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Abstract

Cloud data provenance refers to the systematic recording and tracking of the entire lifecycle of digital
data within a cloud. Ensuring secure data provenance is crucial for maintaining accountability and
confidentiality in cloud environments. However, establishing trust between cloud customers and service
providers remains a challenge, highlighting the need for assured data provenance models. In recent times,
blockchain technology has emerged as promising solution for designing data provenance assurance models.
It provides a decentralized and distributed ledger to record the provenance of digital assets. In this work, we
design a blockchain-based framework for ensuring data provenance in cloud storage. Initially, we develop a

cloud storage application using OpenStack swift storage which helps in the generation of provenance data.
Subsequently, we design a data provenance assurance framework for confidential files of users using the
Ethereum blockchain. To evaluate the scalability and performance of the proposed framework, we analyze
various performance parameters such as transaction throughput, latency and gas limit using various scenarios.
The performance of the system is compared under two consensus algorithms namely proof of work and proof
of authority. This analysis helps to assess the effectiveness and efficiency of the blockchain-based solution in

ensuring data provenance in cloud storage environments.
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1. Introduction

Cloud computing operates as a model that offers
convenient and on-demand access to various resources,
including networks, computing power, storage,
databases, and services. These resources can be
provisioned through cloud service providers, allowing
users to leverage features such as on-demand services,
availability, and pay-as-you-go pricing. Consequently,
cloud computing has attracted millions of users. Given
the reliance on cloud services for storing and managing
data, it becomes crucial for users to have confidence
in the safety and security of their data [1] [2]. Thus,
cloud service providers must prioritize robust security
measures and implement mechanisms to maintain
the confidentiality, i ntegrity, a nd a vailability o f user
data. By establishing secure infrastructure, adopting
encryption techniques, implementing access controls,
and regularly monitoring and auditing systems, cloud
service providers can enhance the security and instill
trust among their users. One of the foremost concerns
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in cloud security research revolves around the creation
and administration of data provenance within cloud
storage.

Data provenance in cloud storage environments has
become an important research issue due to the increas-
ing dependence on cloud infrastructure for data stor-
age, sharing, and processing [3] [4]. Data provenance
provides a comprehensive record of a data asset’s jour-
ney, including its creation, modifications, a nd access,
thus enabling transparency and accountability. This
information is crucial for verifying data authentic-
ity, detecting unauthorized alterations, adhering to
regulatory mandates, and conducting efficient audits.
Furthermore, data provenance supports error tracing
and debugging, promotes collaborative data sharing,
enhances resource allocation, and mitigates the risks
associated with data breaches and unauthorized access,
all of which are essential in today’s cloud-centric data
ecosystems.

Recently, blockchain has been used to address
the data security issues in healthcare and cloud
[5] [6] [7]- Furthermore, blockchain is emerging as
a promising technology for design of robust data
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provenance mechanism in cloud storage [8] [9]. As
cloud storage becomes the backbone of modern data
management, ensuring data integrity, security, and
transparency is paramount. Traditional centralized
systems often fall short in meeting these requirements,
leaving data vulnerable to breaches and unauthorized
access. Blockchain’s decentralized and immutable
ledger technology offers a compelling solution by
providing an unforgeable, transparent, and auditable
record of data transactions and access. This not only
enhances data security but also facilitates regulatory
compliance, error detection, and efficient auditing.
By integrating blockchain into cloud storage data
provenance, organizations can establish a trustworthy
and verifiable system for tracking data history, instilling
confidence in their cloud-based data management
processes and addressing the evolving challenges of
data security and accountability.

In this study, we introduce a data provenance archi-
tecture leveraging blockchain technology to safeguard
data activities within a cloud storage application.
Our framework records the history of operations as
provenance data using OpenStack-based Swift storage,
with the corresponding data hashes being stored as
blockchain transactions. These blockchain transactions
are then grouped into blocks, which must undergo
validation by a cluster of nodes before being added to
the blockchain. Modifying or tampering with a data
log from the provenance would require locating the
specific transaction and block. However, it’s essential
to note that the cryptographic principles underpinning
blockchain technology permit alterations to a block
record only if an attacker can present a longer chain of
blocks compared to the majority of miners’ blockchain.
Achieving this task is exceedingly challenging, thereby
offering a robust level of security against tampering
attempts. Through the application of blockchain tech-
nology in the real-time cloud storage, our proposed
architecture enhances the data provenance and con-
tributes to preserving the integrity and security of
recorded data activities.

The contributions of this work are:

* Developed Blockchain as a Service (BaaS) for
provisioning of Ethereum blockchain platform on
an OpenStack private cloud.

* Developed a drop-box like storage application
using OpenStack Swift for logging of users
metadata.

* Designed and implemented a data provenance
framework for cloud data storage using Ethereum
smart contracts.

* Evaluated the performance of blockchain plat-
form on provenance framework considering the

impact of network size, load, consensus mech-
anism, difficulty level, and hardware configura-
tions.

The paper’s structure is outlined as follows: In Sec-
tion 2, we provide an overview of the background
work, encompassing related research, OpenStack archi-
tecture, Ethereum blockchain, consensus algorithms,
and Blockchain as a Service (BaaS). Section 3 delves
into the proposed work, encompassing the design of
storage application, BaaS, and the proposed data prove-
nance assurance framework using blockchain along
with the algorithms. Section 4 examines the impact of
the blockchain platform on the data provenance mech-
anism as part of our result analysis. Lastly, in Section
5, we present the conclusion and outline avenues for
future research.

2. Background Study

In this section, we discuss the related work and
brief overview of OpenStack, Ethereum and consensus
algorithms which are part of the data provenance
framework.

2.1. Related work

Within this section, our focus is on review of existing
research and literature related to data security. Partic-
ularly, we review the research work on the application
of blockchain technology for data provenance assurance
within cloud storage systems. In the literature, data
security is addressed through diverse methodologies,
including the application of machine learning [10] and
[11]. Additionally, access control to data is discussed in
[12],[13], [14], [15] and [16].

Data accountability and privacy are fundamental
attributes of cloud computing. However, delivering
these features has become challenging for cloud
stakeholders due to the underlying infrastructure. To
address this challenge, blockchain technology has been
used to tackle the issue of cloud data provenance in [17],
and [18]. The authors contend that the decentralized
and distributed characteristics of blockchain protocols
not only meet security prerequisites but also stimulate
the advancement of improved security measures for
cloud storage. In [19], the authors proposed a data
provenance framework for the cloud environment
using blockchain technology. They implemented their
framework on AWS S3 and demonstrated the use of
blockchain using dropbox-like application. The authors
collected metadata from user activities occurring in the
cloud environment and stored this metadata using IPFS
(InterPlanetary File System), which is a decentralized
protocol for storing and accessing data. IPFS utilizes a
decentralized peer-to-peer approach for data retrieval.
In the proposed framework, the metadata was stored
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in IPFS, and its cryptographic hash was recorded in
the blockchain. Traditional HTML requests for data are
typically based on file locations, but in IPFS, data can be
requested using the cryptographic hash. The blockchain
assigned an ID to each block in the ledger, and the
authors used this Block ID to verify the state of the data
stored in IPFS.

In [20], authors have applied the characteristics of
data provenance to the domain of e-science and have
created a taxonomy. It categorized their provenance
systems based on why they collect provenance, what
they describe, how they represent and store provenance.
Their main intention was to follow the scientific
approach. In [21], the authors address a critical cloud
computing problem that is becoming a key concern for
cloud stakeholders. Cloud service providers have found
that data in cloud computing environments cannot
be tracked effectively due to inadequate monitoring
software and also because of the logging mechanisms
that were used. The logging mechanisms were system-
centric which means when there was a shift from
owning computing services to buying computing
services, there were many concerns regarding the
ownership of the data, transparency of the data, and
security of course. Hence the authors tried to make it
data-centric instead and introduced S2Logger, which
collects, visualized, and analyses data operations in
the cloud. Thus, the resulting events of data give rise
to the provenance data records throughout the data
lifecycle. In [22], the authors present a novel virtual
machine (VM) authorization mechanism for cloud data
centers. They address the challenges associated with
the default VM authorization scenario, where users are
provided with SSH keys and IP addresses for accessing
their VMs. This approach becomes problematic when
users request multiple cloud resources, as it results
in the storage of numerous keys and IP addresses. To
overcome these issues and enhance VM authorization
security, the authors propose a method that combines
a claims-based authorization system with decentralized
storage based on blockchain technology. By leveraging
the benefits of blockchain, the proposed system offers a
more secure and reliable approach to VM authorization.

In [23], the authors present a Provenance Logger,
a kernel-space logger, and call it as Progger. With
this Progger, cloud stakeholders can easily trace the
data stored in the cloud. The logs from the kernel-
space provide every small action taken, thus giving
security analysts more detailed data. This provenance
data gives way to the creation of many higher-
level tools for successful end-to - end monitoring
of data provenance. Progger has thus provided log
tamper-evidence, eliminating removed false or manual
records, providing exact and granular synchronization
of timestamps across multiple devices, and effective
monitoring of system core usage. This offers strong
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data protection reliability, and audits of user operation.
In [24], authors introduce BSTProv system for sharing
secure and reliable data provenance using blockchain.
Authors achieve the provenance by dividing the
local provenance graph into multiple sub graphs and
storing these as transactions in distributed ledger. The
proposed system also incorporates the authorization
and cross-domain provenance in smart contracts. The
implementation is done using consortium blockchain.

In [25], the authors propose a decentralized system
that allows various parties to jointly store, operate and
execute data and preserve the data privacy. Here, the
authors have built a model Enigma, which is highly
upgraded model of stable multi - agent computing,
assured by a genuine network of secret sharing. A
modified distributed hash table is used for storing
secret-shared data using an external blockchain. It
provides authorisation and serves as an event log
which is tamper-proof. Like Bitcoin, Enigma removes
confidence in a third party and ensures autonomous
control of personal data. With this, users can share
their data for the first time with cryptographic
protections for their privacy. In [26], the authors
focus on utilizing blockchain techniques to enable data
tracing throughout the entire data life cycle, with a
particular emphasis on tracing data transfers within
cloud data centers. In [27], the authors propose a
data provenance mechanism that employs a lightweight
mining algorithm. This mechanism establishes a legal
and ethical framework for important categories of
provenance. However, it does not specifically address
data stored in cloud storage.

In [28], the authors present a hybrid algorithm
based on blockchain to enhance the privacy and
efficiency of existing techniques. They evaluate their
approach using a virtual cloud environment. In
[29], the authors introduce a system called DistProv,
which combines IPFS and blockchain technology. The
system secures digital documents using permission-
based access control through Ethereum smart contracts,
and zero-knowledge proofs. Authors in [30] design a
data provenance scheme for multi-cloud storage. The
provenance data is stored and validated using using
smart contracts. Authors evaluate the security and
efficiency through simulation experiments. Authors in
[31] propose architecture for ensuring secure storage in
a cloud environment using smart contract. Authors use
blockchain and the IPFS for to store and validate the
storage data.

2.2. OpenStack Architecture

OpenStack [32] is a widely used open source cloud
operating system designed for the deployment of
public and private clouds. OpenStack offers a set of
APIs that enable users to access and manage the
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various components of a cloud infrastructure. Figure 1
illustrates the architecture of OpenStack with different
layers and components involved in its operation.

Applications ]

OpenStack
Dashboard

OpenStack Shared Servicey

Standard Hardware )

Figure 1. OpenStack Architecture

OpenStack consists of three services namely com-
pute, network, and Storage service. It has additional
services such as Heat, Glance, Keystone, Horizon, etc.
Three important functions are described below.

Compute Service:

The OpenStack Compute service is a critical
component of IaaS. It helps in hosting and managing
virtual instances for users. NOVA handles the life cycle
management of virtual machines (VMs) and supports
various hypervisors to create and run these VMs.

Networking Service:

OpenStack networking service called Neutron, plays
a crucial role in managing networks within OpenStack.
It enables the creation of network topologies that are
independent of the underlying hardware from different
vendors. Neutron takes care of various network-
related tasks such as handling IP addresses, DNS,
load balancing, security groups, DHCP (Dynamic Host
Configuration Protocol), and firewall policies. Users
can create and manage network configurations for
guest virtual machines (VMs) in their cloud projects.
It provides the necessary tools and APIs to define
and control network resources, allowing users to
customize their network setups based on their specific
requirements within the OpenStack environment.

Storage Service:

Storage as a Service (STaaS) refers to the manage-
ment of storage resources through a set of remote APIs,
allowing users to access and utilize storage capabilities
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without needing to deal with the underlying imple-
mentation details. This approach abstracts the com-
plexities of storage infrastructure and provides a stan-
dardized interface for storing, backing up, and sharing
data. OpenStack supports three categories of storage’s
namely object, block and shared file.

2.3. Ethereum

Ethereum Blockchain [33] provides secure peer-
to-peer applications. Ethereum is a decentralized,
open-source framework to create private and public
blockchain network. It is used to create crypto currency
as well as the distributed applications. Ethereum
platform provides incentives in terms of Ethers to the
miners. Ethereum uses smart contracts for creating
transactions. Ethereum architecture can be viewed
as a layered architecture for developing distributed
applications as shown in Figure 2.

DApp Wep DApp Web
Server Server
CoT T T TN T T T T o i ______
T
: HTML /Javascript | | : HTML/CSS/Javascripit
I Web3js : I Web3js
I Apache/Nginx servef | ! Apache/Nginx web seryer
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|
| |
| RPC . RPC
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I I Il I
I
I, [Block 1sBlock psBlock 3 | : I'l |Block |sBlock 2s{Block B |
| | I |
I I
by Blockchain eoon Blockchain J'
|
|

Figure 2. Ethereum Framework Architecture

Ethereum Dapp:

In Ethereum framework architecture, each web
browser or client interacts with its instance of the
application. Hence, we call this as the decentralized
application as there is no central server to monitor and
control. Ethereum consists of two main components.
First is the database, where every transaction in the
network is stored in the blockchain. Anyone can verify
this transaction as there is complete transparency.
Second is the code which contains the main logic of
the application. The web server interacts with the EVM
using RPC as shown in Figure 2.

Geth:

Ethereum Foundation has created Geth client

application which is written in the Go programming
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language. A copy of the blockchain is downloaded here.
It continuously interacts with other nodes to keep its
copy of the blockchain up to date. It can also mine
blocks and add transactions to the ledger, verify the
block transactions and also carry out the transactions.It
also functions as a server via the provision of APIs
with which you can communicate through RPC. This
also comes with a javascript application (geth console),
which can be used for connecting to the blockchain.
RPC:

Remote Procedure Calls (RPC) for Ethereum allow
developers to interact with nodes from remote appli-
cations. They enable the submission of requests to
node and return relevant information on the Ethereum
blockchain.

Web3 Js:

Web3.js helps us to design clients who connect
with the Ethereum Blockchain. It’s a library allows
operations such as transferring ethers and writing smart
contracts.

2.4. Consensus Algorithms

We use two consensus algorithms to evaluate the
scalablity of proposed data provenance framework.
The distributed network such as blockchain, unlike
conventional architecture, has nodes that act as both a
server and a host, and it needs to share information with
other nodes to achieve consensus. Often some nodes
are down or offline, and some malicious nodes also
occur, which can seriously affect or break the consensus
process. Hence, a secure and efficient consensus
protocol can accommodate the presence of these factors
and reduce the damage.

We use the following consensus algorithm as part of
our evaluation.

Proof-of-Work:

PoW consensus is most widely used algorithm
in blockchain platforms. It is used in both Bitcoin
and Ethereum, the two best known cryptocurrencies.
Blockchain transactions need verification, and ‘'miners’
do that. The transaction verifier needs to know the
cryptographic hash value of the last documented block
and that’s secret from everybody. PoW ’s advantage is
that finding the hash requires immense computational
power, and the mathematical puzzle is overhauled
every 14 days making it complex. PoW is very secure
as performing a DDoS attack requires 51% percent of
the total computing power. But this occurs at a very
high cost, electrical energy and continuous upgrade of
hardware.

Proof-of-Authority:

Proof of Authority (PoA) algorithm is based
on reputation which provides effective solution for
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blockchain networks particularly in private networks.
The advantages are it allows having valid and
trustworthy identities. It has a standard for approving
the validator which makes it difficult to become
a validator. However, the validators are visible to
everyone and the third-party can cause manipulation
using the identities of the validators they know. It
sacrifices decentralization to achieve high throughput
and scalability.

2.5. Blockchain as a Service in Cloud Environment

Developers often encounter difficulties in finding
a convenient and effective approach to implement,
manage, and supervise their applications on cloud
platforms, which hampers the reliability and security of
their applications. The complexity of the infrastructure
itself is a key factor contributing to these challenges.
During the development of business code, developers
are often unaware of the potential consequences
associated with the intricate nature of the operating
platform, making it challenging for them to proactively
address future inaccuracies. Towards this, Blockchain-
as-a-Service (BaaS) has emerged as important service.
Companies such as IBM and Microsoft have introduced
their own Baa$S platforms, yielding positive outcomes
by mitigating deployment and development challenges.
With integration of blockchain platform leveraging
the cloud services, the developers can benefit from
streamlined deployment and maintenance. This enables
the delivery of user-friendly and high-performance
blockchain ecosystems and related services to devel-
opers while mitigating concerns associated with the
underlying architecture. In our work, we offer a BaaS
platform on an OpenStack-based cloud, providing
developers with a comprehensive ecosystem.

3. Proposed Work

Within this section, we initially discuss the design
of Baa$S platform and storage application in OpenStack
cloud. Later, we discuss the design of data provenance
assurance mechanism using Etherum blockchain.

3.1. Blockchain as a Service on OpenStack Private
Cloud

Blockchain is a platform that allows users to host and
use their apps, functions, and smart contracts on a
blockchain. It behaves like a full-fledged platform that
eases the development process. A blockchain network
is built by adding nodes to it. These nodes are called
peers in the network. Before adding the peer to the
network, the initial step is to install all the services
and have the genesis file initialized. This is done by
a simple user interface using the Django framework.
Then the enode of the geth client needs to be shared
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across all the peers in the network. All the peers verify
the consensus rules and then add it to the network.
Now, this peer gets the updated copy of the blockchain.
Any peer can carry out transactions with any other
peer in the network, for which they get rewarded with
ethers. All the transactions are carried out securely with
complete transparency and data integrity.

Algorithm 1: Blockchain as a Service

1 Input: Blockchain Network name C, number of
peers N, configuration of peers, S
Output: File F containing IP address and
keypair K
Begin
for N nodes do
Create a VM using Openstack SDK
Create a keypair K
end for
for N nodes do
Create paramilko session
Change the hostname in host file
Install services T:ethereum,geth,solidity
if blockchain services T == True then
Initialize the genesis file
Open the geth console
Open new session of VM and
attach to geth console
Get enode-id of geth instance
and write to F
Replace loopback address with private IP
of the VM in enodeid in file F
end if
end for
Mail file F with IP address and keypair K
for N nodes do
Add the enode of all (N-1) peers
to the Nth peer
end for
End

Algorithm 1 describes how Blockchain-as-a-Service
is implemented using OpenStack VMs. The required
number of VMs requested by a user are created using
OpenStack SDK and keypair is generated. Then, to
create private blockchain network, paramiko sessions
are created in all the VMs. Required libraries and
packages are installed. Later, from the geth console,
unique enode-id of respectives nodes are fetched in a
file and this file is exchanged among other nodes to
form peers in the private blockchain network.

3.2. Storage Application using OpenStack SWIFT

In this subsection, we discuss the design of storage
of application using OpenStack SWIFT storage. This
application is designed for the private cloud deployed
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in the campus. Later, we discuss the use this application
to create provenance data for the user’s files.

There are many Internet-based cloud services that
are offered by industry giants like Google and Amazon,
which are the most efficient and secure in their field.
But, they lack certain factors. Public cloud services
require high bandwidth to upload or download files
from their servers. No matter where we store our
data on the internet, there is always a risk of losing
its confidentiality. Since uploading and downloading
of files would happen within the college campus
network in the private cloud, no internet access
would be required for the purpose, hence making the
procedure faster and more flexible. Thus we designed
a drop-box like application for private cloud with
features like upload, download, share, and rename.
We also implemented additional functionalities like
synchronization of files.

4——P| Application Backena
| i

—
| Web Server |

I
2
2

Web Interface

L l’roxi Server |

=k =
i« &

| Swift nocH Swift noCHz Swift noc{e

Users Swift Cluster

{

| Hypervisor

| Host Operating System |

3

| Hardware

Figure 3. Storage Application using OpenStack SWIFT

Figure 3 illustrates the storage application built using
OpenStack Swift at the backend which is similar to
Dropbox. The OpenStack cloud architecture uses four
primary nodes namely Compute, Neutron, Controller,
and Storage for computing, networking, managing
networking resources, and storage respectively. These
nodes are deployed on top of a hypervisor. Users are
connected through a web interface to the OpenStack
application backend. The application has four main
modules as represented in the figure 3. The user files
module has the user container where all the objects of
the user are stored, which can be accessed and various
operations like download, upload, share, etc can be
performed over it only by the owner. End users can
share objects with other users via email or directly to
their account through the sharing module. One can
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make a folder public, which makes the objects in it
accessible to all other users that can search for their
profile in the showcase module. The desktop client
module syncs a selected folder between the cloud
web client and the local machine desktop client. All
the modules are accessible only after authentication
through a service called the keystone.

Algorithm 2 shows how metadata is generated from
OpenStack Dropbox like storage application. All the
authenticated cloud users can make file operations on
those files for which they are authorized to make. Upon
any action by any user, the provenance data is written to
a file consisting of Record_ID, Date_Time, User_Name,
File_Name, Action performed.

Algorithm 2: Generating provenance data from
OpenStack Storage application

1 Input: File operations done by users on
OpenStack Swift application, file F
Output: Provenance data
Begin

FILE *fp
for each user do
fp < fopen(provenance_data,"a")
if fp == NULL then
print "ERROR"
end if
for each file operations of user do
Record_ID « record_id
Date_Time « timestamp
User_Name « username
File_Name « filename
Action « action_performed
write data into the file F
end for
fclose(fp)
end for
End

3.3. Cloud Storage Provenance Assurance using
Blockchain

We use the Swift storage application that is designed
as shown in Figure 3. Figure 4, describes the working
of the proposed system. User can request the Cloud
Service Provider to access the data that he has stored
in Swift storage application (1). Data changes caused
by these operations are monitored and validated by
using the proposed framework. These operations are
recorded as provenance data. The Cloud user who
stores his data in the Swift storage, can perform
various file operations on those files for which he
is authorized (2). The Cloud Service Provider who
provides a cloud-based platform, application, or storage

services stores this provenance data in blockchain (3b)
as well as in a local database (3a). Blockchain is a
distributed network that stores the provenance data
records in the form of blocks. The database records all
the provenance data having attributes like date, time,
username, filename, affected user, an action performed
by the cloud user, and the corresponding transaction
hash and block hash. Through the blockchain-based
provenance system, cloud providers can detect the
data breach and take necessary action. To check
the integrity of the data stored in the cloud, the
user requests the auditor to validate the data (4).
In turn, the auditor asks the blockchain network to
receive a blockchain receipt for a given data (5).
The blockchain returns that transaction’s blockchain
receipt (6). It provides parameters like blockHash,
blockNumber, from-address, gas consumed, input hash,
transaction hash, to-address. During validation, the
auditor matches the input hash data record in the
provenance data file with the input hash present in the
blockchain receipt, by fetching the receipt. The auditor
then updates the local database with the validation
status (7).

Cloud Service Provider

User
& 1. Data Access %

3a. Provenance Dat

Openstack Private Clgud

-
&2. File operatio
EE——

Swift Storage Provenance data

4. Request for data Validation
3b. Provenance Data

7. Validation Status J

v
& 5. Request for blockchain receipt

<

o 6. Blockchain receipt
Auditor P Blockchain Network

Figure 4. A Framework for Data Provenance Assurance

The proposed framework is built on top of a storage
application that is designed using OpenStack SWIFT,
which provides user control of personal data and also
file sharing. Users can perform various operations like
download, upload, share, etc. These operations are
monitored and recorded by the service provider and
stored as provenance data in a local database including
various attributes like Date, time, username, filename,
affected user who is affected by the particular operation.
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Table 1, shows sample provenance data. Note that tx-
hash, block hash, and validation columns are added
when the auditor verifies the data record.

The data provenance architecture is built on a
blockchain. Blockchain provides the ability to perform
operations for cloud storage. Figure 5 describes
the higher-level architectural design consisting of
three different layers functioning at different levels.
The initial step involved here is the collection of
provenance data from the private cloud. The second
step involves making transactions, where the data
collected is encrypted and stored in the blockchain as a
hash in a block. The third step is updating the database
with file-related information like the file name, time,
hash, the operation performed, and location of files.

3.4. Algorithms

We have designed and implemented two algorithms
as part of the proposed work. Algorithm to store the
provenance data on the blockchain is illustrated in
Algorithm 3. Once the provenance data is collected, the
data is published to the blockchain network through the
smart contract, which has the logic to store the data in
the blockchain. Every transaction that is made returns
the transaction hash which uniquely identifies input
hash which is the hash of the data sent along with the
transaction.

Algorithm 3: Store Provenance Data

1 Input: Provenance data file
Output: Transaction hash and Input hash
Begin
while NOT EOF do
Read record from provenance file
Start geth console in the node
if Eth_Account is locked then
Unlock Eth_Account
end if
Create a Smart contract for the transaction
Start Ethereum Mining and Consensus
if Mining_and_Consensus == True then
Write the Transaction as smart contract
Wait for block creation and validation
Record Tx and input hash from Ethereum
Append TX and input hash to Metafile
end if
end while
End

The algorithm 4 illustrates the process of validating
data records. An auditor requests the wuser for
blockchain receipt for validation of the data records
stored in the blockchain. The receipt for blockchain

includes data record, transaction hash and input
hash. The auditor compares the Blockchain hash with
provenance file input hash to verify the data record.
If true is returned, then the transaction is certified as
authentic. If it returns false, it means the block has
been tampered with. By adding the validation status the
auditor updates the data record in the database.

Algorithm 4: Validation of Data record by the
Provenance auditor
1 Input: Transaction Tx, Provenance hash i
Output: True / False
Begin
Start Ethereum geth client console
Start Ethereum Mining and Consensus
if Mining_and_Consensus == True then
Ethereum_Hash < Transaction hash, Tx
end if
ProvenannceDB_Hash «+
ProvenannceDB[hashi]
if Ethereum_Hash == ProvenannceDB_Hash
then
return True
else
return False
end if
End

4. Results and Discussion

In this section, we discuss the experimental setup
and performance analysis of blockchain networks for
storing the provenance data. We also carryout the t-
test analysis of consensus algorithms to assess the
suitability of consensus algorithm for proposed cloud
data provenance assurance framework.

4.1. Experimental Setup

We provisioned Blockchain as a service as PaaS
in the OpenStack private cloud. Using this, we
evaluate the performance of Ethereum Blockchain,
by varying the transactions. Transactions refers to
the metadata or provenance data received from
Swift-based storage application. The scalability and
efficiency of blockchain platform affects the design of
data provenance mechanism. Thus, we evaluate the
performance of the proposed system using six different
scenarios in terms of transaction and query delay. We
use small, medium and large size VM’s for creating
blockchain networks as part of BaaS. For the fifth
scenario i.e. impact of hardware, we have used medium
and large VMs of RAM sizes 4 GB and 8GB GB
respectively with 2VCPUs and 20GB HDD. We read the
provenance data from the file and store it in Ethereum
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Table 1. Data Provenance File

Record ID | Date and Time User Name | File Name | Affected User | Action Tx. Hash | Input Hash | Validation
1 07-02-2020 10:00:00 | A X None Create a file k-bits m-bits TRUE
2 07-02-2020 20:00:00 | A Y None Create a file k-bits m-bits TRUE
3 08-02-2020 09:00:00 | A X None Read a file k-bits m-bits TRUE
4 08-02-2020 22:00:00 | A X B Share file to user B k-bits m-bits TRUE
5 09-02-2020 10:00:00 | A Y B Write to file Y k-bits m-bits TRUE
6 09-02-2020 16:00:00 | B V4 A Copy file from user B | k-bits m-bits TRUE
7 11-02-2020 10:00:00 | B Z None Read a file k-bits m-bits TRUE
8 12-02-2020 19:00:00 | B Z A Write to file Z k-bits m-bits TRUE
9 12-02-2020 08:00:00 | A U None Create a file k-bits m-bits TRUE
10 13-02-2020 17:00:00 | A S None Create a file k-bits m-bits TRUE

>Provenance Data Collect@ Publish & Veriﬁcat> Database Update

#1 |Transaction

Block| PreviousBlockHash..

File
Operatior}s Y File ID | Hash [Operation|
— = > Block| PreviousBlockHash/|.. File X | 0Xdfg..| Upload
#2 | Transaction -
- File Y | Oxjhu...|Retrieve
Y
Block| PreviousBlockHash]..
#N | Transaction

Ethereum Blockhain

| Layer 1: Data Storage | Layer 2: Blockchain NetworkLayer 3: Provenance Databasel

Figure 5. Layered Architecture

blockchain network. We compute transaction and read
time for executed records. The system configuration
and their versions are presented in Table 2. For all
the scenarios, we use multi-node setup created using
Blockchain as a Service. BaaS helps in provisioning of
different blockchain networks based on the scenarios
and the parameters.

Table 2: Software and Versions

software Version
Operating System | Ubuntu v.16.04
Ethereum Client | Gethv.1.7.2
Smart Contract Solidity v.0.4.17
Application API Web3.js v.1.0

4.2. Performance Analysis

In this subsection, we discuss the scalability and
performance evaluation of blockchain networks for data
provenance assurance using different scenarios.

Scenario 1: Impact of Difficulty Level. Mining and con-
sensus in Ethereum is performed using computational

puzzle using hashing function. The computational puz-
zle uses previous hash, nonce and transaction root to
compute block hash. The miner who solves the puzzle
first create a block and appends it to the ledger. The
puzzle has an important component in mining and
consensus process which is difficulty level. Difficulty
level represents the mining difficulty in terms of trail-
ing zeros in computed block hash. Mining becomes
complicated and difficulty by increasing the difficulty
level. Thus, performance analysis of proposed prove-
nance mechanism in varying difficulty level becomes an
important research issue.

Figure 6 illustrated the latency obtained by varying
difficulty levels. In this experiment, 100 transactions
are kept constant and difficulty level is varied. We
have computed the read and transaction latency for
different difficulty levels. We found that, as the
difficulty level increased, the both read latency and
transaction latency increased, because miners will
require more computational power and time to solve
the mathematical puzzle and compute the hash. Hence,
it creates longer delays in creation of blocks.
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Figure 6. Latency V/s Varying Difficulty Level

Scenario 2: Impact of Load. A Blockchain is predomi-
nantly used for making transactions. In our work, the
provenance entries are the transactions which need
to be written or read from blockchain network. The
number of transactions grow over a period of time
for each user. Hence, evaluation of transaction write
and read latency becomes an important aspect. Further-
more, block difficulty increases continuously in case
of POW. Hence, the average computational power con-
sumed when mining a block increases, leading to higher
electricity consumption. Gradually, the systems become
slower and expensive with the increase in transactions
or load.
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Figure 7. Latency V/s. Varying Load

Figure 7 shows effect of read latency and transaction
latency with varying load. We have made a multi-node
setup consisting of three peers and used POW algorithm
on all nodes with a constant difficulty level of 0x300.
We vary the load in terms of 50, 100, 150, 200 and
250 transactions. The results reveal that transaction and
read latency increase linearly with varying load. The
transaction latency is more compared to read latency.
This is because; the write transaction involves mining

and consensus mechanism. However, read latency does
not involve mining process. The node whichever is
nearer to the user, retrieves the required data from
blockchain network.

Scenario 3: Impact of Network Size. The important
feature of Blockchain is distributed and decentralized
network, which makes it different from the traditional
centralized system and thus increases reliability,
durability and fault tolerance. The cryptographic
currency used in a blockchain enables distributed
internet hubs to merge. In Ethereum Blockchain, Ethers
is the currency used. A well-designed network manages
the distribution of tokens across all peers in the network
to maximize the growth of the network. The peers in the
network directly exchange ethers and therefore control
funds. The ether increases in value as the success and
utility of the project increases. That is why scaling out
is becoming an essential factor in blockchain systems.

I8 Read Delay
BE Transaction Delay

140

120

Delay (in seconds)

No. of Nodes

Figure 8. Latency V/s Varying nodes

Figure 8 shows a graph of increase in latency by
varying number of nodes in the network. Number of
Transactions are 100 with a constant difficulty level and
POW consensus algorithm. Network size is increased
each time by adding one, two, three, four and five peers
respectively. Each node is of 2 GB RAM size. As we scale
out our network, transactions and blocks take more
time for broadcasting and validating. Thus, write and
read latency increases with the increase in number of
nodes. Furthermore, transaction latency is higher than
read latency as it involves solving computational puzzle
as part of mining process.

Scenario 4: Impact of Consensus Algorithm. The consensus
algorithm is an important component of any blockchain
system. This algorithm affects transaction throughput
and latency. Thus, there is a need for choosing a suit-
able consensus protocol for the proposed provenance
framework. Hence, we evaluate the performance of
data provenance mechanism using two popular con-
sensus mechanisms supported by Ethereum platform.
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Ethereum platform used POW-based consensus algo-
rithm. Though it avoids DDoS attacks and makes min-
ers’” work complicated, it only happens at high cost,
electrical energy and continuous upgrade of hardware.
Thus, latest versions of Ethereum support Proof of
Authority (POA) and Proof of Stake (POS) algorithms.
Proof of Authority is a reputation-based consensus
mechanism which offers high security, privacy, through-
put, and performance. This consensus mechanism uses
set of authorised validators based on the stake using
ether’s. Thus, this mechanism helps in designing high
throughput systems. In this scenario we have imple-
mented and evaluated POW and the Proof of Authority
(PoA) consensus algorithms.

250 E
I8 Proof-of-Work

BB Proof-of-Authority

200

150

Transaction Delay (in seconds)

2 4 6 8 10

No. of transactions

Figure 9. Transaction Delay V/s Varying Load

Figure 9 shows the transaction and ready latency
with varying load using two consensus algorithms. The
experiment is conducted for 2, 4, 6, 8 and 10 peers in the
ethereum private network. A difficulty of 0x300 is kept
constant and 200 transactions are carried out. Initially,
Proof of Work is implemented and transaction latency
is calculated. And the same experiment is conducted
by changing only the consensus algorithm to Proof
of Authority. We observe that Proof of Authority has
a high hash rate, hence requires less computational
power when compared to Proof of Work. POA has fixed
validators for validating transactions which increases
the throughput and security of the network. Whereas
POW is resource intensive and difficulty level goes
on increasing requiring high power, energy, time, and
cost. Therefore we observe lesser transaction latency for
POA.

Figure 10 shows a graph of the number of nodes
v/s read latency for 2, 4, 6, 8 and 10 nodes with
constant difficulty level of 0x300. This experimentation
is carried out POW and POA algorithms. We use use 200
transactions to compute the latency. The results reveal
that, POW consensus algorithm takes more time to read

I8 Proof-of-Work
220 | | I8 Proof-of-Authority :

200

Read Delay (in seconds)
~
(e}
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Number of transactions

Figure 10. Read Delay V/s Varying Load

from blockchain than the proof of authority. Thus, POA-
based consensus algorithms help in designing a scalable
and efficient data provenance mechanism using POA.

Scenario 5: Impact of Hardware. In this scenarios, we
evaluate the impact of hardware configuration on the
transaction and query latency of blockchain networks.
In this experiment, we have carried out 100 transactions
by keeping difficulty level of 0x300 and proof of work
consensus algorithm as constant. We have compared
the transaction and query latency considering virtual
machines of 4GB and 8GB nodes to check the
performance of the blockchain concerning scalability
and network infrastructure. As expected, as the RAM
size increases, the speed of transactions increases.
Also, we observe a linear pattern for transaction and
query latency as number of nodes increases which is
illustrated in Figure 11 and 12.
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Figure 11. Transaction Delay V/s Varying Nodes

Scenario 6: Impact of Gas limit. Every transaction that is
carried out consumes some amount of gas. Gas limit is
nothing but the amount of units of gas we are spending
on a transaction. And this gas limit will be initialised
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Figure 12. Read Delay V/s Varying Nodes

in the genesis file. Lowering the gas limit wont help
us, instead our transaction will get failed. Hence its
advisable to add enough gas limit. The unused gas to
will be refunded to the account after the transaction
becomes successful. We have experimented with Gas
Limit (GL) values 0x33000000 (GL1), 0x330000000
(GL2), 0x3300000000 (GL3), 0x33000000000 (GL4) and
0x330000000000 (GL5). From Figure 13, we observe
that as we increase the gas limit, we can allow more
number of transaction to execute within Ethereum
blockchain. Hence, latency decreases.
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Figure 13. Delay V/s Gas Limit

4.3. t-test Analysis

In the following section, we have used the statistical
inference technique t-test to prove that the Proof-
of-Authority outperforms Proof-of-Work consensus
Algorithm. The confidence level of 0.05 is used. It
introduces a null hypothesis (referred to as HO) and
an alternative hypothesis (referred to as H1). A test is
made with an assumption that the null hypothesis is
true. Based on the result we can say if we need to accept

the null hypothesis or reject it. Table 3 displays the
transaction latency of both the consensus algorithms
where difficulty level is kept constant and number of
transactions are varied from 25, 50, 75, 100 uptil 250.
Sample consists of 10 experimental results. Table 4
describes the statistical test summary. The t-Test Paired
Two Sample for Means tool performs a paired two-
sample t-Test to check the null hypothesis. The result
of this tool is a calculated t-value. P(T <=t) two tail is
the probability that a value of the t-Statistic would be
observed that is larger in absolute value than t.

Table 3: Experimental Results

PoW (seconds) | PoA(seconds)
80 37
92 67
120 73
140 92
162 108
177 133
199 167
222 189
249 201
301 259

Table 4: t-test Summary

Statistical Analysis Terms Results
Hy(NullHypothesis) pa =0
H; (AlternateHypothesis) pq >0
Observations(N) 10
Mean POW=174.2,
POA=132.6
Variance POW=4940.8
POA=4918.7
df 9
Alpha o 0.05
t Stat 14.76535396
P(T < = t) two-tail 1.29356E-07
t Critical two-tail, pp 2.262157163

Based on the given information, the hypothesis
testing conducted suggests the following conclusions:
The null hypothesis (HO0) assumes that the true
mean difference (d) is equal to zero. The alternative
hypothesis (H1) assumes that d is greater than zero.
The mean of PoW is 174.2, and the mean of PoA is
132.6. The degrees of freedom (df) is 9. The t-statistic
obtained from the actual t-test is 14.76535396. To
determine the statistical significance, we compare the
t-statistic to the critical t-value. In this case, the critical
t-value is 2.262157163. The probability (p-value) that
the absolute value of the t-statistic would be observed
to be larger than the critical t-value is calculated as P(T
<= t) two-tail (1.29356E-07). Since the p-value is less
than the significance level (alpha) of 0.05, we reject the
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null hypothesis. This means that there is a significant
difference in the means of the two samples. Therefore,
we can conclude that there is strong evidence to support
the alternative hypothesis (H1) that there is a major
difference in the means of the two samples.

t PDF (Two-Sided Test at Alpha = 0.05)
04

=]
W

Probability Density
2 e

Figure 14. Two-tailed t test curve

From Figure 14, we can see that t Stat (t) value
equal to 14.765 lies in rejection region. We can
conclude that using PoW, the latency will be more
when compared to PoA. PoA outperforms PoW because
PoW involves all the miners in the mining process also
requires high computational power and energy, thus
making it complicated. Whereas PoA on the other-hand
has limited validators for sealing the block, reducing
the time and providing high throughput. Thus, we
conclude that POA is suitable for providing assurance
of cloud data provenance.

5. Conclusion

To ensure the integrity and trustworthiness of data
stored in the cloud, it becomes important to trace
the origin and history of each data object. To tackle
this challenge, we introduce a blockchain-based cloud
data provenance system designed to provide assurance
for data operations within a cloud storage applica-
tion by recording every action taken on data objects.
Our approach involves the development of a cloud
storage application utilizing OpenStack’s Swift storage
and generating comprehensive provenance data. This
system acts as a robust defense against malicious activ-
ities in the cloud environment improving the reliabil-
ity of data operations. Using open-source Ethereum
blockchain, we have constructed a framework for data
provenance, wherein all sensitive files find secure stor-
age. We conducted a performance analysis focusing
on scalability, revealing that Proof of Authority (POA)
performs better than Proof of Work (POW) in terms of
efficiency. It is evident that blockchain performance is

D EA

influenced by both network size and hardware specifi-
cations.

Consensus algorithms play a significant role in
scalability and performance of blockchain networks
and distributed applications. As future work, we plan to
design consensus algorithms suitable for cloud storage
provenance assurance using game theory.
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