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Abstract 

In order to solve the problems of weak generalization ability and low classification accuracy in motor imagery EEG signal 
classification, this paper proposes a channel space weighted fusion-oriented feature pyramid network for motor imagery 
EEG signal recognition. First, the short-time Fourier transform is used to obtain the EEG time-frequency map. Then, it 
builds a new feature pyramid network(FPN). The attention mechanism module is integrated into the FPN module, and the 
channel spatial weighted fusion-oriented feature pyramid network is proposed. This new structure can not only learn the 
weight of important channel features in the feature map, but also learn the representation of important feature areas in the 
network layers. Meanwhile, Skip-FPN module is added into the network structure, which fuses more details of EEG 
signals through short connections. The Dropout layer is added to prevent network training from over-fitting. In the 
classification model, we improve the AdaBoost algorithm to automatically update the base learner according to the 
classification error rate. Finally, the proposed model is used to classify the test data and the Kappa value is used as the 
evaluation index. Compared with the state-of-the-art motor image EEG signal recognition methods, the proposed method 
achieves better performance on the BCI Competition IV 2b data set. It has good generalization ability and can improve the 
classification effect. 

Keywords: motor imagery EEG signal recognition, short-time Fourier transform, attention mechanism, FPN, channel spatial weighted 
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1. Introduction

Electroencephalogram (EEG) is an important biological 
signal formed by the synchronous summing up of 
postsynaptic potentials of a large number of neurons in 
the cerebral cortex [1]. EEG signal is a non-stationary and 
non-linear time series signal. Because of its high 
complexity, low signal-to-noise ratio, strong randomness 

and high dimension, it is difficult to control in brain-
computer interface (BCI). 

The brain-computer interface uses the EEG signals 
generated by the brain to directly establish information 
exchange and control channels with peripheral control 
devices such as computers without passing through 
peripheral nerves and muscle tissues [2]. Motor imagery 
(MI) EEG is one of the most commonly used EEG signals
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in BCT, and is currently a research hotspot in the field of 
medical rehabilitation [3]. 

In the study of BCI, the traditional EEG processing 
methods include three steps: preprocessing, feature 
extraction and classification. The common spatial pattern 
(CSP)[4] method is a popular feature extraction method, 
which maximizes the difference in energy between the 
spatial components of the two types of motion imagery to 
achieve classification by using spatial filtering. Other 
common spatial patterns are filter bank common spatial 
pattern (FBCSP) [5], power spectrum analysis [6], 
wavelet packet decomposition [7] and independent 
component analysis (ICA)[8]. Most of methods extract 
single features with manually feature selection and lack 
multi-feature fusion. Classification methods mainly adopt 
machine learning classification methods such as linear 
discriminant method, Bayesian classifier and support 
vector machine [9,10]. 

With the development of deep learning technology, 
convolutional neural network (CNN) has become the first 
deep network structure that has been truly successfully 
trained [11]. The CNN can learn and extract features by 
itself in image classification, and can fuse various features 
of EEG signals through images. In the study of deep 
learning-based BCI, Fu et al. [12] combined deep learning 
and data enhancement methods, using empirical mode 
decomposition to construct the EEG frame of artificial 
motor imagery. It used wavelet transform to obtain the 
time-frequency map of EEG, and constructed two kinds of 
network structures: convolutional neural network and 
wavelet neural network. Tabar et al. [13] proposed a new 
method by combining CNN and stacked auto-encoder 
(SAE). The short-time Fourier transform (STFT) was 
used to obtain the EEG time-frequency map as the input 
of the network. The classification accuracy of motor 
imagery EEG was 77.6%, which was better than that of 
SVM. Phang et al. [14] used working memory EEG data 
and azimuthal equidistant projection (AEP) method to 
obtain EEG power projection maps, and the recurrent 
neural networks (RNN) and CNN were combined to 
classify EEG images. Yang et al. [15] combined CSP and 
CNN to classify motor imagery EEG, and proposed the 
enhanced CSP to obtain paired projection matrix as the 
input image of the network, which achieved higher 
classification accuracy than FBCSP method. Li et al. [16] 
proposed a multi-wavelet basis function time-frequency 
analysis and conditional Granger causality method to 
conduct time-frequency analysis of motor imagery EEG 
signals to obtain the input images of CNN. Compared 
with the winners of BCI Competition IV 2a, the 
classification accuracy has improved by 12.15%. Gao et 
al. [17] developed a framework combining recurrence 
plots and convolutional neural network to achieve fatigue 
driving recognition. Meng et al. [18] proposed a motor 
imagery classification algorithm based on recurrence plot 

convolution neural network. Shi et al. [19]  proposed a 
sleep quality detection and management method based on 
electroencephalogram (EEG). The detection of sleep 
quality was mainly achieved by staging sleep EEG signals. 
First, wavelet packet decomposition (WPD) preprocessed 
the collected original EEG to extract the four rhythm 
waves of EEG. Second, the relative energy characteristics 
and nonlinear characteristics of each rhythm wave were 
extracted. The multisample entropy (MSE) values of 
different scales were calculated as the main features, and 
the rest were auxiliary features. Finally, the long short-
term memory (LSTM) model was applied to classify the 
extracted sleep features, and the final result was obtained. 
Fernandez-Blanco et al. [20] presented a study focused on 
the scoring of sleeping EEG signals to measure if the 
increase of the pressure on the features due to a reduction 
of the number though different techniques resulted in a 
benefit. But the above methods still cannot solve the 
problem of EEG signal classification effectively. 

Inspired by the application of deep learning network in 
MI-EEG, this paper proposes a channel space weighted
fusion-oriented feature pyramid network. Our main
contributions are as follows. First, the short-time Fourier
transform is used to obtain the EEG time-frequency map.
Then, it builds a new feature pyramid network(FPN). The
attention mechanism module is integrated into the FPN
module, and the channel spatial weighted fusion-oriented
feature pyramid network is proposed. This new structure
can not only learn the weight of important channel
features in the feature map, but also learn the
representation of important feature areas in the network
layers. In the classification model, we improve the
AdaBoost algorithm to automatically update the base
learner according to the classification error rate.

This paper is organized as follows. Section 2 introduces 
the related works. In section 3, we detailed give  the 
proposed motor imagery EEG signal recognition method. 
Section 4 gives the experimental results and analysis. 
There is a conclusion in section 5. 

2. Related works

2.1. Mask R-CNN model 

Mask R-CNN can extend Faster R-CNN by adding a 
branch for predicting an object mask in parallel with the 
existing branch for bounding box recognition. Mask R-
CNN is simple to train and adds only a small overhead to 
Faster R-CNN. Moreover, Mask R-CNN is easy to 
generalize to other tasks. Therefore, in this paper, Mask 
R-CNN is selected as the benchmark recognition model
[21], and the basic framework is shown in figure 1.
Previous deep learning-based object recognition processes
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include candidate region selection, feature extraction, 
classification and boundary regression. The Mask R-CNN 
model is mainly composed of CNN, Region Proposal 
Networks (RPN) and three branch networks (positioning, 
classification and semantic segmentation). 

Input 
image

ResNet-50

Feature 
map

1×1 conv

3×3 conv
1×1 conv

candidate 
region

RPN

classification

boundary regression

ROI Align Three branch 
networks

Figure 1. Mask R-CNN 

2.2. ResNet-50 

In this paper, ResNet-50 [22] is used as the basic network 
to extract EEG features. ResNet-50 is made up of 50 basic 
residual blocks. The structure of the basic residual block 
is shown in figure 2. Where, the input is x  and the 
expected output is )(xH . The learning goal of residual 
block is the difference between output and input, that is, 

xxHxF −= )()( , which directly transfers input 
information to output. It protects the integrity of 
information, and simplifies the learning goal and 
difficulty. The residual function )(xF  uses three 
convolution layers, where the convolution kernel sizes are 
1×1, 3×3 and 1×1 respectively. The middle 3×3 
convolution reduces the computation under the first 
reduced-dimension 1×1 convolution layer. In the second 
1×1 convolution layer, the reduction is done, which not 
only preserves the precision but also reduces the 
calculation amount. 

Weighted 
layer

Weighted 
layer

+

ReLU

ReLU

3×3, 64

3×3, 64

+

ReLU

ReLU

64-d

1×1, 64

3×3, 256

+

ReLU

ReLU

256-d

3×3, 64

ReLU

Figure 2. Base residual block 

2.3. Feature pyramid network 

Feature pyramid network (FPN) [23] can fuse shallow and 
deep features to obtain more robust semantic information. 
Simple targets can be distinguished by shallow features. 
Deep features can be used to distinguish complex targets. 
Resnet-50 can extract features representing EEG signals. 
Multi-scale features extracted by ResNet-50 can be fused 
by FPN module to obtain more representative and reliable 
features, so as to improve network performance. 

FPN is divided into the bottom-up path, top-down path, 
and a horizontal connection, as shown in figure 3. In the 
bottom-up path, the EEG signals successively pass 
through five stages: conv1, conv2, conv3, conv4, conv5. 
ResNet-50 uses the feature activation of the last residual 
structure as the output, and represents these residual 
module outputs as {C1,C2,C3,C4,C5}. {C1,C2,C3,C4,C5} 
has a step size of 14, 8, 16, and 32 relative to the input 
image. After C2,C3,C4,C5, 1×1×256 convolution is 
connected to generate feature layers M2,M3,M4 and M5 
with channel number 256. In the top-down path, M5 is 
up-sampled twice, and then added with M4. After that, 
3×3 convolution kernel (in order to eliminate the alias 
effect of up-sampling) is used to process the fused feature 
map to generate the final required feature map P4. So P3= 
M3+2×M4, P2=M2+2×M3. P5 is generated by M5 
through the convolution layer of 3×3 alone, and P6 is the 
feature layer formed after P5 passing down-sampling. 

conv5

conv4

conv3

conv2

conv1

Input

M51×1

M4

M3

1×1

1×1

M21×1 P2

P3

P4

P5

3×3

3×3

3×3

3×3

Twice up-sampling

P6

down-sampling

Figure 3. FPN structure 

3. Proposed motor imagery EEG signal
recognition method

3.1. Data set 
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The experimental data comes from the BCI Competition 
IV 2b data set (http://www.bbci.de/competition/iv/) 
collected by the Brain-computer Interface Laboratory of 
Graz Technical University [24]. The data set records nine 
subjects' EEG data sets: imagery left hand movements and 
imagery right hand movements. Each subject will collect 
five groups of EEG data through three electrode channels, 
C3, Cz and C4. The first-three groups are training data, 
including 400 motor imagery experiments. The latter two 
groups are testing data, including 320 motor imagery 
experiments. In the five groups of EEG data, the first two 
groups have 120 experiments respectively, and were 
neuro-feedback data without recognition results. The last 
three groups have 160 experiments, which are neuro-
feedback data with recognition results. Experimental 
paradigms with and without feedback are shown in figure 
4 and figure 5. 

 

Figure 4. MI without recognition feedback 

 

Figure 5. MI with recognition feedback 

The neuro-feedback experiment with recognition 
results is a gray human face displayed on the screen two 
seconds before the start of the experiment as a cue to 
prepare for the experiment. At the third second, the task 
prompt appears, and the subjects perform the 
corresponding motor imagery task according to the task 
prompt [25]. Based on the recognition results, the system 
will give a green smiley face that moves in the right 
direction or a red smiley face that moves in the wrong 
direction on the screen. 

The EEG data recorded in the channel are filtered with 
a band pass of 0.5-100 Hz, the sampling frequency is 250 
Hz, and the power frequency interference is eliminated by 
a 50Hz notch filter. 

3.2. Time-frequency image input 

Compared with traditional EEG feature extraction and 
classification methods, this study converts the temporal 
signals of EEG into images and automatically extracts 
features and classifies them through the proposed pyramid 
network. When subjects perform unilateral limb motor 
imagery, the energy of µ  rhythm (8~13 Hz) and β  
rhythm (13~30 Hz) in the contralateral motor sensory 
region of the brain decrease in a specific frequency 
segment. The energy of µ  rhythm and β  rhythm of the 
related motor sensory areas on the same side increase. 
This phenomenons are known as event related 
desynchronization (ERD) and event related 
synchronization (ERS) [26]. According to this 
phenomenon, the three channels (C3, Cz, C4) of EEG 
data that most relate to the motor sensory region of the 
cerebral cortex are selected in this paper. 

EEG is a kind of bioelectrical signal that contains rich 
time frequency information. The multi-channel 
acquisition method provides the spatial features. In this 
study, the motor imagery data with 2s of subjects is 
selected for STFT analysis [27]. The frequency bands of 
µ  rhythm and β  rhythm are 6~13 Hz and 17~30 Hz 
respectively. STFT performs the Fourier transform of the 
signal in the window through the window function 
translation on the time axis, and obtains the time-
frequency image with the size of 257×32. The image sizes 
of µ  and β  rhythm are 16×32 and 23×32 respectively. 

In order to make the influence of µ  and β  rhythm 
bands on subsequent feature learning and recognition 
consistent, a Bi-cubic function is constructed to reduce the 
image of β  rhythm to 15×32 [28]. According to the 
acquisition method of EEG, its spatial features are also 
important features for EEG classification. In order to 
make use of their spatial features, the three channels (C3, 
Cz, C4) are processed with the same time-frequency 
analysis, and the feature information is fused to obtain a 
93×32 gray image, as shown in figure 6 and figure 7. 
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Figure 6. Sample input image of left hand MI 

Figure 7. Sample input image of right hand MI 

The obvious ERD/ERS phenomenon can be seen from 
figures 6 and 7. In figure 6, when subjects perform left 
hand motor imagery, the energy of C3 channel in the 
17~30Hz band is higher than that of C4 channel, 
especially, in the period of 0.9s to 1.2s, the energy value 
is significantly higher than that of the corresponding band 
of C4 channel. The brightness of the time-frequency chart 
of the 6~13 Hz band in the C4 channel is darker than that 
of the corresponding band of the C3 channel. Especially, 
in the period of 0.6~1.2s, the energy value is significantly 
lower than that of the corresponding band in the C3 
channel. When the subjects perform imagery right hand, 
they conduct the opposite. The 17~30 Hz band of C4 
channel has higher energy value than the corresponding 
band of C3. The 6~13 Hz of C3 channel is darker and 
lower than that of C4 channel. 

3.3. Motor imagery feature extraction based 
on proposed network 

Due to lack shallow information, the traditional Mask R-
CNN has the defects of unrefined feature extraction and 

incorrect classification. Therefore, this paper proposes a 
C-mask (cell-mask) network model. C-mask network
conduct multi-scale fusion process combining with
feature fusion module. C-mask network combines with
channel space module to re-calibrate features and improve
the accuracy of EEG feature extraction.

Skip connection 

Because of the lack of shallow feature information, the 
classification of EEG features is wrong. In this paper, 
Skip-FPN [29] module is proposed for EEG signal feature 
fusion, which can fuse more reliable and usable features, 
as shown in figure 8. 

N2

N3

N4

N5

conv5

conv4

conv3

conv2

conv1

Input

P2

P3

P4

P5

Twice up-sampling

Figure 8. Skip-FPN module 

In the bottom-up process of FPN algorithm, the 
transmission of features from the bottom layer to the top 
layer needs 50 network layers in conv1, conv2, conv3, 
conv4 and conv5, resulting in serious information loss of 
the bottom layer. Although P5 in FPN has indirectly 
acquired the underlying features, the flow line is too long 
[30]. Therefore, the Skip-FPN module is proposed in this 
paper, and the feature of the last residual structure in 
conv2 is named as N2. Then it performs up-sampling with 
step size 2 to generate N3. Similarly, the N4 and N5 are 
generated. After N5, it connects a 1×1×256 convolution 
layer, generating the same channel number as P5 and 
adding them up. In this way, the shallow features are 
transferred to the top layer through the three network 
layers, which can accelerate the acquisition of shallow 
feature information and improve the accuracy of EEG 
feature extraction. 
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Channel space weighted module 

In this paper, the channel spatial weighted feature 
pyramid network (CSFPN) module is proposed by 
combining the channel spatial weighted module and 
feature pyramid network (FPN) module, as shown in 
figure 9. 

Input

256×256×64

256×256×256

128×128×512

64×64×1024

32×32×2048

CBAM

CBAM

CBAM

CBAM 32×32×2561×1

+ 64×64×256

+

1×1

1×1 128×128×256

+ 256×256×2561×1

D5 M5

D4

D2

M4

D3

P4

M3

M2

+

RPN

P5

3×3

P3

3×3

3×3

3×3
P4

Twice up-sampling

ResNet-50

Figure 9. Structure of CSFPN 

The first part in figure 9 is the ResNet-50 network, 
which consists of five phases. The feature activation of 
the last residual structure in each stage is represented as 
{C1,C2,C3,C4,C5}. The output sizes of C2,C3,C4,C5 are 
256×256×256, 128×128×512, 64×64×1024 and 
32×32×2048 respectively. The second part is the proposed 
CSFPN module in this paper. Because the extracted 
features in the shallow layer of the network contain many 
details, while the extracted features in the deep layer are 
more abstract, the CSFPN module is used to carry out 
channel space weighted for the generated features, and re-
calibrate the features, so as to enhance the effective 
features and suppress the useless features. 

As shown in figure 5, the feature graph F with size of 
256×256×25 output by C2 is input into the convolutional 
block attention (CBAM) module. Firstly, the input feature 
graph F is compressed in the spatial dimension, and the 
global average pooling and maximum pooling of one 
space are performed to generate two 1×1×256 channel 
descriptions s

avgF  and sFmax  respectively. The spatial

information of feature mapping is aggregated and then 
sent to a two-layer neural network with 1×1 convolution 
kernel to extract the information. The neuron number in 
layer 1 is 256/16, and the neuron number in layer 2 is 256. 
After that, the channel features are obtained through a 
Sigmoid function, i.e. 

)))(())(((
)))(())((()(

max0101
ss

avg

c

FWWFWW
FavgMLPFavgMLPFM

+=

+=

δ

δ
  (1) 

Where rCRW /
0 ∈ , CRW ∈1 . MLP shares the 

connection layer. s
avgF  and sFmax  denote the average

pooling and max-pooling respectively. δ  is the Sigmoid 
operation. r  denotes the zoom ratio. 

Secondly, two 256×256×1 channel descriptions s
avgF

and sFmax  are obtained by global maximum pooling and
average pooling based on channel features. After that, the 
addition operation is performed based on the channel. 
After a convolution operation with kernel size of 7×7, the 
dimension is reduced to a channel. Finally, spatial 
attention features are generated through Sigmoid function, 
i.e.

]));([(
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77

s
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FFf
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×
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=

δ

δ
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Where δ  is the Sigmoid operation. 77×f  denotes the 
convolution kernel size. 

In the same way, the feature maps of C3, C4 and C5 
modules are input into the CBAM module to generate 
attention feature maps. The CBAM module is then 
connected with a 1×1×256 convolution layer to make the 
output feature map have the same channel number for 
multi-scale feature fusion. In the process of multi-scale 
feature fusion, after the feature map with 1×1 convolution 
for D4, the M4 is obtained. Similarly, the M3 and M2 are 
obtained. M layer feature maps are then convoluted by 
3×3 (to reduce the aliasing effect caused by the nearest 
neighbor interpolation, and the surrounding ranges are the 
same) to obtain the final features of P2, P3, P4, and P5 
layers. 

CBAM module uses the global information of feature 
map after convolution layer to dynamically model the 
dependence of channel and space, so as to improve the 
feature learning ability of network. This module enables 
the network to learn important features and compress 
unnecessary features, so that the network can selectively 
optimize the parameters according to the importance of 
features. The structure of CBAM is shown in figure 10. 
The attention map of the feature map is calculated through 
the channel dimension, and then the attention map is 
multiplied with the input feature map to form F ′  for 
adaptive feature learning. Then, the attention map is 
calculated through the spatial dimension, and the attention 
map is multiplied with the input feature map to form a 
new feature map. 

F

Channel attention 
mechanism

×

Mc

Space attention 
mechanism

×

Figure 10. CBAM model 
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Data enhancement process 

In deep learning network training, it appropriately 
increases the amount of data, which can improve the 
generalization ability of the model, reduce the over-fitting 
in the training process, and improve the robustness of the 
model. In this study, the motor imagery data with a total 
length of 4s is sliced. For motor imagery data 
( TIRX ,∈λ ) with 4s after band pass filtering of 
0.5~30Hz, a sliding window with a duration of 2s is 
adopted to intercept time series segments along the time 
axis. The interception process is shown in formula (3): 

)}2(1|{ )2(,1 sfTtXx s
sfttE s ×∈= ×+ 

λλ     (3) 

Where λX  represents the MI segment with a length of 4s, 
and E represents the electrode channel. T is the total 
number of sample points in the time series. sf  is the

sampling frequency. M,,2,1 =λ  is the experimental 
ordinal number. M represents the experiment number of 
single subject. The step length of the sliding window is 
0.5s. In the motor imagery data with a total length of 4s, a 
total of 5 frames are captured, each frame is 2s in length, 
and the interval between frames is 0.5s. The specific 
process is shown in formula (4): 

)}2(1),5.1(1),1(1,
),5.0(1,1|{ )2(,1

sfsfsf
sftXx

sss

s
sfttE s

×+×+×+
×+∈= ×+




λλ    (4) 

The category label of each frame is equal to the real 
category label in this experiment. After data slice 
processing, the data volume is expanded to five times of 
the original data. 

Improved AdaBoost algorithm 

In the classification process of this network, we adopt an 
improved AdaBoost algorithm for EEG. AdaBoost 
(Adaptive Boosting) algorithm is a typical Boosting 
algorithm. Its advantages lie in updating the weight of 
training samples, changing the sample distribution, 
connecting multiple base learners and assigning weights 
separately. Finally, it can obtain the strong learner 
through the additive model. The motor imagination data 
clipped by sliding windows overlaps each other between 
windows in time, that is, there is a certain correlation 
between the training data samples processed by slices, 
which results in information redundancy. In different time 
segments, the motor imagination features of training 
samples may appear in advance or lag, so the importance 
of different time segments for classification is also 
different. In order to further mine and utilize the 
information in the augmented samples, this paper 

combines the improved AdaBoost algorithm with CBAM 
model. This method will assign weights to the augmented 
training samples and update the weights iteratively, so as 
to reduce the influence of sample information redundancy. 
In this paper, we propose an AdaBoost method which can 
update base learner automatically. 

Firstly, K CBAM learners are taken as the base learners 
in AdaBoost algorithm, the respective error rates of K 
base learners are calculated, and the base learner with the 
minimum error rate is selected. When the error rate of the 
base learner is greater than the random guessing 
probability of 0.5, the current base learner will be 
abandoned, and a CBAM base learner will be 
automatically pre-trained from the new random training 
sample and added to the base learner set. Then it is 
proceed with the iteration and calculates error rate. For 
the base learner that satisfies the condition, its weights are 
calculated and the sample weights are updated. After 
several iterations, the weights of K base learners are 
obtained. Finally, strong learners are obtained by the 
weights of K base learners and additive model. The steps 
of the improved AdaBoost algorithm are as follows. 
1) Divide the original data into training data and test

data. 90% of the data is used for training and 10%
for testing, and 10 fold cross validation method is
adopted.

2) Take 90% training data as input data. The input data
sample set is ),(,),,(),,( 2211 NN yxyxyx  , 

where Xxi ∈ , }1,1{ +−=∈Yyi , it is input into 
the CNN network structure for pre-training. The 
remaining 10% data is used as verification data, and 
K CNN-based learners of the subjects are obtained 
by repeating K times. 

3) Initialize the weight distribution of the training data.
At the beginning, each sample is assigned the same
weight, and the initial weight distribution )(1 iD  is 
shown in equation (5): 

)1,,1(),,,()( 211 NN
wwwiD N  ==     (5) 

Where w  is the sample weight and N is the number of 
samples. 
4) According to K CNN-based learners given in Step 2,

T round iterations are carried out in AdaBoost
algorithm. Calculate the classification error of each
base learner on sample distribution 1D .

∑
=

≠=

≠=
N

i
iiti

iitt

yxHIw

yxHPe

1
))((

)))((
  (6) 
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Where )(⋅P  is the probability density function of the 

sample, iy  is the true label of the i-th sample. iw  is the 

weight of the i-th sample. )(⋅I  is the indicator function. 

It selects the base learner h  with the lowest current 
classification error rate as the t-th base learner tH . If

5.0>te , then it discards the current base learner tH ,

and obtains a new base learner h′  from the training 
sample again, and then iterates and repeats the error 
calculation. When the above conditions are satisfied, the 
weight of the base learner in the final classifier is 
calculated: 

)1ln(5.0
t

t
t e

e−
=α    (7) 

Here, tα  is the weight of t-th base learner. 
The weight distribution of the training sample is updated 
according to the classification error rate and the weight of 
the base learner, as shown in equations (8), (9): 
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Where tZ  is the normalization factor. 
5) After T round iterations, the final classifier is

obtained by combining the weight tα  of each base
learner, as shown in equation (10):
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1
∑
=
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T

t
ttfinal xHsignH α      (10) 

Where finalH  is a strong learner model. sign(.) is a 

sign function. 
The sliding window is used to intercept the data into 5 

time periods on the time axis. The data sets of five time 
periods in the same experiment are input into the 
enhanced convolutional neural network model, that is, the 
strong learner model finalH . The voting method is used 

to obtain the label category of this experiment, that is, the 
category with the majority prediction in the five time 
segments is used as the category of this experiment. 

3.4. Verification Method 

For BCI Competition IV 2b data set, classifier training 
and testing are conducted for each subject. The 
classification accuracy, standard deviation and average 
Kappa value are used to evaluate the performance of the 
proposed method. In the new network model, the training 

model adopts the batch training. The training batch size is 
50, and the total number of training rounds is 400. The 
structure of the network adopts the stochastic gradient 
descent method. The Momentum value is 0.9 and the 
learning rate is 0.01. 10% of the input training data is used 
as the verification data. Dropout layer (dropout rate=0.5) 
is added to prevent over-fitting during network training. 
In the improved AdaBoost algorithm model, the number 
of base learners K and iteration rounds T of each subject 
are set as 8 and 16 respectively. 

In order to verify the feasibility of the proposed 
enhanced convolutional neural network model, the first 
three data sets of each subject are selected for 400 
experiments, and a total of 2000 images are obtained after 
data enhancement. 90% is used for training and 10% for 
testing. 10 fold cross validation is added to calculate the 
average classification accuracy and standard bias. The 
commonly used classification methods, including support 
vector machine (SVM) method, Twin SVM method [31] 
and CNN method, are selected as the comparison methods. 

In order to verify the validity of the model in this paper, 
the first three groups of data from subjects are treated as 
training data, and the last two groups of data are treated as 
testing data. In this paper, kappa coefficient is used to 
measure the classification accuracy. Kappa coefficient is a 
classification performance index that removes the 
influence of random classification accuracy, and its 
calculation method is shown in formula (11) : 

C
Cacc

/11
/1

−
−

=κ       (11) 

Where, acc is the classification accuracy of the sample. 
C is the number of classification categories. 

4. Experimental results and analysis

The feasibility verification and comparison results of the 
classifier model in this paper are shown in table 1 and 
figure 11. As can be seen from table 1, the accuracy (six 
subjects) of this method is higher than that of the other 3 
methods. For example, the classification accuracy of 
subject 1 is 77.3%, which is 2.6% higher than the Twin 
SVM method. Moreover, the standard deviation of the 
proposed method in this paper is 2.7%, which is lower 
than the other three methods, indicating that the 
classification accuracy of this method on this subject is 
more stable and will not fluctuate greatly. The final 
average classification accuracy of nine subjects is 76.4%, 
which is higher than other methods. 

Table 1. Comparison of classification accuracy with 
different methods/% 
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Subjects SVM Twin SVM CNN Proposed 

B01 71.8 74.7 74.5 77.3 

B02 64.5 70.8 64.3 65.5 

B03 69.3 66.1 71.8 61.0 

B04 93.0 94.9 94.5 94.6 

B05 77.5 86.1 79.5 87.2 

B06 72.5 70.3 75.0 76.0 

B07 68.1 73.4 70.5 75.0 

B08 69.8 73.9 71.8 75.0 

B09 65.0 75.2 71.1 76.3 

Average 72.4 76.1 74.8 76.4 

As can be seen from figure 11, the standard deviation 
values of the proposed method and the CNN method are 
close. And the standard deviation of most subjects is 
lower than that of SVM and Twin SVM, indicating that 
the accuracy of the proposed method has little fluctuation. 
No large deviation will occur. The new model has good 
robustness, and it is feasible to classify motor imagery 
EEG data. 

Figure 11. Standard deviation comparison with four 
methods 

For all the data of BCI IV competition, the 
effectiveness verification and comparison results of the 
proposed classifier model are displayed in table 2. As can 
be seen from table 2, among the 9 subjects, the kappa 
coefficients of 5 subjects with the proposed method in this 
paper are higher than that of other methods, namely 
subject 2, Subject 4, subject 6, subject 7 and subject 8. For 
a single subject, the Kappa value of subject 4 in this study 

is 0.96, and the classification accuracy reaches 98%. The 
Kappa value of subject 7 is 0.08, which is higher than that 
of other optimal classification models, showing a great 
improvement in classification accuracy. The average 
Kappa value of the proposed method in 9 subjects is 0.63, 
which is superior to other methods, indicating that the 
enhanced model is effective in the classification of motor 
imagery EEG data. 

Table 2. kappa value comparison with different 
methods/% 

Subjects SVM Twin SVM CNN Proposed 

B01 0.19 0.40 0.55 0.48 

B02 0.12 0.21 0.21 0.22 

B03 0.12 0.22 0.24 0.21 

B04 0.77 0.95 0.89 0.96 

B05 0.57 0.86 0.69 0.81 

B06 0.49 0.61 0.53 0.68 

B07 0.38 0.56 0.41 0.69 

B08 0.85 0.85 0.41 0.86 

B09 0.61 0.74 0.58 0.76 

Average 0.46 0.60 0.51 0.63 

According to the results in table 1 and table 2, the 
accuracy of the new convolutional neural network model 
in this paper is higher than other classification models in 
more than half of the 9 subjects. In Table 1, the first three 
groups of five data groups are adopted, and it can be seen 
that the accuracy of CNN method is higher than that of 
traditional SVM method in 8 out of 9 subjects, indicating 
that the convolutional neural network model has 
advantages in the classification of EEG time-frequency 
images. For the proposed method in this paper, the 
classification accuracy of 8 subjects is higher than that of 
traditional SVM method and CNN method. And the 
accuracy of 7 subjects is higher than that of Twin SVM 
method, indicating that the improved Adaboost algorithm 
in this paper can not only enhance the CNN model, but 
also effectively improve the classification accuracy. In 
table 2, the test data given by BCI competition are used 
for classification. The accuracy of 7 subjects with new 
method is higher than that of other methods. The average 
classification accuracy is the highest. It can be seen that 

EAI Endorsed Transactions 
Scalable Information Systems 

10 2021 - 01 2022 | Volume 9 | Issue 34 | e2



10 

the new convolutional neural network model can better 
improve the classification effect, and the model has good 
generalization ability. The proposed method converts 
motor imagery EEG signals into images and performs 
feature processing and classification through deep 
learning. 

According to the results in table 1 and table 2, there are 
still large differences in classification accuracy between 
different individual subjects. For example, subject 2 and 
subject 3 are less accurate than the other subjects. From 
the time frequency diagram, the time frequency diagram 
of the left and right hand motor imagination of subject 3 is 
shown in figure 12. Compared with subject 4, who has the 
highest classification accuracy among the 9 subjects, the 
time frequency diagram of the left and right hand motor 
imagination is shown in figure 13. Compared with subject 
4, the feature difference of ERD/ERS in time-frequency 
diagram of subject 3 is lower and the feature is more 
messy. In particular, the ERD/ERS phenomenon of 
subject 3 is not very obvious when the energy is 
abnormally high in the 17~30 Hz band of Cz channel. 
When it performs unilateral limb motor imagination, the 
mainly affected motor sensation area appears in the Cz 
channel, which leads to the reduction of the differentiated 
features that can be extracted by CNN network and the 
poor training effect of classifier. 

Figure 12. Time-frequency diagram of MI in subject 
3 

Figure 13. Time-frequency diagram of MI in subject 
4 

The classification accuracy of most classification 
models in subject 2 and 3 is 60%~70%, and some 

classification methods are even lower than 60%, while the 
values with new method in this paper are all above 60%. 
Moreover, it can be seen from table 2 that the Kappa 
value of this method on subject 2 is higher than that of 
other methods, so this model also has certain advantages 
on subjects with low feature differences. 

Deep learning methods generally require a large 
amount of data to prevent training over-fitting and also 
enhance the generalization ability of the model depth [32]. 
In this paper, the generalization ability of CNN model is 
enhanced by data enhancement and adding improved 
Adaboost algorithm. As for the setting of the base learners 
number and the iteration rounds number, the next step is 
to select the adaptive number of base learners and the 
number of iteration rounds according to the condition of 
each subject. In addition, enhancing the correlation 
between training data and test data is also the focus of the 
future research. 

We also conduct time consumption to verify the 
effectiveness of proposed method. The result is shown in 
table 3. It shows that the time with proposed method is 
shorter than other methods. 

Table 3. Comparison of time/s 

Subjects SVM Twin SVM CNN Proposed 

Average 5.88 2.67 1.39 0.12 

6. Conclusion

In this paper, our main purpose is to clearly classify the 
motor imagery EEG signals, so a channel space weighted 
fusion-oriented feature pyramid network is proposed to 
classify the left and right hand motor imagery EEG 
signals. Compared with the traditional SVM method and 
other state-of-the-art methods on BCI Competition IV 2b 
data set, the proposed method is feasible and effective in 
the dichotomous classification of motor imagery EEG 
signals, which can enhance the robustness of the 
classification model and improve the classification 
accuracy.However, for the complex EEG under 
complicated environments, it will be limited, resulting in 
low EEG signal recognition rate. In the future, we will 
synthetically consider various factors and adopt more 
advanced deep learning methods to perfect the 
classification of motor imagery EEG signals. 
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