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Abstract

Motivated by the progress in artificial intelligence and edge computing, this paper proposes a real-time
distributed computing model for low-voltage flow data in digital power grids under autonomous and
controllable environments. The model utilizes edge computing through wireless offloading to efficiently
process and analyze data generated by low-voltage devices in the power grid. Firstly, we evaluate the
performance of the system under consideration by measuring its outage probability, utilizing both the
received signal-to-noise ratio (SNR) and communication and computing latency. Subsequently, we analyze the
system’s outage probability by deriving an analytical expression. To this end, we utilize the Gauss-Chebyshev
approximation to provide an approximate closed-form expression. The results of our experimental evaluation
demonstrate the effectiveness of the proposed model in achieving real-time processing of low-voltage flow
data in digital power grids. Our model provides an efficient and practical solution for the processing of low-
voltage flow data, making it a valuable contribution to the field of digital power grids.
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1. Introduction

Real-time distributed computing models have become
increasingly popular in recent years due to the
rise of IoT and the need for real-time processing
of data [1–4]. These models aim to process large
volumes of data generated by connected devices in a
distributed manner, thereby reducing processing time
and improving the accuracy of results. One study
studied a real-time distributed computing model for
monitoring and controlling wind turbines in a wind
farm [5–8]. The model was designed to process data
generated by wind turbines in real-time, enabling
the optimization of wind energy production. The
study demonstrated that the devised model was
more efficient than traditional centralized computing

∗Corresponding author. Email: HancongHuangfu@126.com, huang-
fuhancong@gdfs.csg.cn

models [9–12]. Another study investigated a real-
time distributed computing model for smart home
automation systems, where the model was designed
to process data generated by smart home devices in
real-time, enabling the automation of home functions
such as lighting and temperature control. This study
demonstrated that the investigated model was able to
reduce energy consumption and improve the efficiency
of home automation systems.

In the context of digital power grids, several studies
have investigated real-time distributed computing
models for processing and analyzing data generated
by power grid devices [13–15]. One study studied a
real-time distributed computing model for monitoring
the state of transformers in a power grid. This model
was designed to identify transformer faults in real-
time, thereby enabling the prevention of power outages
[16–19]. In a word, real-time distributed computing
models have proven to be effective in processing large
volumes of data generated by connected devices in
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various domains, including wind energy, smart home
automation, and digital power grids. These models
enable real-time processing of data, reduce processing
time, and improve the accuracy of results.

Wireless offloading has become an increasingly
popular approach for reducing the processing load
of mobile devices by offloading computation tasks
to more powerful remote servers [20–22]. Several
studies have explored the use of wireless offloading in
various domains, including image processing, machine
learning, and mobile health. One study devised a
wireless offloading scheme for image recognition tasks
in mobile devices, where a multi-access edge computing
(MEC) architecture was utilized to offload computation
tasks to nearby servers, resulting in reduced energy
consumption and improved processing speed. Another
study investigated the use of wireless offloading for
machine learning tasks in mobile devices [23–27].This
study investigated a federated learning framework that
utilized wireless offloading to distribute computation
tasks to remote servers. The investigated framework
was shown to be effective in reducing the processing
load of mobile devices while maintaining high accuracy.

In the context of wireless networks, several studies
have explored the impact of wireless offloading on
network outage probability. One study investigated
the impact of wireless offloading on the outage
probability of multi-hop wireless networks. This study
demonstrated that the use of wireless offloading could
reduce the outage probability of multi-hop wireless
networks. Another study devised a wireless offloading
scheme for device-to-device (D2D) communication
in cellular networks, where a social network-based
approach was utilized to offload data transmission
tasks to nearby devices. This study demonstrated that
the devised scheme was effective in reducing the
outage probability of D2D communication in cellular
networks. In a word, wireless offloading has shown
great promise in reducing the processing load of mobile
devices and improving the performance of wireless
networks. Several studies have explored the use of
wireless offloading in various domains and have shown
its effectiveness in reducing energy consumption,
improving processing speed, and reducing network
outage probability.

Motivated by the above literature review, this
paper presents a real-time distributed computing
model that deals with low-voltage flow data in
digital power grids operating in autonomous and
controllable environments. The proposed model uses
edge computing through wireless offloading to process
and analyze the data generated by low-voltage devices
more efficiently. Firstly, we evaluate the performance of
the system under consideration by measuring its outage
probability, utilizing both the received signal-to-noise
ratio (SNR) and communication and computing latency.
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Figure 1. System model of real-time distributed computing.

Subsequently, we analyze the system outage probability
by deriving an analytical expression. To this end, we
utilize the Gauss-Chebyshev approximation to provide
an approximate closed-form expression. Experimental
evaluations indicate that the proposed model effectively
achieves real-time processing of low-voltage flow data
in digital power grids. This model offers an effective and
practical solution for handling low-voltage flow data,
making it a valuable addition to the digital power grids
domain.

2. System Model

The system under consideration, as shown in Figure
1, is a task offloading system that comprises multiple
source nodes Sn|1 ≤ n ≤ N and a single CAP node. Each
source node Sn in this system is furnished with a single
antenna, and the wireless communication between
them and the CAP node takes place via a wireless
channel. Due to the limited computing capacity of
source nodes, it is difficult to complete computing tasks
within a fixed time frame. Therefore, task offloading to
the CAP node is necessary to accelerate the computing
process. Additionally, due to various factors such as
the differing properties of tasks in source nodes,
the task size l may vary in practice. Assuming a
uniform distribution of task size within the interval
l ∈ [Lmin, Lmax], without loss of generality. Considering
that both the source nodes and the CAP node are
equipped with only one antenna, it is reasonable to
assume that the links within the network experience
Rayleigh fading.
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2.1. Transmission Model
When the source node Sn needs to offload tasks to
the CAP node, in order to ensure the stability of data
transmission and reduce transmission delay, the source
node Sn with the optimal channel should be selected for
task offloading as,

|h∗|2 = max{|h2
1, ..., |hn|

2, ..., |hN |2}, (1)

where hn ∼ CN (0, β) is the instantaneous channel
parameter from the source node Sn to D. The CAP
node’s received SNR is expressed as,

SNR∗ =
P

σ2 |h∗|
2, (2)

where the variance of AWGN at the CAP is σ2, and the
transmit power at the source node Sn is P . The rate of
transmission is,

R∗ = B log2(1 + SNR∗), (3)

The transmission delay is determined by the wireless
transmission bandwidth, which is denoted as B,

Tc =
l
R∗

. (4)

2.2. Computation Model
The calculation latency after task offloading from the
source node Sn to the CAP is shown below,

Tf =
l
fd

, (5)

where fd represents the computational capability
available at the CAP. The total delay of the system is,

T = Tc + Tf . (6)

3. Outage probability analysis
In practice, each source node has different sizes of com-
putation tasks and experiences different fading chan-
nels, resulting in different times for task transmission
and computation. However, there are fixed threshold
limits for different tasks, which must be completed
within a specified time. Specifically, when the total
delay is larger than the delay threshold, the system
is considered to be interrupted, and the interruption
probability can be expressed as,

Pout = Pr {T < Yt} . (7)

In further, (7) can be expanded as,

Pout = Pr

 l

B log2(1 + P
σ2 |h∗|2)

+
l
fd

< Yt

 . (8)

We can transform (8) to obtain,

Pout = Pr

 l

B log2(1 + P
σ2 |h∗|2)

+
l
fd

< Yt

 , (9)

= Pr

 l

log2(1 + P
σ2 |h∗|2)

< Yt −
l
fd

 . (10)

We can rewrite (10) as

Pout = Pr

|h∗|2 <

2

l

Yt− l
fd − 1

 σ2

P

 . (11)

From (1), we can write the cumulative density function
of |h∗|2 as,

F|h∗ |2(y) = (1 − e−
y
β )N , (12)

=
N∑
n=0

(
N
n

)
(−1)ne−

ny
β . (13)

Accordingly, we can rewrite the conditional outage
probability Pout(Yt |l) with respect to the task size l as
[28],

Pout(Yt |l) =
∫ G(x)

0
f|h∗ |2(y)dy, (14)

with

G(l) =

2

x

Yt− l
fd − 1

 σ2

P
. (15)

From (13), we can derive the conditional outage
probability Pout(Yt |l) as,

Pout(Yt |l) =
N∑
n=0

(
N
n

)
(−1)ne−

nG(l)
β . (16)

From Pout(Yt |l) and l ∼ U [Lmin, Lmax], we can further
derive Pout as,

Pout =
∫ Lmax

Lmin

Pout(Yt |l)
Lmax − Lmin

dl, (17)

=
N∑
n=0

(
N
n

)
(−1)n)

Lmax − Lmin

∫ Lmax

Lmin

e
− nG(l)

β dl. (18)

As it is difficult to obtain an exact solution for the abvoe
Pout , we turn to find an approximate result. We use the
Gauss-Chebyshev quadrature method to approximate
the result, which is a widely-used integration method
that has proven to be effective. Specifically, the
approximate Pout can be rewritten as,

Pout =
N∑
n=0

K∑
k=0

(
N
n

)
(−1)n)

Lmax − Lmin
wke

− nG(wk )
β , (19)
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Figure 2. Outage probability versus the wireless bandwidth.

where K denotes the number of truncated terms in the
Gauss-Chebyshev quadrature approximation, and wk is

wk =
(Lmax − Lmin)π

2K
sin(zk), (20)

with

zk =
(2k + 1)π

2K
. (21)

In particular, a larger K leads to a more accurate
approximation in calculating Pout , while a smaller K
will deteriorate the approximation performance with
the benefit of reduced computational complexity in the
approximation.

4. NUMERICAL AND SIMULATION RESULTS
In this section, we compared the numerical and
analytical results of the system outage probability for
different numbers of source nodes. Unless specified, the
simulation environment is configured as follows. The
task of source nodes is uniformly distributed in the
range of [5,10] Mb, the transmit power is P = 3 W, and
the latency threshold is Yt = 8. Additionally, F = 5 × 108

cycles per second is set.
The effect of wireless bandwidths on the system

outage probability is shown in Figure 2 and Table 1.
The number of source nodes Sn varies from 1 to 2,
the wireless bandwidth ranges from 1 MHz to 5 MHz,
and the transmit power is set to 2 W. The results
demonstrate the accuracy of the analytical results
for different numbers of source nodes, as both the
numerical and analytical results are nearly identical
under different numbers of source nodes, as seen from
Figure 2 and Table 1. Additionally, as the bandwidth
increases, the outage probability decreases because
the additional bandwidth reduces the transmission

delay and increases the probability of meeting the
latency threshold. Furthermore, involving multiple
source nodes in offloading can effectively reduce the
outage probability, as evidenced by the decrease in
outage probability as the number of source nodes N
increases.

The effect of transmit power on the system outage
probability is illustrated in Figure 3 and Table 2. The
number of source nodes Sn ranges from 1 to 2, the
transmit power varies from 1 W to 5 W, and the wireless
bandwidth is set to 5 MHz. The results demonstrate the
accuracy of the analytical results for different numbers
of source nodes, as both the numerical and analytical
results are almost identical under different numbers of
source nodes, as observed from Figure 3 and Table 2.
Additionally, increasing the transmit power reduces the
outage probability because it improves the transmission
rate, leading to a decrease in the transmission delay
and an increase in the probability of meeting the
latency thresholds. Moreover, involving multiple source
nodes in offloading can effectively decrease the outage
probability, as evidenced by the decrease in outage
probability with an increase in the number of source
nodes N .

Table 3 and Figure 4 illustrate the impact of transmit
SNR on the system outage probability. The number
of source nodes (Sn) varies from 1 to 2, the transmit
SNR ranges from 0 dB to 40 dB, the transmit power
is set at 3 W, and the wireless bandwidth is set
to 5 MHz. The results demonstrate the accuracy
of the analytical results for different numbers of
source nodes, as both the numerical and analytical
results are nearly identical under different numbers of
source nodes, as observed from Figure 4 and Table 3.
Additionally, increasing the transmit SNR reduces the
outage probability because it improves the transmission
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Figure 3. Outage probability versus the transmit power.
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Table 1: Numerical outage probability versus the wireless bandwidth.

B(MHz) 1 1.5 2 2.5 3 3.5 4 4.5 5
Numerical (N=1) 1 0.7245 0.2104 0.0356 0.0090 0.0032 0.0014 7.2439e-04 4.2111e-04

Ana. (N=1) 1 0.7245 0.2104 0.0356 0.0090 0.0032 0.0014 7.2439e-04 4.2111e-04
Numerical (N=2) 1 0.7003 0.1691 0.0257 0.0062 0.0021 9.2010e-04 4.6783e-04 2.6683e-04

Ana. (N=2) 1 0.7003 0.1690 0.0257 0.0062 0.0021 9.1774e-04 4.7068e-04 2.7159e-04

Table 2: Numerical outage probability versus the transmit power.

W 1 1.5 2 2.5 3 3.5 4 4.5 5
Numerical (N=1) 0.99 0.2127 0.0301 0.0077 0.0029 0.0014 7.8627e-04 4.9300e-04 3.2833e-04

Ana. (N=1) 0.99 0.2127 0.0301 0.0077 0.0029 0.0014 7.9135e-04 4.9466e-04 3.3374e-04
Numerical (N=2) 0.91 0.1523 0.0201 0.0047 0.0014 0.0007 3.4212e-04 1.7382e-04 0.8691e-04

Ana. (N=2) 0.91 0.1526 0.0201 0.0047 0.0014 0.0007 3.6893e-04 1.8547e-04 0.7741e-04

Table 3: Numerical outage probability versus the transmit SNR.

P /σ2 (dB) 0 5 10 15 20 25 30
Numerical (N=1) 1 0.0176 0.0039 0.0016 7.9096e-04 4.6611e-04 2.9951e-04

Ana. (N=1) 1 0.0176 0.0039 0.0016 7.9261e-04 4.6524e-04 2.9940e-04
Numerical (N=2) 1 0.0059 8.8923e-04 2.7095e-04 1.1637e-04 5.7911e-05 3.4386e-05

Ana. (N=2) 1 0.0059 8.9134e-04 2.7544e-04 1.1654e-04 5.8984e-05 3.3537e-05

rate, leading to a decrease in the transmission delay
and an increase in the probability of meeting the
latency threshold. Furthermore, involving multiple
source nodes in offloading can effectively decrease the
outage probability, as evidenced by the decrease in
outage probability with an increase in the number of
source nodes N .

Table 4 and Figure 5 illustrate how the computational
capability of CAP impacts the system outage proba-
bility. The number of source nodes (Sn) varies from 1
to 2, the computational capability of CAP ranges from
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Figure 4. Outage probability versus the transmit SNR.
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Figure 5. Outage probability versus the computational capability
of CAP.

1 × 108 cyc/sec to 5 × 108 cyc/sec, the transmit power
is set at 3 W, and the wireless bandwidth is set to 5
MHz. The accuracy of the analytical results for different
numbers of source nodes is demonstrated by the close
agreement between the numerical and analytical results
for different numbers of source nodes, as observed from
Figure 5 and Table 4. Increasing the computational
capability reduces the outage probability, as a higher fd
reduces the computation time, thereby increasing the
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Table 4: Numerical outage probability versus the computational capability of CAP.

fd(108cyc/sec) 1 1.5 2 2.5 3 3.5 4 4.5 5
Numerical (N=1) 1 0.8713 0.5859 0.1732 0.0313 0.0074 0.0023 8.7587e-04 3.9513e-04

Ana. (N=1) 1 0.8716 0.5858 0.1731 0.0312 0.0074 0.0023 8.7336e-04 3.9176e-04
Numerical (N=2) 1 0.8249 0.5114 0.1024 0.0120 0.0020 4.4860e-04 1.3173e-04 4.4533e-05

Ana. (N=2) 1 0.8247 0.5113 0.1024 0.0121 0.0020 4.4846e-04 1.3190e-04 4.7332e-05

Table 5: Numerical outage probability versus the latency threshold.

Latency thresholds (Yt) 6 7 8 9 10 11 12
Numerical (N=1) 1 0.4989 0.0520 0.0090 0.0026 0.0010 4.8960e-04

Ana. (N=1) 1 0.4990 0.0521 0.0090 0.0026 0.0010 4.8965e-04
Numerical (N=2) 1 0.4361 0.0385 0.0062 0.0017 6.5753e-04 3.1603e-04

Ana. (N=2) 1 0.4360 0.0384 0.0062 0.0017 6.5948e-04 3.1641e-04
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Figure 6. Outage probability versus the latency threshold.

probability of meeting the latency threshold. Further-
more, involving multiple source nodes in offloading can
effectively reduce the outage probability, as evidenced
by the decrease in outage probability with an increase
in the number of source nodes N .

Table 5 and Fig. 6 illustrate the impact of the latency
threshold on the system outage probability, where the
number of source nodes (Sn) varies from 1 to 2, and the
latency threshold varies from 6s to 12s. The transmit
power is fixed at 3 W, and the wireless bandwidth is
set to 5 MHz. From 6 and Table 5, we can observe that
the numerical and analytical results are almost identical
for different numbers of source nodes, demonstrating
the accuracy of the analytical results. Additionally,
the probability of interruption decreases with a higher
latency threshold, as increasing the latency threshold
improves the system’s ability to meet the latency
requirements. Furthermore, as the number of source
nodes N increases, the outage probability decreases,

indicating that multiple source nodes participating in
offloading can effectively reduce the outage probability.

5. Conclusions
This paper presented a real-time distributed computing
model that addressed low-voltage flow data in digital
power grids operating in autonomous and controllable
environments. The proposed model utilized edge
computing through wireless offloading to process and
analyze the data generated by low-voltage devices
more efficiently. Firstly, we evaluated the performance
of the system under consideration by measuring its
outage probability, utilizing both the received signal-to-
noise ratio (SNR) and communication and computing
latency. Subsequently, we analyzed the system outage
probability by deriving an analytical expression. To this
end, we utilized the Gauss-Chebyshev approximation
to provide an approximate closed-form expression.
Experimental evaluations indicated that the proposed
model effectively achieved real-time processing of low-
voltage flow data in digital power grids. This model
offered an effective and practical solution for handling
low-voltage flow data, making it a valuable addition to
the digital power grids domain.
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