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Abstract 

Cloud computing has witnessed exponential growth in recent years, resulting in a significant surge in energy consumption 
and operational costs of cloud data centres. Efficiently allocating Virtual Machines (VMs) within these data centres is crucial 
to achieve energy efficiency and optimize resource utilization. System instability may result from repeated requests for 
computing resources. One of the most critical difficulties facing virtualization technology is finding the best way to stack 
virtual machines on top of physical devices in cloud data centers. The host must move virtual machines from overloaded to 
underloaded hosts as part of load balancing, which has an impact on energy consumption. We propose energy-efficient 
particle swarm optimization algorithm (EEVMPSO) for Virtual Machine allocation is designed to maximize the load 
balancing. System resources, including CPU, storage, and memory, are optimized using EEVMPSO. The energy-aware 
virtual machine migration using the Particle Swarm Optimization Algorithm for dynamic VMs placement and energy-
efficient cloud data centers. We conducted extensive experiments and simulations to evaluate the performance of the 
proposed algorithm in comparison to existing VM allocation methods. The results demonstrate the superiority of our 
approach in achieving energy efficiency and resource optimization. The experimental result shown in the proposed method, 
consumption energy in comparison to the PAPSO, KHA, EALBPSO, and RACC-MDT algorithm by 10.86%, 18.22%, 
25.8%, and 31.34%, respectively, demonstrated the improvements in the service level agreements violation 5.77%, 15.3%, 
26.19%, and 30.4%, as well as the average CPU utilization 2.2%, 24%, 22.6%, and 14.6%. 
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1. Introduction

The increasing demand for cloud computing services has led 
to the rapid expansion of cloud data centres worldwide. While 
cloud computing offers unparalleled scalability and 
flexibility, it also presents significant challenges, particularly 
in terms of energy consumption and resource utilization. 
Cloud data centres are known for their substantial energy 
requirements, leading to rising operational costs and a 
significant environmental impact [1-2]. Cloud computing is 

more popular as its widespread acceptance has increased. The 
implications of cloud computing for everyday life are 
imminent (e.g., social networks, sensor networks, etc.). More 
and more people are turning to the cloud model due to the 
popularity of smart gadgets. Rapid expansion in the number 
and scale of cloud data centres is occurring [3-5]. Recently, 
high performance in cloud infrastructure has been a primary 
issue and accomplished without putting a primary emphasis 
on the amount of energy used in cloud environments [6-8]. 
On the other hand, the cloud environment requires the data 
center to host the cloud applications [9].  
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Optimizing the allocation of Virtual Machines (VMs) 
within cloud data centres is a critical aspect of achieving 
energy efficiency and enhancing overall resource utilization. 
Efficient VM allocation not only reduces energy consumption 
but also improves the overall performance and cost-
effectiveness of cloud services [10-12]. The best way to 
deploy virtual machines (VMs) on bare metal servers in a 
cloud data center is an important pressing concern in cloud 
computing. Minimizing power usage and resource wastage 
may be achieved by strategically deploying virtual machines 
on real devices [13-14]. Therefore, appropriate optimization 
techniques are used for virtual machine placement in a critical 
and pivotal step toward the so-called goal. Placement 
algorithms for virtual machines employ optimization 
techniques to partition actual hardware fairly. Resulted, fewer 
physical computers are required to do the same amount of 
work in the cloud data center, less waste is produced, and the 
use of computing resources is increased. Recently, many 
techniques for locating and deploying virtual machines have 
been suggested [15-17].   

This article proposes a new algorithm for efficiently 
allocating computational resources by determining where to 
place virtual machines on physical machines. In the first step, 
the proposed algorithm seeks to lessen the load on cloud data 
centers' infrastructure by decreasing the number of online 
computers. The optimal placement of virtual machines on 
physical machines in cloud data centers is the second goal of 
the proposed scheme. The third goal is to reduce the service 
level agreements (SLAs) of cloud data centers' active 
physical machines. Also taken into account were reductions 
in the use of central processing units, memory, bandwidth, 
storage space, running computers, and migrations. The 
suggested solution made fewer changes in the cloud data 
center [18].  

This proposed work presents a Particle Swarm 
Optimization-based approach for energy-efficient VM 
(EEVMPSO) to reduce data center energy usage, and it 
consolidates VMs onto as few servers as possible while still 
protecting QoS for newly added customers. The suggested 
method utilizes a metaheuristic algorithm, Particle Swarm 
Optimization (PSO). Combining local and global search may 
provide an almost ideal virtual machine placement solution. 
To determine the ideal VM location, EEVMPSO uses a 
minimized fitness function. The suggested method is 
implemented in CloudSim and tested with random workloads 
on various-sized virtual machines and power management 
units (PMs) before being compared to the existing state-of-
the-art algorithms. 

The main contribution of the proposed technique is: 

 
1. VM placement is an optimization problem to maximize 

system efficiency. The transfer function should show 
time-varying behavior to avoid reaching a local optimum. 

2. EEVMPSO finds the near-optimal solution using a viable 
minimization fitness function. Weighted sum merges 
active and overloaded hosts. It uses PSO to find local and 
global solutions. 

3. PSO algorithm reduces the VM migrations, consumption 
of energy, average CPU utilization, and host shutdowns 
by 19.16%, 25.8%, 22.6% and 55.45% respectively over 
EALBPSO algorithm. 

4. EEVMPSO outperforms PAPSO [17], KHA [12], 
EALBPSO [20], and RACC-MDT [2] by attaining 5.77%, 
15.3%, 26.19% and 30.4% on the combined performance 
indicator of Energy SLA Violation, which measures both 
energy consumption and SLA compliance.  

 The rest of the paper is outlined as follows: the relevant 
literature is discussed in Section 2, the proposed method is 
described in Section 3, and the simulation results and a 
conclusion and suggestions for future study are presented in 
Sections 4 and 5, respectively. 

2. Literature Review 

This section includes previous research on the selected virtual 
machine (VM) consolidation techniques, as well as a 
description of the main properties of each. A method for 
consolidating virtual machines based on the PSO algorithm 
could optimally and rapidly converge on a mapping from 
virtual machine to power management unit [19-20]. The 
authors have been concentrating their efforts on finding a 
solution to the issue of VM consolidation, which has been 
recast as a problem of variable-sized bin packing. In addition, 
the author has been considering the frequency that is readily 
accessible. The collected data show that, compared to the 
other meta-heuristics techniques, the machine is suitable in 
terms of its capacity to reduce the number of PMs. However, 
a notable drawback is that it has prioritized bandwidth 
enhancement, neglecting other crucial resources such as 
memory and processing power.  

Masoudi et al. [20] suggested a unique EALBPSO 
approach for objective functions-based performance 
evaluation. This strategy can maximize the best possible 
Standard Deviation load balancing of processors while 
reducing the system's total energy consumption. It provides a 
complete method for VM allocation based on an evolutionary 
algorithm. It can efficiently converge on a VM-to-PM 
mapping while maintaining the highest feasible level of 
energy efficiency. The initial allocation of virtual machines is 
suggested to employ a novel optimization technique called 
EALBPSO. Maximum efficiency is required in the data 
center's energy use and the load distribution among its CPUs. 

Basu et al. [21] provided a strategy for improving Genetic 
Algorithm (GA) because the poor VM placement method 
wastes memory and energy. The study showcased a new and 
efficient evolutionary technique for VM allocation that can 
potentially minimize energy consumption while 
accommodating a larger number of reserved VMs. Alharbi et 
al. [22] suggested an Ant Colony Optimization (ACO) 
method for solving the optimization problem of arranging 
VMs on physical machines in a data center in an energy-
efficient manner. Consolidating the virtual machines (VMs) 
into fewer physical machines might improve energy 
efficiency, and this approach may make it easier to quickly 

EAI Endorsed Transactions on 
Scalable Information Systems 

| Volume 10 | Issue 5 |



find an appropriate allocation solution for reserved VMs [23]. 
The VM is constructed depending on the application's needed 
resources and system operations. The virtual machine (VM) 
is placed on one of the available servers per the placement 
strategy. It is a significant challenge to figure out how to 
allocate virtual machines (VMs) to appropriate servers to cut 
down on energy use. Ant colony optimization, genetic 
algorithms (GA), particle swarm optimization (PSO), and 
whale optimization algorithm (WOA) are the population-
based methods of VMP [24-25].  

Tseng et al. [26] proposed the idea of using a multi-
objective genetic algorithm (GA) for the aim of resource 
prediction and allocation. This GA forecasts the demand for 
resources before allocating VMs to maximize the utilization 
of resources and the consumption of energy. The GA predicts 
VM resource demand, followed by energy-efficient server 
allocation. Cloud computing uses virtual machines; whenever 
a user requests a cloud-based application, the VM is created 
to accomplish the request [27].  
 

 
Figure 1. The architecture of EEVMPSO system

Sharma et al. [28] introduced an HGAPSO (hybrid 
method) for VM allocation in the cloud data center. The goal 
of this approach was to reduce resource waste and SLA 
violations. The virtual machine allocation is encoded using 
this method as a particle vector, where the value of a bit is set 
to 1 if the server is active and 0 otherwise. Since the bit value 
of the velocity vector is simply dependent on the presence or 
absence of VMs, this approach is suitable for application in 
situations with homogenous VMP. This approach is 
unsuitable for scenarios with heterogeneous VMP since it 
does not accurately encode the number and kind of VMs. 

Shun Yao et al. [29] devised multi-objective multi-swarm 
optimization to optimize data center process scheduling. The 
data center's infrastructure is used as a basis for searching for 
non-dominated scheduling solutions. Particles in separate 

swarms can interact so that the shared information across the 
swarms. Multiple swarms were established to accomplish 
diverse goals. However, the Pareto-based multi-objective 
PSOCM method that the system proposes requires minimal 
parameters and has a naturally better means of 
communication amongst its constituent particles. Compared 
to other optimization methods like GA and ACO, this aids in 
delivering faster convergence. 

Dahsti et al. [30] devised a solution to meet the 
technologies' and consumers' needs. A Platform-as-a-Service 
(PaaS) solution was implemented during the inquiry to 
facilitate the scheduling of client responsibilities. If the needs 
for the physical machines and the users' expectations are not 
compatible in the cloud, then excessive energy use and a 
trade-off between energy and performance may arise, which 
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will restrict the provider's profitability [31]. PSO enhances 
energy efficiency without sacrificing service. These 
techniques reallocated migrating virtual machines to a full 
host. According to the findings of the simulations carried out 
in CloudSim, the conditions of the simulation were quite 
similar to those of the actual environment [32]. 

Ibrahim et al. [33] projected PAPSO to decrease energy 
consumption used in data centers by condensing virtual 
machines onto the fewest number of servers possible. 
Nevertheless, it considers client QoS as the service. The 
recommended strategy uses a technique known as Particle 
Swarm Optimization or PSO for short. It can offer the 
capability of both local and worldwide search, which is one 
of the contributing reasons that lead to the realization of the 

near-optimal VM placement solution. Another contributing 
aspect is that it can simultaneously deliver local and global 
searches. PAPSO employs a minimization fitness function to 
solve the placement of virtual machines that come with near-
optimal solutions. The proposed approach is implemented in 
CloudSim, where compared to the PABFD using randomized 
workloads executed on VMs and PMs of different sizes [34]. 

Table 1 represents the Metaheuristic optimization 
approaches and their constraints. We then discussed the 
method objective and research gap that use metaheuristics 
like WAO, PSO, ABC, GA, etc. Table 1 shows research on 
the different methods used for VM allocation in cloud data 
centers, whereas the PSO method has been used to improve 
the performance of cloud data centers. 

Table 1: Study reference on optimization techniques 

Wang et al. [43] introduced a novel approach known as local 
search-based genetic algorithm (LSGA), which incorporates 
a genetic algorithm (GA) along with a unique local search 
technique. Initially, the system employs a matrix coding 
scheme to represent individuals and subsequently formulates 
the appropriate crossover and mutation operations. The  

performance of LSGA was evaluated by comparing it with 
several state-of-the-art algorithms on Sudoku puzzles of 
varying difficulty levels. Yang et al. [44] introduced a 
framework called bi-directional feature fixation (BDFF) for 
particle swarm optimization (PSO). This framework presents 
a unique approach to mitigate the search space in the context 

Study 
references 

Optimization 
Technique 

Targeted 
attributes 

Method Objectives Research Gap 

Gomathi et 
al. (2022) 
[35] 

PSOCM method CPU, PDM, 
SLAT 

Reducing consumption of energy 
and SLA violation.  

The Pareto method is time-
consuming yet produces the best 
possible results. 

Al-Moalmi 
et al. (2021)  
[36] 

Whale 
Optimization 
Algorithm 
(WAO) 

CPU and 
memory 

Minimizing overhead and energy 
consumption. 

There have been gaps in the 
evaluation of many significant 
metrics, including migration time 
and SLA violation. 

Liu et al. 
(2016) [37] 

Ant Colony 
Optimization 
(ACO) 

CPU and 
memory 

Conservation of resources and 
use of less energy. 

The quality of service that is 
provided by the virtual machine 
resources is not taken into 
consideration by the technique. 

Li et al. 
(2018) [38] 

Artificial Bee 
Colony (ABC) 

CPU, memory, 
and bandwidth 

Increasing resource productivity 
while also reducing lower the 
number of relocations 

Low scalability and a large 
processing cost are problems 
associated with PM overload risk 
estimation. 

Kim et al. 
(2019) [39] 

Harmony Search 
(HS) 

CPU and 
memory 

Energy efficiency and a decrease 
in the number of virtual machine 
migrations. 

It disregards migration latency, 
migration overhead, and SLA 
violations. 

Riahi et al. 
(2018) [40] 

Genetic 
Algorithm (GA) 

CPU and 
memory 

Minimizing resource waste and 
the number of active PMs 

Attempts to deal with huge data have 
not proven productive. 

Sasan et al. 
(2021) [41] 

Hybrid 
Algorithm 
((Sine– Cosine 
Algorithm and 
Salp Swarm 
Algorithm) 

CPU, memory, 
and bandwidth 

Minimize SLA among active 
cloud physical machines. 

It utilizes a fixed strategy to place 
virtual machines and does not 
provide a useful method for striking 
a balance between energy efficiency 
and cost. 

Yavari et al. 
(2019) [42] 

Firefly 
Algorithm (FA) 

CPU, memory, 
and bandwidth 

Reducing the number of 
migrations, SLA violations, and 
energy use. 

The scalability and optimization of 
resource use of suggested algorithms 
have not been verified. 
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of large-scale feature selection. The BDFF algorithm 
employs a dual search strategy, utilizing two opposing 
directions, in order to effectively guide particles in the 
exploration of feature subsets of varying sizes. By employing 
two distinct search directions, BDFF is able to address the 
selection states of certain features and subsequently prioritize 
others during the particle update process, thereby effectively 
reducing the overall search space. 

Ge et al. [45] introduced a distributed segment-based 
genetic algorithm (DSGA) that effectively addresses the 
issues of data privacy, communication cost, and load balance. 
In order to safeguard privacy, this study proposes a digit-
based anonymity strategy that leverages attribute 
characteristics. This approach aims to preserve information 
integrity while enabling fuzzy identification. Subsequently, a 
three-tier distributed framework is introduced for the purpose 
of enhancing search efficiency in multi-objective 
optimization and attaining a balance between communication 
cost and load distribution. 

Li et al. [46] introduced a novel three-layer framework 
called DDE-ARA, which incorporates adaptive resource 
allocation. This framework consists of three layers: the 
algorithm layer, responsible for the evolution of diverse 
differential evolution (DE) populations; the dispatch layer, 
which allocates individuals from the DE populations to 
different distributed machines; and the machine layer, which 
facilitates the utilization of distributed computers. Within the 
DDE-ARA framework, three innovative approaches are 
additionally suggested. The ultimate objective is to enhance 
the search efficiency of the system. Ge et al. [47] proposed a 
multitasking distributed differential evolution method. The 
presented system facilitates communication across various 
database fragmentation issues by sharing general and 
efficient allocation data. 

In conclusion, energy efficiency is a critical concern in 
cloud data centres, and VM allocation plays a vital role in 
optimizing resource usage. Particle Swarm Optimization 
(PSO) has shown promise in solving complex optimization 
problems and can be adapted to address the energy-efficient 
VM allocation problem in cloud data centres. Our proposed 
EEVMPSO approach aims to contribute to the growing body 
of research focused on achieving sustainable and energy-
efficient cloud infrastructures. 
 

3. System Model: EEVMPSO 

The EEVMPSO technique is selected for the data center with 
various processing metrics including the energy 
consumption, VM migration, CPU utilization, SLA violation, 
energy SLA violation, and host shutdown. Memory and 
processing power define a machine. Users request a VM with 
needed resources via the data center user interface. VMs are 
assigned to the first available physical machine based on 
resource needs. Datacentre managers need to reduce energy 
consumption by relocating VMs from idle physical 
equipment and shutting off passive machines. 

Table 2 listed the abbreviation utilized in this study and their 
short descriptions to help understand the systems model and 
suggested method. 
 

Table 2: Abbreviation 
 

Notations Description 
EEVMPSO Energy efficient particle swarm 

optimization algorithm for virtual 
machine 

PAPSO Power-aware technique depending on 
particle swarm optimization 

KHA Kill herd algorithm 
EALBPSO Energy-aware load balancing particle 

swarm optimization 
RACC-MDT Residual available computing capacity 

and minimum data transfer  
𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈𝑖𝑖  CPU utilization rate 
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚   The power used at maximum capacity 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝑖𝑖 The load placed on a physical machine in 

a cloud service 
𝑉𝑉𝑉𝑉𝐻𝐻𝑉𝑉𝑉𝑉𝑉𝑉 Time per active host in SLA violation 
𝑉𝑉𝐻𝐻𝐻𝐻𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡 The total time utilize for a server 
𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡𝑖𝑖  The time for active host 
𝐶𝐶𝑃𝑃𝑃𝑃 Performance degradation of migration 
𝑃𝑃𝑉𝑉𝑉𝑉  Total number of VMs 
𝐶𝐶𝑑𝑑 VMs Performance degradation in CPU 

utilization operations 
𝐶𝐶𝑟𝑟 Total number of CPUs requested in the 

particular operation 
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 SLA violation 
𝐶𝐶𝑚𝑚𝑖𝑖 Usage of memory ith physical machines 
𝐶𝐶𝑚𝑚𝑖𝑖 Usage of average memory in active 

physical machines 
𝐻𝐻𝑡𝑡  Number of servers i 

𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑡𝑡𝑚𝑚  CPU utilization for migrated VMs 
𝑅𝑅𝑉𝑉𝑃𝑃𝑚𝑚𝑡𝑡𝑚𝑚 Memory utilization for migrated VMs 
𝐵𝐵𝐵𝐵𝑚𝑚𝑡𝑡𝑚𝑚 Bandwidth utilization for migrated VMs 
𝑋𝑋𝑡𝑡(𝐻𝐻) Particle positions at time t 
𝑉𝑉𝑡𝑡(𝐻𝐻) Particle velocities at time t 
𝑉𝑉𝑡𝑡𝑖𝑖𝑖𝑖𝐻𝐻𝑡𝑡  Best-possible prior location  
𝑐𝑐1 , 𝑐𝑐2 Acceleration coefficient 
𝑟𝑟1 , 𝑟𝑟2  Random integers range from 0 to 1 
𝐺𝐺𝑡𝑡𝑖𝑖𝑖𝑖𝐻𝐻𝑡𝑡  Best-possible current location 

Pi Number of particles i 
VM Virtual machine 
𝑰𝑰𝒕𝒕 Maximum number of iterations 

3.1 VM Placement 

Allocation in suitable destinations for migrated virtual 
machines is crucial to effective VM consolidation. In the 
circumstances involving VM consolidation, the server judged 
to be the most appropriate for accepting the migrated VM is 
selected. Despite this, the difficulty of VM placement is not 
restricted to just these kinds of circumstances. Another 
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scenario for virtual machine deployment involves searching 
for a suitable host that will accept the virtual machine as an 
initial placement. We suggest a strategy for the placement of 
virtual machines from the perspective of virtual machine 
consolidation and attention to previous publications that have 
addressed VM consolidation. Numerous research with 
varying aims and approaches have been offered to develop 
efficient methods. Fig. 1 clearly shows a broad classification 
of VM placement strategies based on their underlying 
approaches, their goals, and the number of these goals. Some 
methods seek the optimal mapping that accomplishes a single 
aim, while others seek the best mapping that accomplishes 
several goals. These goals might include bettering the quality 
of service offered to customers or cutting expenses for service 
providers. The recognized method has been employed by 
various techniques, all of which use meta-heuristic 
algorithms to decide which PM will get the migrated VM. 
First Fit (FF) is one example of a greedy heuristic approach 
that may be used, in which each virtual machine is assigned 
to the first host that meets its requirements. The BF method 
uses a mapping between VMs and the best possible PMs to 
suit the data.  

3.2 Energy Model 

The duration for which a computer's processor and memory 
are utilized directly affects the level of energy the machine 
requires. The central processing unit is the primary consumer 
of power in modern gadgets. The degree to which the 
frequency of CPU usage employs a computer's resources. 
Applying Equation (1), we can calculate an energy 
consumption model for a virtual machine that accounts for the 
processor's usage in light of the machine's present workload. 

𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈𝑖𝑖 = � 𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈𝑖𝑖,𝑗𝑗
𝑛𝑛

𝑗𝑗=1
   (1) 

Where 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 is the power used at maximum capacity,  f is 
defined as the energy used. At the same time, the device is 
unused, and 𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈𝑖𝑖  is the CPU utilization rate (𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈𝑖𝑖  [0, 1]) 
determined by the load placed on the 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝑖𝑖 as a result of 
running a cloud service by Equation (2). 
 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝑖𝑖 = 𝑓𝑓 ∗  𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 + (1− 𝑓𝑓) ∗  𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ∗  𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈𝑖𝑖  (2) 
 

𝐸𝐸 = ∫ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝑖𝑖(𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈𝑖𝑖(𝐻𝐻))𝑑𝑑𝐻𝐻𝑡𝑡
𝑡𝑡−1    (3) 

 
𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈𝑖𝑖 (𝐻𝐻) is the power consumed at time t, and E is defined 
as the total power used by the device for the period [𝐻𝐻 − 1, 𝐻𝐻] 
specified in Equation (3). 
 

𝑉𝑉𝑉𝑉𝐻𝐻𝑉𝑉𝑉𝑉𝑉𝑉 =  1
𝑆𝑆
∑ 𝑇𝑇𝐻𝐻𝑡𝑡𝑚𝑚𝑇𝑇𝑡𝑡𝑖𝑖

𝑇𝑇𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡𝑖𝑖

𝑉𝑉−1
𝑡𝑡=0    (4) 

 
Where in the above Equation (4), 𝑉𝑉𝑉𝑉𝐻𝐻𝑉𝑉𝑉𝑉𝑉𝑉 is calculated for 
time per active host in SLA violation, 𝑉𝑉𝐻𝐻𝐻𝐻𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡  represents the 
total time utilized for a server, 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡𝑖𝑖  represents the time for 
the active host, and 𝑉𝑉 is defined as the total number of servers. 

 
𝐶𝐶𝑃𝑃𝑃𝑃 =  1

𝑉𝑉𝑉𝑉𝑉𝑉
∑ 𝐶𝐶𝑑𝑑

𝐶𝐶𝑟𝑟

𝑉𝑉𝑉𝑉𝑉𝑉−1
𝑡𝑡=0     (5) 

 
In Equation (5), 𝐶𝐶𝑃𝑃𝑃𝑃 is defined as the metric to measure 

the degradation of migration performance. 𝐶𝐶𝑑𝑑 represents the 
CPU utilization to calculate the VMs performance 
degradation, 𝐶𝐶𝑟𝑟 represents the total number of CPUs 
requested in the particular operation, and 𝑃𝑃𝑉𝑉𝑉𝑉  represents the 
total number of VMs. 
 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 =  𝑉𝑉𝑉𝑉𝐻𝐻𝑉𝑉𝑉𝑉𝑉𝑉 ∗  𝐶𝐶𝑃𝑃𝑃𝑃   (6) 
 

In Equation (5), 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 represents the SLA violation to 
estimate the multiplication value of 𝑉𝑉𝑉𝑉𝐻𝐻𝑉𝑉𝑉𝑉𝑉𝑉 and 𝐶𝐶𝑃𝑃𝑃𝑃. 

3.3 Proposed EEVMPSO 

A virtual machine may migrate to any of several different host 
machines. Concurrently, power consumption may change as 
a result of VM movement. Consequently, optimizing 
performance and decreasing energy consumption is crucial to 
appropriately place and organize VM on host systems and 
powering down those not in use. In this case, n virtual 
machines (VMs) will share m physical hosts. The difficulty 
is in formulating a model for transferring the VMs across 
systems. Additionally, this design can reduce energy 
consumption and increase VM transfer capacity. 

The relocation of virtual machines as part of an overall 
attempt to consolidate is an example of the second kind of 
virtual machine placement. Let the VMs = {VM1, VM1……. 
VMn} and List of Hosts = {PM1, PM2…… PMm} 
The goal is to assign each migrated virtual machine to its 
corresponding physical host using equations (7) to (9). 
 

∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑘𝑘−1
𝑡𝑡=0 + 𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑡𝑡𝑚𝑚  < 𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗   (7) 

 
∑ 𝑅𝑅𝑉𝑉𝑃𝑃𝑡𝑡
𝑘𝑘−1
𝑡𝑡=0 + 𝑅𝑅𝑉𝑉𝑃𝑃𝑚𝑚𝑡𝑡𝑚𝑚  < 𝑅𝑅𝑉𝑉𝑃𝑃𝑗𝑗   (8) 

 
∑ 𝐵𝐵𝐵𝐵𝑡𝑡
𝑘𝑘−1
𝑡𝑡=0 + 𝐵𝐵𝐵𝐵𝑚𝑚𝑡𝑡𝑚𝑚  < 𝐵𝐵𝐵𝐵𝑗𝑗   (9) 

 
The determination of the crucial resources required for the 
migration of a virtual machine (VM) involves identifying the 
central processing unit (CPU), random access memory 
(RAM), and bandwidth as indispensable components. 

Furthermore, a PM cannot host the same VM 
simultaneously; hence each VMi can only be associated with 
a single physical host. The approach that has been proposed 
reflects the mapping of migrated VMs in the form of Equation 
(10). 

 
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 =

�1, 𝑉𝑉𝑃𝑃 𝑇𝑇𝑎𝑎𝑑𝑑 𝐶𝐶𝑃𝑃 𝑏𝑏𝑏𝑏𝑇𝑇𝐻𝐻𝑎𝑎𝑏𝑏𝐻𝐻 𝐻𝐻𝐻𝐻 𝐻𝐻ℎ𝑏𝑏 𝑉𝑉𝐿𝐿𝐻𝐻𝐻𝐻 𝐻𝐻𝑓𝑓 𝑉𝑉𝑃𝑃 𝑇𝑇𝑎𝑎𝑑𝑑 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻
0, 𝐻𝐻𝐻𝐻ℎ𝑏𝑏𝑟𝑟𝑒𝑒𝐿𝐿𝐻𝐻𝑏𝑏

          (10) 
 

Fitness Function: A fitness function is derived from the 
factors that affect the solution's quality to determine whether 
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the solution can provide a desirable outcome. The value of 
each solution produced by the proposed algorithm is 
calculated using this function, and the most optimal solution 
is identified as having the highest or lowest value, 
respectively, based on the parameter placement approach. 
Therefore, the fitness function to measure the efficacy of the 
optimum result is given by equation (11). 
 

𝐹𝐹 = ∑ �
�𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡𝑃𝑃𝑖𝑖− 𝐶𝐶𝑃𝑃𝑈𝑈𝑈𝑈𝑖𝑖�

2

𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡𝑃𝑃𝑖𝑖
�  + �

�𝑃𝑃𝑚𝑚𝑖𝑖− 𝑈𝑈𝑚𝑚𝑖𝑖�
2

𝑈𝑈𝑚𝑚𝑖𝑖
�  ∗ 𝑛𝑛−1

𝑡𝑡=0 𝐻𝐻𝑡𝑡  (11) 

 
Where 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝑖𝑖 is defined as the usage of processors in ith 
physical machines. 𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈𝑖𝑖  is defined as the usage of the 
average processor in active physical machines. 𝐶𝐶𝑚𝑚𝑖𝑖 represents 
the usage of memory ith physical machines. 𝐶𝐶𝑚𝑚𝑖𝑖 represents 
average memory usage in active physical machines, and 𝐻𝐻𝑡𝑡  is 
defined as the ith server is used (i=1 means one server is used 
or i=0 not used). 

Illustration: Each particle in the initial mapping generated 
by EEVMPSO has a small number of dimensions. The 
number of virtual machines (VMs) to be migrated is the same 
as the number of dimensions. For each axis, there is a number 
that represents the virtual machine (VM) index. A PM can 
host several virtual machines, but the inverse is false. Each 
combination of the virtual machine to host has been tested 
until the optimal fitness function has been found. Below, we 
examine an illustrative instance of initial mapping generation. 
The underlying presumptions are: 
Host [10] = {Host0, Host1, Host2, Host3, Host4, Host5, 
Host6, Host7, Host8, Host9} 
Migrated VM [5] = {VM1, VM2, VM3, VM4, VM5} 
Available Host [7] = {Host0, Host2, Host3, Host5, Host6, 
Host7, Host8} 
Overloaded Host [3] = {Host1, Host4, Host9} 

The initial phase arrangement of the particle placements in 
ascending order of VM index is shown in Table 3, and the 
particles represent 0 and 1 matrix in initial mapping. 

 
Table 3: VMs particle representation 

 
 VM1 VM2 VM3 VM4 VM5 

HOST0 1 0 0 0 0 

HOST1 0 0 0 0 0 

HOST2 0 0 1 0 0 

HOST3 0 1 0 0 0 

HOST4 0 0 0 0 0 

HOST5 1 0 0 0 0 

HOST6 0 0 0 1 0 

HOST7 0 1 0 0 0 

HOST8 0 0 0 0 1 

HOST9 0 0 0 0 0 

 
Tables 4, 5, 6, 7, 8, 9, and 10 show, in order of scenario, 

the random sequences assigned to available hosts based on 
first fit. 

 
 

Table 4: VM placement Scenario 1 
 

Scenario 1 

VM1 VM2 VM3 VM4 VM5 

Host0 Host3 Host5 Host7 Host8 

 
Table 5: VM placement Scenario 2 

 
Scenario 2 

VM1 VM2 VM3 VM4 VM5 
Host0 Host2 Host6 Host7 Host8 

 
Table 6: VM placement Scenario 3 

 
Scenario 3 

VM1 VM2 VM3 VM4 VM5 
Host2 Host3 Host0 Host6 Host7 

 
Table 7: VM placement Scenario 4 

 
Scenario 4 

VM1 VM2 VM3 VM4 VM5 
Host3 Host0 Host6 Host7 Host5 

 
Table 8: VM placement Scenario 5 

 
Scenario 5 

VM1 VM2 VM3 VM4 VM5 
Host2 Host3 Host8 Host6 Host7 

 
Table 9: VM placement Scenario 6 

 
Scenario 6 

VM1 VM2 VM3 VM4 VM5 
Host8 Host7 Host0 Host2 Host3 

 
Table 10: VM placement Scenario 7 

 
Scenario 7 

VM1 VM2 VM3 VM4 VM5 
Host7 Host8 Host5 Host3 Host0 
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Table 11: Migrated VM mapping 
 

VM1 VM2 VM3 VM4 VM5 

Host0 Host3 Host5 Host7 Host8 

Host0 Host2 Host6 Host7 Host8 

Host2 Host3 Host0 Host6 Host7 

Host3 Host0 Host6 Host7 Host5 

Host2 Host3 Host8 Host6 Host7 

Host8 Host7 Host0 Host2 Host3 

Host7 Host8 Host3 Host6 Host0 

 
Table 11 represents the particles (migrated VM) consisting 

of the number of PM indexes in the list of available hosts. 

3.4 Problem Formulation 

The PSO algorithm is utilized to acquire a suitable system for 
distributing assets across physical hosts. Congestion of the 
system's load at any one time reduces energy usage in data 
centers, which helps to offset the algorithm's temporal 
complexity. An allocation of virtual machines to physical 
hosts is an NP-Hard issue. Therefore. The most effective 
approach is to use a metaheuristic algorithm. The present 
analysis employed the PSO method as its primary approach. 
The PSO algorithm, among other comparable algorithms, has 
been shown to have the highest performance and is thus 
employed in addressing these issues. For this reason, this 
method was designed to speed things up and to provide a 
more practical solution with a better function than existing 
methods. 

EEVMPSO iterates numerous times to get to a nearly 
optimum VM location. In each cycle, the velocity of each 
particle is updated, allowing for the updating of its location. 
An individual particle's current position is compared to the 
best position for the particle and the swarm to establish the 
amount of velocity adjustment to be applied. New coordinates 
and speed are truncated to the nearest integer before being 
utilized to choose a suitable host from the available ones. 
Upon establishing the novel coordinates, it is possible to 
reevaluate the fitness function of every individual particle. 
The results of these calculations guide particles in their search 
for the best possible solutions. 
 

𝑋𝑋𝑡𝑡(𝐻𝐻) = 𝑥𝑥1 ,𝑥𝑥2 … … 𝑥𝑥𝑡𝑡𝑖𝑖  (12) 
 

Particle positions at time t are expressed as vectors using 
Equation (12) and Equation (13) in iteration t also shows that 
each particle has a velocity represented by a vector. 

 
𝑉𝑉𝑡𝑡(𝐻𝐻) = 𝑣𝑣1 ,𝑣𝑣2 … …𝑣𝑣𝑡𝑡𝑖𝑖  (13) 

 
    𝑉𝑉𝑡𝑡𝑖𝑖𝑖𝑖𝐻𝐻𝑡𝑡 =  𝑇𝑇1, 𝑇𝑇2 … … 𝑇𝑇𝑡𝑡𝑖𝑖                       (14) 

 
Vector 𝑉𝑉𝑡𝑡𝑖𝑖𝑖𝑖𝐻𝐻𝑡𝑡  derived from Equation (14) shows that each 

particle remembers its best-possible prior location at each 
repetition. In Equation (15), vector 𝐺𝐺𝑡𝑡𝑖𝑖𝑖𝑖𝐻𝐻𝑡𝑡  represents the best 
possible current location for every particle in a swarm.  

 
𝐺𝐺𝑡𝑡𝑖𝑖𝑖𝑖𝐻𝐻𝑡𝑡 =  𝑏𝑏1, 𝑏𝑏2 … …𝑏𝑏𝑡𝑡𝑖𝑖  (15) 

 
𝑉𝑉𝑡𝑡(𝐻𝐻 + 1) = 𝑒𝑒𝑉𝑉𝑡𝑡(𝐻𝐻) + �𝑉𝑉𝑡𝑡𝑖𝑖𝑖𝑖𝐻𝐻𝑡𝑡  (𝐻𝐻)− 𝑋𝑋𝑡𝑡(𝐻𝐻)�𝑐𝑐1𝑟𝑟1(𝐻𝐻) +

�𝐺𝐺𝑡𝑡𝑖𝑖𝑖𝑖𝐻𝐻𝑡𝑡  (𝐻𝐻)− 𝑋𝑋𝑡𝑡(𝐻𝐻)�𝑐𝑐2𝑟𝑟2(𝐻𝐻)   (16) 
 

Equations (16) and (17) are used to calculate the latest 
changes in position and velocity for each component. 

 
𝑋𝑋𝑡𝑡(𝐻𝐻 + 1) =  𝑉𝑉𝑡𝑡(𝐻𝐻+ 1) + 𝑋𝑋𝑡𝑡(𝐻𝐻)  (17) 

 
In the above equations (12-17), t represents the current 

iteration, 𝑐𝑐1 and 𝑐𝑐2 are acceleration factors of the particle 
motion, 𝑟𝑟1 and 𝑟𝑟2 are initialized random integers ranging 
from 0 to 1, and w is a weight coefficient. 

The set of particles taken in the population to be Pi = {P1, 
P2, . . ., PN}, where N is the total number of particles. A bit 
frame structure or vector is used to represent each individual 
particle. The number of virtual machines determines the size 
of the bit frame or vector. When examining the mapping of 
virtual machines, the virtual machine with ID 1 occupies the 
first available position. The appropriate position in the vector 
is updated with a '1' if the VM picked it as the global best; 
otherwise, it remains unchanged. The fitness function for 
each particle is calculated using Equation (11), and the CH 
selection algorithm utilized in the proposed EEVMPSO is 
described in algorithm 1 for every particle in Pi, and 
calculates its fitness value. In the first time period, the Pbesti 
is the particle Pi itself. The current iteration's best Pbesti is 
used to assign the output Gbest, which denotes the chosen 
optimum VM. After every iteration, the velocity and position 
of the particles are updated, which means that a new 
population of particles is created. Again their Pbest is 
calculated, and accordingly, the Gbest is updated. The 
process continues while stopping criteria meet, and the 
stopping criteria is the user sets the maximum number of 
iterations. 

 
Algorithm - 1. EEVMPSO Algorithm. 

Input: Swarms Pi, 1≤ i ≤ PN 

Output: Gbest 

1. Begin 

2.    While round <= It do    

3.    For p belongs to Pi do      

4.        Pbesti = maximum fitness value                   

5.        For j = 1: N do 

6.             Xj = rand(Xmax_value, Xmin_value) 

7.             Vj = rand(Vmax_value, Vmin_value) 
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8.        End For 

9.    End For 

10.    No_of_VMs = 0                        

11.    For j = 1: N do 

12.       If (Vi(j) = = 1) then 

13.            No_of_VMs = No_of_VMs + 1 

14.       End If 

15.    End For  

16.  Calculate F(i)           /*using Equation (11) */ 

17.  𝑉𝑉𝑡𝑡𝑖𝑖𝑖𝑖𝐻𝐻𝑡𝑡  = F(i) 

18.  𝐺𝐺𝑡𝑡𝑖𝑖𝑖𝑖𝐻𝐻𝑡𝑡  = {𝑉𝑉𝑡𝑡𝑖𝑖𝑖𝑖𝐻𝐻𝑡𝑡k | F(𝑉𝑉𝑡𝑡𝑖𝑖𝑖𝑖𝐻𝐻𝑡𝑡k) = min (F (𝑉𝑉𝑡𝑡𝑖𝑖𝑖𝑖𝐻𝐻𝑡𝑡),1 ≤ i ≤ 

PN)} 

19.      For i= 1: PN do                /* Position and velocity 

are updated*/ 

20.             If F(i) < F(𝑉𝑉𝑡𝑡𝑖𝑖𝑖𝑖𝐻𝐻𝑡𝑡) then   

21.    𝑉𝑉𝑡𝑡𝑖𝑖𝑖𝑖𝐻𝐻𝑡𝑡  = Pi 

22.    If F(i) < F(𝐺𝐺𝑡𝑡𝑖𝑖𝑖𝑖𝐻𝐻𝑡𝑡) then    

23.    𝐺𝐺𝑡𝑡𝑖𝑖𝑖𝑖𝐻𝐻𝑡𝑡  = 𝑉𝑉𝑡𝑡𝑖𝑖𝑖𝑖𝐻𝐻𝑡𝑡      

24.   End For 

25.    End While 

26. End 

   The paper proposes a plan to reduce the total energy 
consumption and the energy overhead associated with 
migration. A technique for approximating the memory and 
CPU utilization rates required by individual virtual machines 
is presented. A Particle Swarm Optimization (PSO) technique 
was employed to address the problem of consolidating 
energy-efficient virtual machines, yielding a solution. Fig. 2 
depicts the overall flowchart of the operational procedure of 
EEVMPSO. 
 

 
Figure 2. Working process of EEVMPSO 

4. Experimental Setup 

This study presents the proposed methodology's results in a 
simulated setting. The simulation test bench utilized in the 
experimentation is described in detail. Table 12 shows 
experiments with varying VM and PM sizes and workloads; 
since each experiment was repeated 20 times, we may have 
confidence in the findings. A trustworthy result is achieved if 
this information is combined with that from the standard VM 
placement method EEVMPSO. Experiment-specific 
parameter values are provided in Table 13. Analyzing the 
proposed technique in a real-world environment would need 
a significant increase in the number of physical and virtual 
machines (PMs and VMs) employed in our testing, which 
would be a time-consuming and costly endeavor. The 
recommended VM placement method is tested in a simulated 
environment as an alternate option. To design this paper, we 
have settled on using a simulator platform called the 
CloudSim toolkit. During our investigation, we used anything 
from fifty to two hundred actual and simulated personal 
computers. The proposed method is evaluated using four 
distinct datasets, each of which contains a different number 
of provisioning managers and virtual machines: Workload1, 
which comprises 50 VMs and 50 PMs; Workload2, which 
shall consist of 100 VMs and 100 PMs; Workload3, which 
includes 150 VMs and 150 PMs; and Workload4, which 
contains 200 VMs and 200 PMs. The suggested method is 
tested to reduce virtual machine migrations, power 
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management shutdowns, energy consumption, and service 
level agreement violations in data centers.  
 

Table 12: Experimental cases 
 

 
Workload 

Workload 
1 

Workload 
2 

Workload 
3 

Workload 
4 

VM 
List 50 100 150 200 

PM 
List 50 100 150 200 

 
Table 13: EEVMPSO parameters 

 
HP ProLiant  

ML 110G4 (S1) 
1860 (MIPS),  
Memory 6 GB 

HP ProLiant  
ML 110G4 (S2) 

2660 (MIPS),  

Memory 6 GB 

High CPU VM 2200 MIPS 

Small VM 1000 MIPS 

Micro VM 500 MIPS 

Population Size 30 

𝑰𝑰𝒕𝒕 100 

𝑰𝑰𝒎𝒎𝒎𝒎𝒎𝒎 0.5 

𝑰𝑰𝒎𝒎𝒎𝒎𝒎𝒎 1 

Initial Position 9.6 

Initial Velocity 0 

 
Table 14: Server1 and Server2 Energy utilization 

 
Types 0% 20% 40% 60% 80% 100% 

Server1 84.9 92.1 97.8 104.5 112 116.5 

Server2 95 99.6 110.3 119.72 127.4 136 
 

The Parameters used in this experiment are detailed in 
Table 13. It would be impossible and costly to duplicate our 
research in a real-world situation to assess the proposed 
strategy for many VMs and PMs utilized. The proposed 
method for VM placement is tested in a simulated 
environment. Information on the two types of servers and four 
types of virtual machines that the experiments simulate may 
be found in Tables 12 and 14, respectively. Using a mix of 
Local Regression can identify the underutilized hosts, and the 
VMs are relocated. Compared to PAPSO, KHA, EALBPSO, 
and RACC-MDT, EEVMPSO has been shown to perform 
better across various performance metrics. 

4.1 Experimental Results Discussion 

The performance of the proposed EEVMPSO for energy 
efficient VM allocation is evaluated using various 
performance metrics including the energy consumption, VM 
migration, CPU utilization, SLA violation, energy SLA 
violation, and host shutdown. EEVMPSO technique is 
associated with four state-of-the-art protocols, including 
PAPSO [17], KHA [12], EALBPSO [20], and RACC-MDT 
[2].  

4.1.1Energy Consumption Analysis: 

EEVMPSO aims to consolidate the migrated VMs onto as 
few hosts as is practically practicable. It increases CPU 
utilization on busy servers while putting idle hosts to rest. Fig. 
3 displays the outcomes of this investigation, which 
demonstrate potential methods for cutting down on energy 
use in the home. Energy savings of 10.86%, 18.22%, 25.8%, 
and 31.34% are shown when the suggested technique is 
compared to PAPSO, KHA, EALBPSO, and RACC-MDT, 
respectively. As long as it is constrained by the requirement 
to prevent SLA violations, the EEVMPSO approach may 
adequately consume power usage. 
 

 
Figure 3. Comparing the consumption of energy  

4.1.2 VM Migration: 

When VM migration, there is a chance that the system's 
performance will degrade, which would violate the SLA. 
Performance suffers as the number of virtual machines (VMs) 
transferred across hosts grows. EEVMPSO implements a 
strategy to lessen the share of overworked hosts and the 
prevalence of busy servers. Therefore, decreasing the number 
of servers in use may increase the CPU usage of hosts, 
allowing for an ideally saturated set of servers. It does, 
however, reduce the total number of overworked servers. 
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Taking these two factors into account has reduced VM 
migrations, as seen in Fig. 2. When compared to PAPSO, 
KHA, EALBPSO, and RACC-MDT, the EEVMPSO 
approach has the potential to minimize the VM migrations by 
10.09%, 10.45%, 19.16%, and 28.82%, respectively. 
EEVMPSO achieved this goal with fewer VM migrations, 
unlike VM consolidation solutions, which depend on 
completing numerous VM migration operations among 
servers to minimize the total power consumption in data 
centers. The attainment of the objective of diminishing the 
overall power consumption necessitates this measure. As a 
direct and immediate result of this reduction in the total 
number of virtual machine (VM) migration processes being 
carried out, the newly delivered services will be of a much 
higher quality. 
 

 
Figure 4. Comparing the number of VM migration  

4.1.3 The Average Utilization of CPU 

The average CPU use of the designated Server1 and 
Server2 classes of servers is shown in Fig. 5. The utilization 
rates of both individual FFD servers and the full pool of 
available servers are relatively low. Since there is a wide gap 
between the CPU utilization of Server1 and Server2, it is 
apparent that FFD cannot efficiently manage varied 
resources. It is important to note that EEVMPSO places the 
highest CPU demand on servers of type Server1, whereas 
PAPSO, KHA, EALBPSO, and RACC-MDT place lower 
orders on servers of type Server2.  
 

 
Figure 5. Comparison analysis of average CPU 

Utilization 

EEVMPSO prefers highly configured servers over DTH-low-
profile MF ones so that the VMs can communicate with one 
another more efficiently. Consolidation may go as deep as 
one's memory will allow. The fact that EEVMPSO's average 
memory use is thus close to 100% demonstrates how well it 
can consolidate high-demand virtual machines. 

4.1.4 SLA Violation: 

A new metric independent of processing loads must be 
introduced to measure the SLA provided to a virtual 
machine's end user. The proportion of time that servers are at 
100% utilization that happens as a consequence of migrations 
is developed as two metrics for assessing the severity of SLA 
breaches. Another metric is the decline in performance that 
occurs during migrations. Because of this, we introduce a 
holistic metric called SLA Violation. Experiment results 
showed that the EEVMPSO does not violate SLA, unlike the 
PAPSO, KHA, EALBPSO, and RACC-MDT. EEVMPSO 
can reduce SLA violations even when the virtual machines 
and PMs increase. The primary objective of this research is to 
reduce the amount of energy used by moving as many virtual 
machines as possible onto as few hosts as is practically 
practicable. Nevertheless, by eliminating two of the most 
common causes of SLA violations, this endeavor may also 
reduce such infractions. SLA violations are reduced by 6.4%, 
8.7%, 14.6%, and 20.5% on average with EEVMPSO 
compared to PAPSO, KHA, EALBPSO, and RACC-MDT, 
respectively. 
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Figure 6. Comparing the SLA violations 

4.1.5 Number of Migration Vs Iteration: 

The average number of transitions across CPUs with 
different processing energy and memory is shown in Fig. 7. 
The proposed approach involved allocating a separate host 
computer to each virtual machine. The proposed solution 
outperformed alternatives when the actual devices were in 
varying states, as it took advantage of the status of physical 
machines in the reallocation of virtual machines and 
deactivated more of them. Virtual machines (VMs) were 
employed in all the other methods, even though they 
performed better when coupled with actual computers after 
they crossed a certain performance threshold. The 
experimental findings showed that the suggested approach 
might increase the number of migrated virtual machines by 
11.19%, 19.25%, 32.86%, and 38.2% in different iterations 
compared to the PAPSO, KHA, EALBPSO, and RACC-
MDT, respectively. 

 

 
Figure 7. Comparison analysis of the number of 

migrations Vs different iterations 

4.1.6 Energy SLA Violations: 

The VM placement problem reveals that it is a crucial 
problem. Specifically, cloud service providers condense 

virtual machines (VMs) onto as few servers as possible to 
save operational. Conversely, consumer attention is directed 
toward service performance, which must remain unchanged 
throughout the consolidation. As a result, cloud providers are 
looking for ways to save costs by lowering energy use without 
affecting service level agreements. As a result, a new measure 
for judging VM location has been introduced: the trade-off, 
which considers both energy use and SLA breaches. Our 
suggested method for lowering energy usage using 
EEVMPSO does not infringe on any Service Level 
Agreements. In Fig. 8, EEVMPSO achieves better results 
than PAPSO, KHA, EALBPSO, and RACC-MDT when it 
comes to lowering energy SLA violation. When considering 
data center energy use and SLA breaches, an estimated 
5.77%, 15.3%, 26.19%, and 30.4% of savings compared to 
PAPSO, KHA, EALBPSO, and RACC-MDT. 

 

 
Figure 8. Comparison analysis of energy SLA violation 

4.1.7 Host Shutdown: 

Quality of service may also be significantly affected by the 
rate at which hosts are restarted. If the CPU utilization of a 
server falls below a predetermined threshold, the remaining 
virtual machines are removed. The server could host virtual 
machines (VMs) that have already been relocated, and if it is 
underutilized, it might migrate those VMs once again. As a 
direct result, the status could be reset to the low power mode 
to save energy. This circumstance harms the use of energy 
and user experience due to the frequent migrations of virtual 
machines (VMs). They are repetitively subjecting a host to a 
light workload and wasting resources. As seen in Fig. 9, 
EEVMPSO is set up to prevent overloaded and underloaded 
circumstances, leading to fewer host shutdowns. The 
proposed strategy decreases the average number of host 
shutdowns by 40.7%, 46.7%, 55.45%, and 6% compared to 
PAPSO, KHA, EALBPSO, and RACC-MDT, respectively. 
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Figure 9. Comparison analysis of Hosts shutdown  

5. Conclusion 

In this research paper, we proposed an EEVMPSO method 
for dynamically assigning virtual machines to physical hosts, 
considering the actual consumption of cloud resources at any 
given time. Our research investigated the limitations of 
traditional VM allocation methods and demonstrated that 
Particle Swarm Optimization (PSO) is a promising approach 
for tackling the complex VM allocation problem in large-
scale cloud environments. A PSO-based VM allocation 
strategy decreases data center energy consumption and SLA 
violations. Avoiding service level agreement (SLA) 
violations is made more accessible by moving virtual 
machines off servers nearing capacity. It is essential to locate 
hosts before transferring virtual machines. EEVMPSO is a 
PSO-based VM placement approach that decreases energy 
consumption and 2.2% violating service level agreements 
(SLAs). Compared to PAPSO, KHA, EALBPSO, and 
RACC-MDT, studies have shown that using the suggested 
technique may reduce energy use by an average of 10.86%, 
18.22%, 25.8%, and 31.34%. The proposed method is used in 
CloudSim, and simulation results confirmed its usefulness 
concerning CPU usage, energy consumption, VM migrations, 
host shutdowns, and energy SLA breaches. Real-world 
implementation of EEVMPSO may verify its efficacy. 
Additionally, we recognize the constant evolution of cloud 
technologies, and future research should explore the 
integration of dynamic workload scenarios and other 
optimization techniques to further improve energy efficiency. 
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