u

ta
g

e
 p

ro
b

a
b

il
it

y

Simulation (N = 3)

Analysis (N = 3)

Asymptotic (N = 3)

Greedy (N = 3)

Simulation (N = 5)

Analysis (N = 5)

Asymptotic (N = 5)

Greedy (N = 5)

γ

Figure 5. System outage probability versus the latency threshold
γt .

Table 4 Data for Fig.5

γt/s 2 2.5 3 3.5 4

Sim.
N=3

0.0898 0.0524 0.0358 0.0268 0.0213

Ana.
N=3

0.0898 0.0524 0.0358 0.0268 0.0213

Asy.
N=3

0.0944 0.0538 0.0365 0.0272 0.0216

Greedy
N=3

0.0719 0.0447 0.0318 0.0244 0.0196

Sim.
N=5

0.4889 0.2155 0.1206 0.0793 0.0573

Ana.
N=5

0.4889 0.2155 0.1206 0.0793 0.0573

Asy.
N=5

0.6808 0.2441 0.1290 0.0827 0.0591

Greedy
N=5

0.2928 0.1419 0.0872 0.0614 0.0465

In Fig. 5 and Table 4, we observe the impact of
latency threshold on the system outage probability
for two values of the number of mobile users, N =
3 and N = 5, with the latency threshold ranging
from 2s to 4s. The figure and table show that the
derived analytical and asymptotic outage probabilities
converge well with simulation, thereby validating the

accuracy of the analytical and asymptotic system outage
probability. Moreover, the figure shows that an increase
in the latency threshold results in a decrease in
the system outage probability, suggesting that having
more time to offload tasks can decrease the system
outage. Additionally, the curves corresponding to a
smaller N perform better than those corresponding
to a larger N , implying that reducing the number
of mobile users can improve offloading performance.
In further, the proposed greedy-based method for
allocating computational resources is more effective
than uniform allocation, as shown in our simulations.
This demonstrates the ability of the method to optimize
resource allocation.
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Figure 6. System outage probability versus the task size L.

Fig. 6 and Table 5 show the outage probability of
the system versus the task size L, where the task size
L varies from 30Mb to 70Mb and the number of mobile
users is 3 and 5, respectively. Observations can be made
from both the figure and table, indicating that the
analysis and the asymptotic have similar results to the
simulation for both N = 3 and N = 5 when the task
size varies, which proves the correctness of the derived
expressions in computing Pout . Moreover, the outage
probabilities increase as the task size increases, since
a larger task requires more communication resources
deteriorating the communication of the system. In
further, the outage probabilities with N = 5 are higher
than that with N = 3, as more mobile devices cause
more intense resource competition which increases the
system outage probability.

Fig. 7 and table 6 show the impact of the computa-
tional resource on the system outage probability, where
the computational resource varies from 1GHz to 9GHz
and the number of mobile users is 3 and 5, respectively.
From Fig. 7 and table 6, we can see that the analysis and
the asymptotic have similar results to the simulation for
both N = 3 and N = 5 when the computational resource

6 EAI Endorsed Transactions on 
Scalable Information Systems 

| Volume 10 | Issue 4 |



Real-Time Task Fault-Tolerant Scheduling Algorithm for Dynamic Monitoring Platform of Distribution Network Operation under Overload of
Distribution Transformer

Table 5 Data for Fig.6

L/Mbit 30 40 50 60 70

Sim.
N=3

0.0148 0.0237 0.0358 0.0521 0.0752

Ana.
N=3

0.0148 0.0237 0.0358 0.0521 0.0752

Asy.
N=3

0.0151 0.0241 0.0365 0.0538 0.0784

Greedy
N=3

0.0141 0.0219 0.0318 0.0445 0.0613

Sim.
N=5

0.0357 0.0668 0.1206 0.2155 0.3769

Ana.
N=5

0.0357 0.0668 0.1206 0.2155 0.3769

Asy.
N=5

0.0365 0.0692 0.1290 0.2441 0.4778

Greedy
N=5

0.0310 0.0532 0.0872 0.1422 0.2316
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Figure 7. System outage probability versus total computational
resource ftotal.

varies, which illustrates the accuracy of our methods
with various computational resources. Moreover, for
either N = 3 or N = 5, the system outage probabili-
ties decrease as the computational resource increases,
because a larger computational resource enhances the
performance of the system. In further, the system with
N = 5 has a larger outage probability than that with
N = 3, since the increase in the number of mobile users
exacerbates the competition for limited resources in the
system.

6. Conclusions
In this paper, a novel real-time task fault-tolerant
scheduling algorithm was presented for a dynamic

Table 6 Data for Fig.7

ftotal/GHz 1 3 5 7 9

Sim.
N=3

0.1330 0.0413 0.0358 0.0337 0.0326

Ana.
N=3

0.1330 0.0413 0.0358 0.0337 0.0326

Asy.
N=3

0.1434 0.0423 0.0365 0.0344 0.0334

Greedy
N=3

0.0667 0.0334 0.0318 0.0310 0.0306

Sim.
N=5

1 0.1771 0.1206 0.1051 0.0976

Ana.
N=5

1 0.1771 0.1206 0.1051 0.0976

Asy.
N=5

1 0.1959 0.1290 0.1112 0.1030

Greedy
N=5

0.4578 0.1018 0.0872 0.0837 0.0820

monitoring platform of distribution network operation.
The platform was frequently subjected to overload from
distribution transformers. To address this issue, the
proposed algorithm utilized wireless communication
and mobile edge computing. For the considered system,
we evaluated the system performance by analyzing
the communication and computing latency, from
which we then derived an analytical expression of
system outage probability to facilitate the performance
evaluation. We further optimized the system design
by allocating computing resources for multiple mobile
users, where a greedy-based optimization scheme was
proposed. Simulations were conducted to demonstrate
the effectiveness of the proposed algorithm in reducing
task completion time, improving resource utilization,
and enhancing system reliability. Overall, this study
offered a practical solution for the dynamic monitoring
of distribution networks.
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