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Abstract
Air quality level is closely associated with our day-to-day life due to its serious negative impact on human
health. Air pollution monitoring is one of the major steps of air pollution control and prevention. However,
limited air pollution monitoring sites make it difficult to  measure each corner of  a region’s pollution level. 
This research work proposes a methodology framework incorporating a deep learning network, namely
CNN-BIGRU-ANN and geostatistical Ordinary Kriging Interpolation model, to address this research gap.
The proposed CNN-BIGRU-ANN time series prediction model predicts the P  M10 pollutant level for existing 
monitoring sites. Each monitoring site’s predicted output is transferred as input to the geostatistical Ordinary
Kriging interpolation layer to generate the entire region’s spatial-temporal interpolation prediction map. The
experimental results show the effectiveness of the proposed method in regional control of air pollution.
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1. Introduction
With the rapid growth of urbanization, people suffer
from the dangerous air pollution level [1] worldwide.
Epidemiological studies have proved that exposure to
the high concentration of air pollution causes lung
cancer, respiratory diseases, premature death, and
many skin-related health problems [2]. It also has a
high negative impact on day to day activities and
productivity. As per the World Health Organization
(WHO) report, around seven million people die due
to high exposure to air pollution every year [3].
Therefore air pollution prediction in advance can help
policymakers, the government, and the public in the
environmental decision-making process to control air
pollution levels.

Particulate matter (PM2.5, PM10) [4], sulfur dioxide
(SO2) [5], nitrogen dioxide (NO2) [6], ozone (O3),
and carbon dioxide (CO2) [7] are categorized as the
most critical pollutants. However, particulate matter
is the most dangerous contaminants due to its serious
negative impact on the environment and public health
[8]. Particulate matter usually includes dust from
the construction site, industrial sources, and waste
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material burning. It is easy to inhale, but breathing
particulate matter can cause various health problems
[9] for pregnant women, older adults, and children. So,
policymakers need to predict particulate matter more
accurately.

PM10 (Particulate matter with a diameter of less than
10 micrometers) [10] is one of the most dangerous
pollutants among all the contaminants [11]. This
pollutant concentration has become a severe issue
worldwide [12]. Therefore, the control of PM10 can
improve the air quality level and protect human health
and reduce economic loss. So the accurate prediction
of the PM10 level for the entire area can help people
avoid this type of serious issue and allow people and
the government to take necessary preventive action in
advance [13].

Many air pollution monitoring stations have estab-
lished at several locations to monitor air quality levels.
Researchers and policymakers use sensor generated
data to predict air pollution levels for the next hour, the
next day [14]. People can plan their daily activities to
prevent the harmful impact of air pollution using this
information. However, the lack of pollution information
at each point can cause many discrepancies in the pre-
diction results, which arises due to limited monitoring
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sensors. This is typically a spatial interpolation and
extrapolation issue of air pollution prediction [15].

Air pollution prediction problems generally include
knowledge based and physical-based approach [16].
The physical prediction approach is based on atmo-
spheric science and requires a strong knowledge of
environmental science and pollutant diffusion mech-
anism [17]. Due to the complex pollutant diffusion
mechanism, this approach has limited usage.

The knowledge-based prediction models are based
on the dataset’s hidden properties. The knowledge-
based prediction models include statistical, machine
learning, and deep learning-based approaches. Tra-
ditional statistical prediction models fail to analyze
the effect of other parameters on air pollutants. How-
ever, in the past studies, it is proven that the par-
ticulate matter is widely affected by meteorological
[18], climate variables, and traffic emissions [19]. Many
research studies have experimented with data-driven
based machine learning techniques and found better
prediction results than the statistical model. But these
models cannot process a vast amount of nonlinear
multidimensional data sets. It is also challenging to
perform correlation analysis among climate variables
and air pollutants using machine learning-based tech-
niques. Recently deep neural network techniques have
been applied to overcome this issue [20]. With the
rapid development of artificial intelligence techniques,
deep learning-based methods are widely using for air
quality modeling. Deep learning models, having many
hidden layers, have proven better models for complex
feature representation. These models have shown better
generalization properties than machine learning-based
models. The neural network’s hierarchical properties
can better at deeper hidden feature extraction of air
quality input data, developing better air pollution pre-
diction models. Deep learning techniques have become
the fastest-growing research field due to their high effi-
ciency of analyzing the extensive time-series dataset’s
temporal pattern and predicting the air pollution level
over different time resolution [14]. So, deep learning
models can be appropriate for our research work.

A vital air quality modeling component is under-
standing the temporal and spatial variations in ambient
air pollutant concentration; usually, the ambient air
pollution level reaches its peak level in the industrial
estate and congested traffic area [21]. It has been noticed
from various research studies that small variations of
ambient air pollution levels may occur over short dis-
tances. A monitoring site’s air pollution data can be
considered representative of a small area within that
distance. Still, the deep learning model only considers a
particular monitoring site’s location during air quality
prediction but does not capture the pollutant concen-
tration variation due to local sources and other places
[19].

On the other hand, geostatistical models are the
traditional spatial prediction models that consider air
pollution’s spatial variability during air quality model-
ing [22]. It is notable that most geostatistical methods,
including Kriging, Inverse Distance Weighting interpo-
lation technique, do not analyze the temporal variation
of extensive time-series data. From the research study,
it is found that most of the prediction models either
predict the spatial variation or temporal variation of air
pollution on a larger scale but not at the same time.
This research aims to predict pollutant concentration at
a high temporal resolution and spatial variation with
improved accuracy.

Following the introduction, the rest is organized as
follows. Section 2 represented the literature review.
Section 3 formulates the problem; Section 4 presents
the study area. Section 5 focuses on the proposed
methodology framework. The results are discussed in
Section 6, and Section 7 concludes the research study.

2. Literature Review
Air pollution prediction has been conducted using
data-driven approaches like Autoregressive Integrated
Moving Average (ARIMA) [23] and the Seasonal
Autoregressive Integrated Moving Average (SARIMA)
[24] model, which are based on data stationarity.
Stationarity based existing prediction models are often
violated by air pollution dataset. Later, nonlinear
machine learning models such as Random Forest,
Radial Basis Function (RBF) [25], Principle Component
Analysis (PCA) [26], Support Vector Regression [25],
Support Vector Machine (SVM) [27, 28], Artificial
Neural Network (ANN) [29], BP Neural Network
[30] came into the picture to perform time series
prediction. On the other hand, with the rapid growth
of AI technologies, nonlinear machine learning models
are not used as state-of-the-art models because of
the gradient decent issues. Deep learning models,
e.g., Recurrent Neural Network (RNN) [31], Long
Short Term Memory Network (LSTM) [32] and Gated
Recurrent Units (GRU) models are reported as the
better prediction models due to their efficiency of
handling both short term and long term dependency
in the high volume of time series dataset. These
models can also overcome the gradient decent issues
of nonlinear machine learning problems very efficiently
[20].

FU et al. studied time series prediction using LSTM,
GRU model and found that recurrent neural network-
based model outperforms the univariate statistical
time series prediction models [33]. Later on, the
researcher studied to develop multivariate time series
prediction model as these models are not suitable for
multivariate time series prediction. Maggiolo et al.
proposed a multivariate autoregressive convolutional
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recurrent neural network prediction model. This model
is useful only in sequence to sequence modeling, not
for nonlinear architecture [34]. Several other models
also proposed for multivariate time series prediction
like RNN-LSTM [35], Gated Recurrent Long Short
Term Memory model [36] and Bidirectional LSTM
(BILSTM) [37]. Few researchers applied bidirectional
properties of the recurrent neural network to identify
both forward and backward temporal dependency
to improve the prediction performance. Bidirectional
GRU (BIGRU) [38] model generates lower error value
than GRU and hence, exhibits better accuracy during
PM2.5 time series prediction. Moreover, this model
outperforms the other existing model; furthermore, it
gives better results than the baseline LSTM model due
to its bidirectional properties. Ge et al. developed the
DBU-LSTM model based on the unidirectional and
bidirectional properties of RNN [39]. The DBU-LSTM
model was evaluated with a real-time air quality dataset
of Beijing, which outperforms the unidirectional LSTM
model. These time series-based prediction models are
not efficient enough to analyze the dataset features’
hidden correlation, affecting the prediction results.
So, Huang et al. adopted both CNN and RNN based
LSTM architecture to get a good quality of PM2.5
prediction value, where CNN identifies the correlation
among the feature and reduce the dimensionality of
the dataset and LSTM is used for temporal air quality
modeling [40]. These models have proved better at
long-term dependency modeling. These studies have
some limitations as they do not consider the spatial
variability of air pollution concentration.

Some research studies improved the prediction per-
formance of time series prediction models by integrat-
ing spatial features. Spatial-temporal prediction prob-
lems depend upon the characteristics of feature value
and its geographical coordinates. The spatial-temporal
prediction problem for irregular grid [41] is the most
challenging issue in the deep learning research area.
The most challenging part is to model the temporal and
spatial dependency accurately within the data. Sun et
al. put forward Inverse Distance Weighting (IDW) inter-
polation and data diffusion method to make full use
of time, space [42]. They proposed a spatial-temporal
prediction framework to get accurate results. Extracting
spatial characteristics in a high dimension is a sig-
nificant issue as the interpolation techniques depend
upon the assumption that the research study objective
is static. To overcome these limitations, few CNN based
architecture was adopted by a few researchers. Xie et
al. analyzed spatial characteristics of PM2.5 monitoring
stations and developed CNN’s-GRU model to extract
spatial features of multi-scale data in a high dimension
automatically to develop an advanced PM2.5 prediction
framework [43]. Lin et al. extend the DCRNN model
concept to establish GC-DCRNN (Geo Context-based

Diffusion Convolutional Recurrent Neural Network)
model. The GC-DCRNN model implements neighbor-
hood characteristics and automatically extracts the
essential factors affecting air pollution to find the best
prediction result [44]. These models exhibited excellent
prediction performance, handling temporal and spatial
variability. Most of these models focus on the hourly
temporal resolution or one step ahead prediction. Air
pollution prediction for the next day, next week, and the
following month are more useful. However, a minimal
study has conducted predicting air pollution levels at
a high temporal and spatial resolution and has seldom
been solved.

Based on the above survey, this paper proposes an
algorithm based on recurrent neural networks and
a spatial modeling approach to automatically extract
the features and identify long-term dependency to
get better spatial-temporal air pollution prediction
results. It replaces the traditional neural network-based
prediction models, which cannot simultaneously solve
feature extraction, spatial-temporal correlation, and
data interpolation issues.

3. Problem formulation
Due to unstructured air pollution monitoring stations,
it is difficult to identify the spatial distribution of
air pollution levels and predict its value for an
unknown point. In order to predict the temporal-spatial
distribution of air pollution levels for an entire region, a
proper prediction model should be developed followed
by spatio-temporal data analysis. The pollution levels
for existing monitoring stations can be utilized here to
predict unknown points.

Given a set of historical air pollution dataset
P = [p1, p2, p3.....pt] of time length t for each (i × j)
monitoring stations within an area A for all 1 ≤ i, j ≤ N .
Each pollution monitoring stations has observed time-
series dataset P for each pollutant i.e.,

P =


pt

(1,1) . . . pt
(1,j)

...
...

...
pt

(i,1) · · · pt
(i,j)


where, i and j are the longitude and latitude of each
pollution monitoring stations and treated as spatial
features of dataset. Given P as the set of time series
pollution dataset with time window t in a particular
region, the objective is to predict the future pollution
level p̂m,n

t+d at unmeasured point (m, n) for time (t + d),
where d is the number of next days for which it is
necessary to know the future pollution level.

4. Study area
Odisha, an Indian state, is selected as the research
area, which covers 4.87 percentage of the country
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and approximately 155,707 km2 area. As ambient air
pollution has become one of Odisha’s critical concerns
[45], this state is considered the experiment area
to evaluate the proposed model’s performance. The
historical air pollution dataset [46] collected from
an Indian government open-source website [47] used
to model air pollution prediction algorithms. The
distribution of air pollution monitoring stations in
Odisha is represented in (Fig. 1). The dataset includes
PM10 pollution concentration value for 2004-2015 with
station id, sampling locations, and sampling date as
attributes. The dataset description is presented in Table
1.

Table 1. Dataset description

Dataset input variables Variable value
Number of monitoring stations 16
Time period 2004-2015
Time interval (In day) 1
Pollutant PM10
Pollutant Unit µg/m3
Number of records 12616
Minimum value 56
Maximum value 202
Mean 125.57
Median 124.5
Standard deviation 42.158

5. Proposed approach
The proposed model consists of four parts. One
dimensional CNN (1D convNet) is used for feature
extraction and reduces dimensionality during the initial
stage. In the second step, extracted features fed into
the bi-directional GRU model for time series prediction
for all sampled points. Though the CNN-BIGRU model
gives good quality prediction results, there is an
opportunity to maximize its accuracy. It is possible to
analyze the error component as a nonlinear component
and model it with a nonlinear artificial neural network
(ANN) [48] to improve accuracy further. At the end
stage, the time series model’s output neurons are fed
into the geostatistical Spherical Ordinary Kriging (OK)
[22] layer to improve its spatial prediction capability.
Thus, the proposed method performs spatial-temporal
prediction in the study area. The proposed architecture
is represented in (Fig. 2). Each part of the proposed
architecture is discussed in the below subsections.

5.1. Preprocessing steps
The collected ground observations sensor dataset con-
tains PM10 concentration level of 16 air pollution moni-
toring sites. The day-wise sampled data are normalized,
and outliers are removed in the prepossessing step

to improve the performance and increase the model’s
learning speed. The z-score normalization technique
[49] is utilized to normalize air pollution dataset. As
the collected dataset has missing attributes, this study
adopted the temporal interpolation method to recover
the missing attributes in the preprocessing step.

Feature extraction layer. After the preprocessing step,
the normalized output is used as the input to the
one-dimensional Convolutional Neural Network (1D
CNN) layer. This layer is based on data sparsity and
weight sharing function [40]. Though it has tremendous
application in image classification, it is also useful for
time series prediction due to its sequential modeling
capabilities. This layer converts the input into a form
that can be directly used in further stages. In 1D
CNN, each hidden layer works as a convolution layer
with input and weight as a vector parameter and can
extract high-level and low-level features by reducing
the data’s dimensionality. Max-pooling operation is
conducted, followed by the convolutional process to
minimize the number of parameters and computation
of the framework by reducing the time series pollution
dataset’s length. As time acts as a spatial dimension in
convNet [50], the max-pooling operation also helps to
minimize spatial dimensionality.

Temporal modeling layer. As the sensor data are
usually in time series, air quality modeling is
possible by analyzing its time series dependency
pattern. The recurrent neural network based deep
learning model, GRU [51], is implemented to predict
PM10 concentration value. GRU model is more
straightforward than LSTM [52] architecture due to its
less number of gates, i.e., update gate and reset gate
[53]. The basic structure of the GRU model is presented
in (Fig. 3).

The Update gate (zt) captures the long-term depen-
dencies, whereas the reset gate (rt) captures the short
term dependencies. (zt) decides how much information
should keep, and the reset gate signifies the amount
of data need to forget. It’s fewer parameter utilization
is simpler to train and time-consuming, and efficient
enough to solve vanishing gradient issues. The basic
GRU model can be estimated as follows [50]:

rt = σ (wr ∗ [xt ,ht−1]) (1)

zt = σ (wz ∗ [xt ,ht−1]) (2)

ht = (1 − zt) ∗ ht−1 + zt ∗ ĥt (3)

ĥt = σ (wh ∗ [xt , (rt ∗ ht−1)]) (4)

(rt) process pollution dataset as input (xt) and hidden
state (ht−1) and then implement sigmoid (σ ) activation
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Figure 1. Air pollution monitoring stations. The marked red area indicates the Odisha state situated in the country of India. Green
marked dotted symbols represent the spatial distribution of air pollution monitoring stations in Odisha.

Figure 2. The proposed model system architecture. The figure shows the feature extraction layer (CNN), temporal modeling layer
(BIGRU), fully connected layer, fine-tuning layer, and interpolation layer of the proposed model, which are involved in performing
spatial-temporal air pollution prediction.
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Figure 3. Basis structure of GRU model [52].

function. It will determine if the current state will keep
the new data or still have past information. The sigmoid
activation function that lies between (0 to 1) is adopted
to predict the output result’s probability. (zt) process
the input (xt), hidden state (ht−1) and apply sigmoid
activation functions to determine which information to
keep and throw away [53]. wz, wr , wh are nothing but
weight matrix for update gate, reset gate, and candidate
output. When the (zt) becomes close to ’0’, the model
remembers the previous value, but if the (rt) value is
close to ’0’, then it will ignore the previous hidden
state and reset to (xt). As the model has a separate
reset and update gate, each unit learns to capture
dependencies at a different timestamp. The unit, which
is used for capturing short term dependencies, will
manage to have a frequently active reset gate and active
update gate for long term dependencies. The candidate
activation function (ĥt) is estimated with (rt). The actual
activation function (ht) of the model at time t, is a linear
interpolation between (ĥt) and (ht−1). Furthermore, as
both the past and future data play an essential role
in temporal modeling, the experiment was conducted
using the bidirectional GRU (BIGRU) model to conduct
both forward and backward propagation [50]. This
model can capture the temporal dependency from both
directions and give more accurate prediction results
due to its lower error, which is impossible in the one-
directional GRU model. Further, with the combination
of 1D convNet, it gives far better performance than any
other simple recurrent neural network-based model. To
further optimize the performance, fine-tuning is the
ultimate solution, so we added a nonlinear recursive
artificial neural network (ANN) [25] model, which
adjusts the bias by finding the correlation between
the outputs for better prediction results. This proved
its effectiveness in temporal modeling of time-series

datasets. The details of the experimental setting of
temporal air quality modeling are represented in Table
2.

Table 2. Experimental setting

Parameter value
Training set 80%
Testing set 10%
Validation set 10%
Epochs 2000
Optimizer Adam
Learning rate 0.001
Activation function Relu
Loss function MSE

As discussed earlier, deep learning models are mostly
used to perform time series forecasting for each site but
unable to predict pollution levels for the entire region,
including the places where there is no air pollution
monitoring station [15]. This research paper proposes
a spatial-temporal interpolation prediction approach,
which utilizes the obtained time series prediction
results of each site as its input and performs spatial
prediction to overcome this research gap.

Spatial-temporal interpolation using transfer learning approach.
Air quality monitoring has a vital role in air pollution
reduction, but minimal monitoring stations have
established to monitor the air pollution level due to
high construction costs. It is challenging to follow air
quality levels at each corner of a location, which arises
the need for spatial analysis of air quality to understand
its harmful impact over a particular area [54]. It is also
necessary to predict spatial distribution for the next few
days to take appropriate preventive action against the
severe adverse effects of pollution in advance.

The PM10 pollutant prediction of each site is
done using the CNN-BIGRU-ANN model individually.
Afterward, those predicted values were transferred
as the input for Ordinary Kriging interpolation layer
within the range of observation points to generate a
continuous surface of PM10. Thus, this operation would
help predict the PM10 level at each measured and
unmeasured location to visualize the PM10 level for the
entire study area.

Ordinary Kriging (OK) [55] model calculate the
unknown point values using known point values with
the help of a weight function. The weight function
is the weighted average of the available data instead
of just considering distance like the IDW [22] model.
The weight calculation in kriging is based on the
observations data’s assumptions, whether the process
is second-order stationarity based or depends upon
the covariates. The unmeasured point values can be
predicted using the OK model as follows [56],
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ẑ(m, n) =
N∑

i,j=1

γ(i, j)z(i, j) (5)

where (m, n) is the point whose value needs to be
predicted, γ(i, j) is the weight of the observed value
at location (i, j), N is the number of sampling point in
the neighborhood area and z(i, j) is the measured value
at location (i, j). The OK model’s weight function can
be estimated using semivariance, which is usually used
to determine the spatial dependence. Semivariance
expresses the relationship between the existing data
and the estimation point. It can be estimated as half
the squared difference between the paired data point
values. Semivariance value λ at h can be computed as
[57],

λ(h) =
1

2nh

nh∑
i,j=1

[z(i, j) − z((i, j) + h)]2 (6)

where, h represents the distance between two points
(i, j) and ((i, j) + h), nh represents the number of sample
points within the searching neighborhood area h used to
calculate the variance value between (i, j) and ((i, j) + h).
z(i, j) represent the observed pollutant value at point
(i, i) and z((i, j) + h) is the observed pollutant value at
((i, j) + h) [58].

The OK model follows two steps to identify spatial
distribution. The first one is to discover autocorrelation
among spatial data, and the second one is for
prediction. It considers adjacent points weighted
by distance in the interpolated area and extent of
autocorrelation λ(h) to quantify optimum weights at
each sampling distance [59]. After removing the data’s
spatial trend, it determines the best variogram model
and then generates the required interpolated surface.
The Ordinary Kriging model is utilized as the end
layer of the proposed architecture to generate Odisha’s
prediction map over the next 28 days of December
2015.

6. Results and discussions
In this paper, the proposed architecture is designed
for spatial-temporal prediction of PM10 in the study
area. This research paper considers the temporal
correlation of air pollution data and examines the
spatial relationship among the unmeasured locations
to the monitoring sites during air quality modeling.
The time series prediction result of the proposed CNN-
BIGRU-ANN model for the 16 monitoring sites of
Odisha is shown in (Fig. 4-5). (Fig. 4-5) shows the time
series prediction of the input variable PM10, where
both observed and predicted values follow the same
fluctuations for each site, which offers the effectiveness
of the proposed CNN-BIGRU-ANN model in temporal

modeling. The X-Axis presents the duration of the
time series prediction, while the Y-Axis of the figures
represents the predicted PM10 value for that duration.

Another salient feature of the proposed method
is that it has a newly designed Ordinary Kriging
interpolation layer, which interpolates CNN-BIGRU-
ANN time series prediction results to generate a spatial-
temporal pollution prediction map. This is the most
important aspect of air pollution management as it
enables us to conduct air pollution prediction and
map the correlated data successfully. The time series
prediction results of these 16 air quality monitoring
sites of Odisha are utilized to perform spatial
interpolation using an Ordinary Kriging technique,
which generates a spatial-temporal interpolation map
for the entire study area. For the illustration, the
spatial-temporal interpolation results of each day of
December 2015 are presented in (Fig. 6-7). (Fig. 8)
presents the designed web application to display the
spatial prediction map of PM10 at a high temporal
resolution for the study area. Hence, the user can access
the prediction information in advance and keep them
safe by taking necessary preventive action.

From the interpolation prediction map, we can see
a clear peak value of PM10 in the eastern area of
Odisha, i.e., the capital city area. That may be due to the
high transportation network and inappropriate human
activity. As per government statistical report, the
total number of transportation and non-transportation
registered vehicles has increased to 574564 and
5258793, respectively, as of 31st March 2016 [60] in
Odisha. An increasing number of vehicle transportation
might be the main reason for this high emission of PM10
across all over Odisha, which is marked in red color in
(Fig. 6-7). Still, further research requires to find out the
reason behind the high emission of pollutants in the
study area. Spatial prediction maps could be essential
information for smart city users, policymakers, city
planners, and the government to initiate the needful
preventive service against the unfavorable situation of
air pollution.

To further evaluate the performance, the proposed
CNN-BIGRU-ANN model is compared with other
baseline and state-of-art models. Statistical prediction
model like SARIMA [46] and FbPROPHET [61]
models are used as baseline models for performance
comparison. Moreover, deep learning based LSTM,
GRU, BIGRU, and bi-directional LSTM (BILSTM)
models, are also used as state-of-arts models for
comparison purposes. In the experiment, 80% of the
data is used for training and 10% of data, i.e., last
month data is used for testing purposes, and the
model is trained to predict PM10 value for the next
28 days of December 2015. Parameters of LSTM, GRU,
BILSTM, and BIGRU models are optimized during the
training process. Three metrics, including Root Mean
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Figure 4. Time series prediction result over the next 28 days (1-28 December 2015). (Fig. (a)-(h)) represents the prediction results of
eight monitoring sites of Odisha. The orange color bar and the green color bar represent the predicted and original PM10 concentration.

Square Error (RMSE), Mean Absolute Error (MAE), and
Mean Absolute Percentage Error (MAPE) is utilized
to evaluate the generated errors and determine the
prediction quality of the proposed CNN-BIGRU-ANN
prediction model. Used error metrics can be expressed
as shown in Equation 7-9 where i is the total error,
i=0,1,2...n.

The smaller the RMSE, MAE, and MAPE value, the
better the prediction result will be due to less prediction
error.

RMSE =

√√
1
n

n∑
i=1

e2
i (7)

MAE = 1
n

n∑
i=1

|ei | (8)

MAPE= 100
1
n

∑∣∣∣∣∣ e(t)A(t)

∣∣∣∣∣ (9)

The comparative results of the models are represented
in Table 3.

Table 3. Time series prediction performance comparison of CNN-
BIGRU-ANN and other baseline models.

Model RMSE MAE MAPE
PROPHET 61.984 46.667 68.890
BILSTM 56.260 47.738 80.016
SARIMA 51.925 20.985 24.560
BIGRU 45.969 34.056 58.261
LSTM 41.446 32.743 60.067
GRU 33.870 28.098 49.042
CNN-BIGRU-ANN 15.403 13.0126 20.049

Table 3 shows that the FbPROPHET model has
higher RMSE, MAE, and MAPE due to their nonlinear
properties. BILSTM, SARIMA, BIGRU, LSTM, and GRU
have relatively lower error metrics. The comparative
analysis proved that the proposed CNN-BIGRU-ANN
prediction model had the best performance, having the
lowest error metric value. It exhibits the bidirectional
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Figure 5. Time series prediction result over the next 28 days (1st December 2015-28th December 2015). (Fig. (i)-(p)) represent the
prediction results of the remaining eight monitoring sites of Odisha. The Orange color bar and the green color bar represent the
predicted and original PM10 concentration.

properties of RNN structure [4] and performs a fine-
tuning operation to improve prediction results at a high
temporal granularity.

It can easily understand that CNN-BIGRU-ANN is
75% better than the PROPHET in terms of RMSE value.
Furthermore, it is also found that the CNN-BIGRU-
ANN model is 62% better than ordinary LSTM and
54% better than the ordinary GRU model in air quality
modeling over the 28 days. Table 3 proves that the
proposed CNN-BIGRU-ANN is almost 54%-75% better
than the other time series prediction models.

The CNN-BIGRU-ANN time series prediction results
have experimented with different interpolation tech-
niques like Radial Basis Function (RBF), Inverse Dis-
tance Weighting (IDW) [62], Simple Kriging (SK), Uni-
versal Kriging (UK), and Ordinary Kriging (OK) [56] for
a fair comparison of model’s interpolation performance.
Radial basis functions [63] are based on basic radial
functions, which are generally used for creating the

neural network. This interpolation is usually used to
generate a surface using a large number of sampling
points. IDW [64] is a non-geostatistics interpolation
method and used to analyze the variation of the local
surface. This method used the linear weighted function
to find out each cell’s values of a local surface. The
inverse distance ratio’s power is used as a weight to
calculate the unmeasured point’s value. Simple Kriging
is one of the variants of Kriging techniques where
local means are constant. Universal Kriging [65] is a
variation of the Ordinary Kriging method with the non-
stationary condition. In the UK model, the mean value
differs at different locations in a deterministic way,
while variance remains constant. Hence, the UK is a
type of kriging method with a local trend or spatial
drift.

Root Mean Square Error (RMSE) and Mean Error
(ME) are used as error metrics to evaluate the
interpolation performance of the proposed method, as
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Figure 6. The temporal-spatial prediction map: Day-wise average PM10 value at Odisha (1st December 2015-16 December 2015).
The color indicates PM10 prediction value over the layer, and the dotted symbols represent the air pollution monitoring stations of
Odisha.

Figure 7. The temporal-spatial prediction map: Day-wise average PM10 value at Odisha (17 December 2015-28 December 2015).
The color indicates PM10 prediction value over the layer, and the dotted symbols represent the air pollution monitoring stations of
Odisha.
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Figure 8. PM10 Prediction map. Designed web application using ArcGis Predicts the average spatial distribution of PM10 for the
next day in Odisha. It shows maximum and minimum predicted PM10 value with its interpolation class level with the corresponding
area size.

shown in Table 4. Table 4 shows that the Ordinary
Kriging interpolates the CNN-BIGRU-ANN time series
prediction results more efficiently than any other
interpolation techniques due to lower RMSE and ME
error metrics. Hence, the Ordinary Kriging technique
is adopted to generate the Spatial-temporal prediction
map for the study area.

Table 4. Spatial-temporal interpolation performance comparison

Model RMSE ME
CNN-BIGRU-ANN-RBF 23.26 5.47
CNN-BIGRU-ANN-IDW 23.25 4.73
CNN-BIGRU-ANN-SK 21.72 4.29
CNN-BIGRU-ANN-UK 22.65 4.51
CNN-BIGRU-ANN-OK 16.40 3.68

7. Conclusion and future work
People across developing countries like India face high
exposure to air pollution due to various factors. Thus
the accurate spatial-temporal prediction of pollutants
is a crucial step to avoid high air pollution exposure
risk. In this research paper, a deep learning-based CNN-
BIGRU-ANN prediction model was first proposed to
predict PM10 level for existing monitoring sites. The

proposed CNN-BIGRU-ANN has 75% better prediction
results than the FbPROPHET model. The proposed
time series prediction model uses the kriging layer
to generate the entire study area’s spatial-temporal
prediction map. Experimental results show that the
proposed method incorporated with deep learning and
geostatistics approach could provide early information
of pollutant level for a particular site and the entire
region for reducing the health risk associated with
PM10 pollutant.

We can extend this research work in the future
by adding more variables like meteorological factors
and traffic, which significantly contribute to the rising
air pollution level. We have utilized only PM10
concentration level for spatial-temporal prediction due
to data unavailability. Analyzing the effect of other
factors on air pollution may further improve model
performance.
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