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Abstract 

INTRODUCTION: With the continuous progress of the medical Internet of Things, intelligent medical wearable devices are 

also gradually mature. Among them, medical wearable devices for arrhythmia detection have broad application prospects. 

Arrhythmia is a common cardiovascular disease. Arrhythmia causes millions of deaths every year and is one of the most 

noteworthy diseases. Medical mobile information systems (MMIS) provide many ECG signals, which can be used to train 

deep models to detect arrhythmia automatically. 

OBJECTIVES: Using deep models to detect arrhythmia is a research hot spot. However, the current algorithms for 

arrhythmia detection lack of attention to the unsupervised depth model. And they usually build a large comprehensive model 

for all users for arrhythmia detection, which has low flexibility and cannot extract personalized features from users. 

Therefore, this paper proposes a personalized arrhythmia detection system based on attention mechanism called personAD. 

METHODS: The personAD contains four modules: (1) Preprocessing module; (2) Training module; (3) Arrhythmia 

detection module and (4) User registration module. The personAD trains a separate autoencoder for each user to detect 

personalized arrhythmia. Using autoencoder to detect arrhythmia can avoid the imbalance of training data. The autoencoder 

combines a convolutional network and two attention mechanisms. 

RESULTS: Based on the results on MIT-BIH Arrhythmia Database, we can find that our arrhythmia detection system 

achieve 98.03% ACC and 99.32% AUC respectively. 

CONCLUSION: The personAD can effectively detect arrhythmia in ECG signals. The personAD has higher flexibility, 

and can easily modify the autoencoders for detecting arrhythmia for users. 
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1. Introduction

In the 21st century, Internet of Things technology (IoT) has 

developed rapidly [1] [2]. IoT has invented a variety of 

sensor devices to collect data [3] [4]. Researchers have 

proposed various methods to guarantee the data safety in 

the transmission process of IoT [5-11]. The medical 

*Corresponding author. Email: 002813@nuist.edu.cn

industry has made great progress thanks to these sensors 

[12] [13]. Cardiovascular disease is a common cause of

death. Among them, arrhythmia is a kind of cardiovascular

disease and one of the most important reasons of death

from cardiovascular disease [14]. Cardiovascular diseases

caused by arrhythmia cause a large number of deaths every

year. Electrocardiogram (ECG) is an objective index used

to describe the changes of myocardium, and it is also an
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important basis to diagnose whether patients have cardiac 

arrhythmia. Professional doctors use medical instruments 

to collect the patient's ECG, which can assist in diagnosis. 

Therefore, the research on arrhythmia detection based on 

ECG is a hot spot in the medical field. If the patients with 

arrhythmia can be found in time at an early stage, the 

mortality of cardiovascular disease caused by arrhythmia 

will be greatly reduced. However, it is not easy to diagnose 

arrhythmia in time in reality. On the one hand, the 

diagnosis of arrhythmia requires a professional doctor to 

make a diagnosis according to the patient's ECG. On the 

other hand, patients need to go to the hospital to use 

professional medical devices before they can collect ECG. 

Therefore, in real life, it is difficult to make a diagnosis in 

time.  

To solve these problems, researchers began to use 

intelligent algorithms to help detect arrhythmia [15-17]. 

Some common machine learning methods has been used 

for arrhythmia detection. Support vector machine (SVM) 

is a representative of these methods. For example, both 

Salam [18] and Chen [19] use SVM to build a classifier to 

classify normal heartbeat and arrhythmia heartbeat. The 

classification system built by Chen [19] can also solve the 

problem of data imbalance. Machine learning algorithm 

can effectively classify different heartbeats, but its 

advantages and disadvantages are also obvious. Machine 

learning algorithms usually have strict mathematical 

reasoning process, so they are more interpretable. 

However, machine learning algorithms often have higher 

requirements for training data, and are not suitable to 

handle a huge amount of data. For example, the number of 

different categories of data in SVM training data should be 

as equal as possible, otherwise it will affect the 

generalization capability. Arrhythmia detection algorithms 

based on deep learning can better deal with large-scale 

datasets. Researchers at this stage tend to build a huge deep 

learning model with many network layers for arrhythmia 

detection. For example, Rajpurkar [20] proposed a depth 

classification model with a total of 34 convolutional layers 

for arrhythmia detection. Acharya [21] proposed a deep 

classification network with a total of 11 convolution layers 

for arrhythmia detection. Both of them have achieved good 

results on datasets. Similar methods actually train a large 

model for all users. Although the large comprehensive 

model has high classification accuracy, Training such a 

model will cost abounding time. In addition, methods 

mentioned above all use supervised models to detect 

arrhythmia. The training data of the supervised model must 

include all categories of data, and the amount of data in 

each category cannot vary too much, otherwise the 

imbalance of training data categories will occur. However, 

in the field of arrhythmia detection, category imbalance is 

a common problem. Because in ECG records of patients 

with arrhythmia, the number of normal heartbeats is 

usually much greater than that of arrhythmia. 

Considering the problems raised above, some scholars 

tend to build unsupervised models to solve these problems 

[22-24]. The most important feature of unsupervised model 

is that only normal data is needed in the training phase. 

Therefore, there is no class imbalance problem in the 

training process of unsupervised model. There are many 

kinds of unsupervised models, among which the 

autoencoder is a common unsupervised depth neural 

network. A standard autoencoder consists of encoder and 

decoder. Generally speaking, both encoder and decoder is 

symmetrical. The encoder compresses the input 

information and then gets the encoding result which 

contains the abstract features of the input. Based on the 

output of encoder, decoder obtains the decoding result. The 

dimension of the decoding result is consistent with that of 

the input of autoencoder. And, they are much greater than 

that of the encoding result. The autoencoder judges 

whether the input sample is abnormal according to the 

reconstruction error of the input sample. Autoencoder has 

been used by some scholars to detect arrhythmia. Keiichi 

et al. [22] built an autoencoder to extract data features 

related to arrhythmia. They then used the extracted features 

to further detect arrhythmia. Thill et al. [23] used time 

convolution neural network (TCN) to build an autoencoder 

for arrhythmia detection. TCN consists of three main 

structures: Causal Convolution, Dilated Convolution and 

Residual Connections. TCN can learn the characteristics of 

time series by convolution operation. Hou et al. [24] used 

LSTM to build an autoencoder for arrhythmia detection. 

Although the local methods mentioned above all use 

unsupervised models to detect arrhythmia, they are still 

committed to training a relatively larger model for all users. 

This approach is not very flexible, nor can it capture the 

characteristics of each user. 

To sum up, current researchers use a wide range of 

intelligent algorithms to automatically detect arrhythmias. 

However, these methods mainly have two problems: (1) the 

training data of the model is often unbalanced in categories; 

(2) the model used for arrhythmia detection is usually a

large comprehensive model, which is often poor in

flexibility and inconvenient to deploy in practical

application. Therefore, we believe that it is necessary to

design a flexible model without class imbalance for

arrhythmia detection.

In order to solve the above problems, we propose a 

personalized arrhythmia detection system based on 

autoencoder called personAD. This system provides an 

independent autoencoder for each user to detect 

personalized arrhythmia. The autoencoder is based on the 

convolutional network and an attention mechanism. We 

only use normal heartbeat to train the autoencoder. It has 

achieved good performance on the dataset. Here are our 

major contributions: 

• we proposed a personalized arrhythmia detection

system based on autoencoder. The system trains a

separate high-precision autoencoder for each user.

The autoencoder is used to detect user specific

arrhythmia signals.

• we propose an autoencoder for the detection of

potential arrhythmias. The autoencoder is based on

convolutional network and two attention mechanism,
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and has good performance in detecting the 

abnormalities in ECG data. 

The outline of the rest is as below: Section 2 gives the 

information of the related work, Section 3 introduces the 

detail of personAD, Section 4 presents the experiments and 

Section 5 summarizes the work of the full text and 

introduces the future work. 

2. Related Work

2.1. Automatic disease detection 

Diabetic Eye Disease (DED) is a common eye disease. It 

troubles many people's lives. Therefore, automatic 

detection of DED can reduce the workload of doctors and 

timely remind potential patients to pay attention to eye 

protection. Sarki et al. [43] studied the problem of 

automatic detection of DED from retinal fundus images. It 

is worth noting that the authors have considered the issue 

of simultaneously detecting multiple categories of diabetic 

eye diseases from images, known as multi classification 

tasks. Their proposed model is based on a novel 

convolutional neural network and achieves good 

performance on public datasets. Arrhythmias are a 

common heart disease. It causes millions of deaths every 

year. Automatic detection of arrhythmia is a common 

research field. In recent years, researchers have begun to 

use methods based on deep learning and big data to detect 

arrhythmia. He et al. [44] proposed an arrhythmia detection 

framework based on the Internet of Things. This 

framework includes a data cleaning module and a heartbeat 

classification module. At the same time, the framework 

uses two strategies to classify heartbeats: feature 

engineering based and deep learning based arrhythmia 

detection methods. The author tested the performance of 

the proposed method on the MIT-BIH-AR dataset. 

Epilepsy is a nervous system disease. Automatic detection 

of epilepsy has also received widespread attention from 

researchers. Siuly Siuly et al. [45] reviewed various 

methods proposed by current researchers for automatic 

detection and classification of epilepsy based on 

electroencephalogram(EEG) data, and analyzed the 

characteristics and shortcomings of these methods, 

providing assistance and support for the future 

development of software for automatic detection and 

classification of epilepsy. 

2.2. Arrhythmia detection 

There has been a lot of work using artificial intelligence 

algorithms to detect arrhythmias. Salam [18] and Chen [19] 

both used SVM to classify abnormal heartbeats. Rajpurkar 

[20] and Acharya [21] built a deep neural network using 34

layer and 11 layer convolution neural networks

respectively to classify abnormal heartbeat. Kiranyaz [25]

and Zubair [26] both applied 1D convolution to arrhythmia

detection. In addition, some scholars do not use 

convolution when detecting arrhythmia based on ECG 

data. They treat ECG data as time series data. Recurrent 

neural network (RNN) also has great performance in 

processing time series. Therefore, some scholars use RNN 

to detect arrhythmia. For example, Chauhan et al. [27] used 

Long short-term memory network (LSTM) to detect 

arrhythmia, which is a classical kind of RNN. Xu et al. [28] 

used gate recurrent unit (GRU) and convolution layer to 

build a classifier to detect arrhythmia. GRU is an improved 

scheme of LSTM. Pandey et al. [29] used Bidirectional 

Long short-term memory network (BiLSTM) for 

arrhythmias diagnosis. On the basis of LSTM, BiLSTM 

transmits information between neurons in two directions. 

Therefore, BiLSTM can better capture the context 

information of time series data. These methods are 

summarized in Table 1. The column "Model Size" 

represents the overall size of the model. The column "Data 

Amount" represents the data that needs to be collected for 

training the model. 

Table 1. Comparison of different arrhythmia 
detection methods 

Methods 

Comparison items 

Classifier Model 

size 

Data volume 

Salam et al. [18] SVM large data of all 

users 

Chen et al. [19] SVM large data of all 

users 

Rajpurkar et al. 

[20] 

CNN large data of all 

users 

Acharya et al. 

[21] 

CNN large data of all 

users 

Kiranyaz et al. 

[25] 

CNN large data of all 

users 

Zubair et al. [26] CNN large 
data of all 

users 

Chauhan et al. 

[27] 
LSTM large 

data of all 

users 

Xu et al. [28] GRU large 
data of all 

users 

Pandey et al. [29] BiLSTM large 
data of all 

users 

2.3. Anomaly detection 

Anomaly detection is a common academic problem in 

artificial intelligence. Researchers usually use some 

unsupervised or one-class methods to detect abnormal 

samples. During the training period of unsupervised 

models and one-class methods, sample labels (used to 

identify whether the samples are normal or abnormal) are 

not required. Therefore, these models do not require 

labeled datasets and can avoid category imbalance issues. 

One-class SVM [30] is a classical machine learning 

algorithm for detecting anomaly. It builds the boundary 
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between normal samples and abnormal samples through 

hyperplane. one-class SVM learns the parameters of these 

hyperplanes through the normal data in the trainset. Similar 

to one-class SVM, one-class deep neural network [31] [32] 

can also be used for anomaly detection. The training 

process of one-class deep neural network only relies on the 

data without anomalies. Unsupervised method is 

represented by autoencoder [33]. The autoencoder is also 

trained based on the data without anomalies. During the 

training, the autoencoder can learn how to compress and 

reconstruct normal samples. When the test data contains 

abnormal data, the reconstruction error of the autoencoder 

will be significantly larger. Therefore, such a loss can be a 

standard to classify test samples based on a given 

threshold.  

Unsupervised models have been widely applied to 

anomaly detection in medical data. For example, 

Homayouni et al. [38] used an extended LSTM model to 

detect anomalies in COVID-19 time series data. The study 

processed time series data related to COVID-19, including 

case numbers, death tolls, recovery rates, and 

hospitalization rates, and split these time series into 

multiple time-correlated subsequences for anomaly 

detection. They also added data visualization to further 

explain anomalies and evaluate the abnormality level of the 

detected subsequences. Zhao et al. [39] developed an 

unsupervised anomaly detection framework for detecting 

anomalies in medical images. The framework learned 

patterns of normal data by encoding and reconstructing 

transformations between images and latent spaces. The 

framework included two unique constraint conditions and 

an unsupervised learning module, which effectively 

detected anomalies in medical images. Shvetsova et al. [40] 

proposed a framework for medical image anomaly 

detection based on an autoencoder and a retraining pipeline 

mechanism. The framework demonstrated good 

performance on two medical datasets containing radiology 

and digital pathology images, and proposed a new baseline 

for medical image anomaly detection tasks. Han et al. [41] 

proposed a new unsupervised medical anomaly detection 

method using a generative adversarial network for medical 

image anomaly detection. The method proposed two 

unique loss functions for reconstructing different stages of 

brain abnormalities based on adjacent slices of magnetic 

resonance images from multiple brains. As an 

unsupervised model, this method requires a large amount 

of healthy training data and can reliably detect subtle 

anatomical abnormalities and the accumulation of high-

intensity lesions. In addition to these unsupervised 

methods, some supervised methods have also been widely 

used in medical data anomaly detection. Many researchers 

detect suspicious medical images and segment regions of 

interest in these images. Recently, a variant of recurrent 

neural networks, Neural Memory Networks, has also been 

applied to medical anomaly detection. Neural Memory 

Networks provide an external memory stack for storing 

information. In reference [42], the authors combined a 

Neural Memory Network with a neural plasticity 

framework to identify tumors in magnetic resonance 

imaging and anomalies in electroencephalograms. 

3. Our Proposed System

3.1. System Overview 

This section introduces the overall structure of our 

personalized arrhythmia detection system: personAD. The 

overall structure of personAD is illustrated in Figure 1 and 

Algorithm 1. It mainly includes four parts: Preprocessing 

module, Training module, Arrhythmia detection module 

and User registration module. The preprocessing module 

converts the input ECG signal into Gramian matrices. The 

training model module trains a separate autoencoder for 

each user. The system of detecting arrhythmia uses a 

trained autoencoder to detect abnormal heartbeat. We will 

introduce the detailed contents of these modules in 

following articles. 

Algorithm 1 personAD 

1: Module 1 (Preprocessing module) 

2: Input a ECG signal 𝑥. 

3: Transform 𝑥 into Gramian matrices X. 

4: Module 2 (Training module) 

5: Input user’s Gramian matrices X. 

6: Use X to train an independent autoencoder AE(∙) 

for the user. 

7: Module 3 (Arrhythmia detection module) 

8: Input user’s test samples. 

9: set a threshold Tad by maximizing the (𝑡𝑝𝑟 − 𝑓𝑝𝑟)

value of the autoencoder based on validation set. 

10: classify test samples by comparing the 

reconstruction loss and Tad.

11: Module 4 (User registration module) 

12: Input the new user’s ECG signals. 

13: Train a new AE(∙) for the new user. 

3.2. Preprocessing module 

We show each step of the preprocessing module in Figure 

2. An unprocessed ECG signal can only be used as the input

data of the autoencoder after four steps. These steps are:

Resampling, Wavelet Denoising, Beat Segmentation and

Convert to Gramian matrices. Gramian matrices can

transform time series into two-dimensional matrix. At the

same time, Gramian matrices can also retain the correlation
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of data at different time points as much as possible. ECG 

signals collected from different devices are likely to have 

different sample rates. So we first resample the ECG signal. 

We uniformly resample the unprocessed ECG signal to 

360HZ [34]. Usually, in order to improve the classification 

accuracy, researchers will first denoise the original signal 

[35]. Therefore, we denoise the resampled ECG signal 

according to the following formula: 

𝜑𝑝,𝑞(𝑥) = 2𝑝/2𝜑(2𝑝𝑥 − 𝑞)   (1) 

where 𝑝  represents the power of 2 and 𝑞  represents a 

integer multiple. We believe that it is more likely to extract 

effective features by processing each heartbeat separately 

than by processing continuous ECG data. Therefore, we 

divide the ECG signals that have gone through the first two 

steps into a set of heartbeats. Detecting R peak is a common 

method to segment heartbeat. Each heartbeat has a unique 

position of R peak, and we can use R peak to segment 

heartbeat. We use a mature R-peak localization method to 

[36] to find the specific position of R peaks in a ECG

signal. Then, we intercept 99 and 200 timestamps before

and after these positions. Those timestamps conspire to

form complete single beats. After dividing a single

heartbeat, we convert all the heartbeats into Gramian

matrices one by one. Gramian matrices can represent the

overall characteristics of time series. All the time series

data as input in this article will be converted to Gramian

matrices.

3.3. Training module 

In the Training module, we train a separate autoencoder for 

each user. The input of the autoencoder is the Gramian 

matrices output by the preprocessing module. We propose 

an autocoder AE(∙) based on attention mechanism to detect 

arrhythmia. The structure of AE(∙) is illustrated in Figure 

3. As it shown, AE(∙) is mainly composed of AEencoder(∙)
and AEdecoder(∙). AEencoder(∙) uses convolution layer to

extract the pattern of  information input into AE(∙)  and

output compressed representation. AEdecoder(∙)  uses the

convolution layer to reconstitute the compressed 

representation and output the reconstituted outcome. We 

also take advantage of two special attention mechanism: 

channel and spatial attention mechanism, to extract 

features in AEencoder(∙).

AEdecoder(∙) consists of three convolution layers. Each

layer uses a kernel of 3*3. Each convolution layer is 

followed by a BatchNormalization layer and a LeakyReLU 

activation layer. Between the first layer and the second 

layer, we use channel and spatial operator to further extract 

features. We use X  to represent the input data. See the 

following formula for the working engineering of above 

two attention operators: 

Figure 1. The overall structure of personAD. 
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Figure 2.   The process of preprocessing module. 

 

 

 
 

Figure 3.   The structure of our proposed 
autoencoder. 

 

Ψ = P1(X).                                      (2) 

 

 Ψ′ = 𝜑c(Ψ)⨂Ψ.                             (3) 

 

Ψ′′ = 𝜑s(Ψ′)⨂Ψ′.                            (4) 

 

where P1 is a convolution operator using a 3*3 convolution 

kernel. 𝜑c is the channel operator. 𝜑sis the spatial operator. 

⨂ indicates dot multiplication. We show the process of 𝜑c 

and 𝜑s in the following formula:  

 

𝜑c(Ψ) = 𝜎 (MLP(AvgPool(Ψ))

+ MLP(MaxPool(Ψ))).                      (5) 

 

where 𝜎  is the sigmoid activation function. MLP  is a 

simple perceptron network with only one hide layer. 

AvgPool  means average pooling operation. MaxPool 
indicates the maximum pool operation. 

 

𝜑s(Ψ′) = 𝜎(P2([AvgPool(Ψ′); MaxPool(Ψ′)])).  (6) 

 

where P2 is a convolution operation using 7*7 convolution 

kernel.  

Finally, the output result Ψ′′ of the attention map will 

get the encoding result Z through two convolution layers. 

The process is as follows: 

 

Z = AEencoder(Ψ′′).                             (7) 

 

The encoding result Z will be used as input data to the 

decoder AEdecoder(∙) . AEdecoder(∙)  contains three 

convolution layers. Similar to the encoder AEencoder(∙), 

each convolution layer uses a 3*3 convolution kernel, and 

each convolution layer is followed by a 

BatchNormalization layer and a LeakyReLU activation 

layer. The working process of AEdecoder(∙) is as follows: 

 

X̂ = AEdecoder(Z).                            (8) 

 

where X̂ is the output of the autoencoder. X̂ and X has the 

same dimension. We trained the autocoder using the 

Gramian matrices obtained from normal heartbeat 

conversion. The aim of training the autoencoder is to 

minimize the reconstruction error. The reconstruction error 

is as follows: 

 

Lossrecon(X,X̂) = ‖X − X̂‖
2

2
.                (9) 

 

where X is the inputting information of our model and X̂ is 

the output (also is the reconstitution result) of the model. 

‖ ‖2
2  is the quadratic power of the second norm of a 

matrix. 

3.4. Arrhythmia detection module 

After training the autoencoder for each user, the 

autoencoder can be used for personalized arrhythmia 

detection. The autoencoder only uses the heartbeat data of 
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a certain user in the training process. Therefore, the 

autoencoder can extract unique features belonging to the 

user. The autoencoder only learns the mapping relationship 

of normal heartbeat reconstruction. When the input 

heartbeat data contains arrhythmia, the reconstruction error 

of the autoencoder will be too large. Therefore, we can set 

a threshold Tad  to detect arrhythmia. If the loss of the 

sample is greater than the threshold Tad , the classified 

sample is an abnormal heartbeat. If the loss of the sample 

is less than or equal to the threshold Tad , the classified 

sample is a normal heartbeat. Based on the verification set, 

we select a value that can maximize the (𝑡𝑝𝑟 − 𝑓𝑝𝑟) value 

of the autoencoder. This value will be taken as Tad. 𝑡𝑝𝑟 and 

𝑓𝑝𝑟  refer to true positive rate and false positive rate 

respectively. And 𝑡𝑝𝑟 and 𝑓𝑝𝑟 are calculated as below: 

 

𝑡𝑝𝑟 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
.                                 (10) 

 

𝑓𝑝𝑟 =
𝑓𝑝

𝑡𝑛 + 𝑓𝑝
.                                (11) 

 

where 𝑡𝑝 is true positive, 𝑓𝑛 is false negative, 𝑓𝑝 is false 

positive and 𝑡𝑛 is true negative. 

3.5. User registration module 

Our system trains a separate autoencoder for arrhythmia 

detection for each user. Therefore, our system can easily 

register new users: we only need to collect the normal 

heartbeat data of new users and use these data to train a new 

autoencoder. Therefore, our system also has high flexibility. 

4. Performance Analysis 

4.1. Experimental Environment 

We used MIT-BIH Arrhythmia Database (MIT-BIH-AR) 

for experiments. This database is a classical dataset in the 

field of arrhythmia detection. Each record in this database 

contains two channels. We only extract the first channel’s 

data for experiment. ECG series are divided into training, 

test and verification set on the basis of the ratio of 4:1:1. 

See Table 2 for details of MIT-BIH-AR. 

Table 2. The information of dataset. 

Dataset MIT-BIH-AR [37] 

Sampling Frequency 360HZ 

Number of samples in 

the training set 
18620 

Number of samples in 

the test set 4883 

Number of samples in 

the validation set 
4883 

 

We use five measures in our experiment, namely: 

accuracy (𝑎𝑐𝑐), precision (𝑝𝑟𝑒), recall (𝑟𝑒𝑐), f1-score (𝑓1) 

and area under curve (𝑎𝑢𝑐). Among them, the value of auc 

is calculated according to the area under the ROC curve. 

𝑎𝑐𝑐 , 𝑓1 , 𝑟𝑒𝑐 , and 𝑝𝑟𝑒  are calculated according to the 

following formulas: 

 

𝑎𝑐𝑐 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
.                   (12) 

 

𝑝𝑟𝑒 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
.                           (13) 

𝑟𝑒𝑐 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
.                            (14) 

 

𝑓1 =
2 × 𝑝𝑟𝑒 × 𝑟𝑒𝑐

𝑝𝑟𝑒 + 𝑟𝑒𝑐
.                     (15) 

4.2. Performance comparison with other 
popular models 

We compare personAD with other popular methods. 

We use the training set part of each record to train an 

autoencoder. Then set the threshold Tad  using the 

validation set part of the record. Finally, the 

autoencoder is tested using the test set part in the 

record. We take the average of all the autocoders as 

the performance of our method. Figure 4 and Table 

3 shows our experimental results. 
 

 

Figure 4.   The performance of personAD based on 
MIT-BIH-AR. 
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According to Figure 4 and Table 3, we can find that our 

proposed method’s performance is relatively good. The 

𝑎𝑐𝑐 of our method  is 98.03%, which is only 0.89% lower 

than Chen's method. BeatGAN belongs to the binary 

classifier. Therefore, it also uses 𝑎𝑢𝑐  to evaluate the 

performance of their model. The 𝑎𝑢𝑐 of personAD is 4.57% 

higher than BeatGAN. In addition, all the methods in Table 

3 except our method use all the training data in the dataset 

to train a large comprehensive classifier for all users to 

detect arrhythmia. However, our method trains an 

autoencoder using only the normal heartbeat in a record. 

Therefore, our method has lower requirements for training 

data, and our overall system is more flexible. 

4.3. Application of personAD 

personAD is a highly flexible system for detecting 

arrhythmia (see Figure 5). Arrhythmia detection is a 

widely concerned issue. Accurately detecting arrhythmia 

can greatly reduce the mortality rate of patients. personAD 

only uses the data from a single user to train an independent 

autoencoder for detecting arrhythmia in that user. This 

autoencoder can effectively extract personalized features 

of users and it has high accuracy. Furthermore, updating 

the user's autoencoder is very convenient if their health 

status changes. Compared to the methods in Table 3, 

personAD only needs to re-collect the user's ECG data and 

retrain his/her autoencoder, rather than retraining a large 

deep model. As a result, personAD can avoid the 

significant computational resources required to train a large 

deep model when updating the model. Overall, personAD 

has high accuracy, flexibility, and efficiency. 

 

 

 

Figure 5.   An application of personAD. 

5. Conclusion and Future Work 

This paper proposes a personalized arrhythmia detection 

system: personAD. The system contains four modules: (1) 

Preprocessing module; (2) Training module; (3) 

Arrhythmia detection module and (4) User registration 

module. The system trains a separate autoencoder for each 

user to detect arrhythmia. The autoencoder combines 

convolution neural network and two attention mechanisms, 

and can effectively extract the features of users' ECG data. 

Moreover, training the autoencoder only requires to use 

heartbeats without arrhythmias, which can effectively 

avoid the imbalance of training data. On the whole, 

personAD has higher flexibility, and can easily modify the 

autoencoder for detecting arrhythmia for a single user. We 

conducted experiments on MIT-BIH Arrhythmia Database. 

Our method can achieve 98.03% ACC and 99.32% AUC on 

MIT-BIH Arrhythmia Database. 

Although the arrhythmia detection system proposed in 

this paper can effectively detect arrhythmia based on user's 

personalized data, personAD still faces some challenges. 

For example, personalized arrhythmia detection strategies 

only allow the use of the user's own data when training the 

model, which may result in the model's training 

effectiveness still having a lot of room for improvement.  

In the future, we plan to use data from different 

modalities (such as using both ECG and EEG signals) to 

diagnose multiple diseases simultaneously. We also plan to 

use lighter models to diagnose diseases more efficiently.  
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