
EAI Endorsed Transactions
on Scalable Information Systems Research Article

1

Intelligent System for Automation of Security Audits
(SIAAS)
J. P. Seara 1,*, C. Serrão 1

1 DCTI, ISCTE – Instituto Universitário de Lisboa, 1649-026 Lisboa, Portugal

Abstract
Events related to cybersecurity failures have a high and growing financial, operational, and reputational impact, on
organizations around the world. At the same time, there is a shortage of cybersecurity professionals. In addition, the
specialization of professionals with the necessary skills in the area of cybersecurity is expensive and time-consuming. Taking
these facts into consideration, this research has focused on the automation of cybersecurity processes, specifically those
related to continuous vulnerability detection. To address this problem, a cybersecurity vulnerability scanner that is free to
the community and requires no pre-expertise on the part of the operator, was developed. The artifact was tested by companies
in the IT business, by systems engineers, most without cybersecurity background. The results demonstrated that the artifact
was easy to install and that the reported results can be used by the operator in the context of an automatic and proactive
securitization of the systems involved.

Keywords: cybersecurity, security auditing, vulnerability scanner, free open-source software (FOSS)

Received on 12 July 2023, accepted on 19 October 2023, published on 20 October 2023

Copyright © 2023 J. P. Seara et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-SA
4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the
original work is properly cited.

doi: 10.4108/eetsis.3564

1. Introduction

Cybersecurity-related occurrences are often in the news.
The number of global attacks keeps increasing in recent
years [1].

Back in 2020, a study by the US Cybersecurity and
Infrastructure Security Agency (CISA) [2] found that, from
2013 onwards, the global average annual cost estimate of
cybersecurity incidents ranged from approximately 1.75
trillion to a projection for 2021 of 6 trillion USD.

Looking into the next years, the total amount of global
costs with cybersecurity-related events is expected to grow
considerably, with a worldwide predicted value of 10.5
trillion USD, annually, by 2025 [3]. This will mean,
roughly, 28.8 billion USD per day, or 333 thousand USD
per second!

When it comes to equipping organizations with
expertise in the area of cybersecurity, the difficulty lies not
only in getting security professionals, but professionals
with the right experience. This makes hiring a challenge.
[4][5]

* Corresponding author. Email: joao_pedro_seara@iscte-iul.pt

The issues above are especially impactful in poorer
countries, as they have “weak cybersecurity infrastructure,
low inter-agency coordination and emergency responses as
well as weak institutional capacity, limited ICT skills and
awareness, and limited protection of critical national
infrastructure” [6].

Automating security audits provides benefit in tackling
the issues described before. Automated systems do not
require a knowledge ramp-up and provide a systematic
approach to these audits. The author of [7] starts by noting
that not only the shortage of skills comes from the factors
already described previously, but as well from the slow
learning curve of professionals, as getting the necessary
expertise to specific environments requires time, resources,
and knowledge. Author predicts that these automated tools
will not completely replace humans, but they will be the
“cornerstones of cyber defense strategies”. Other authors,
like [8], go farther and predict that automation tools are a
single step in the direction of eventually achieving a state
they call “cyber autonomy”, in which defensive systems
will leverage AI to the point their defensive strategies can
be abstracted into human language.

EAI Endorsed Transactions on
Scalable Information Systems

Volume 11 | Issue 1 | 2024

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:joao_pedro_seara@iscte-iul.pt

J. P. Seara and C. Serrão

 2

Still regarding AI, it should be mentioned that, at the
moment this document is being written, AI tools like
ChatGPT are gaining rapid worldwide attention and
adoption: there’s already an intersection between
automated cybersecurity mechanisms and AI, as outputs
from automation can be fed into AI algorithms, which will
cross check them against data sets to decide on the best
course of remediation action [9].

It's also important to note that prioritizing what security
flaws need to be addressed is an important aspect of the
automation process [10].

Finally, it’s worth mentioning that a methodic
cybersecurity auditing strategy is a core part of the
compliance with current standards, policies, and
guidelines; ISO 27001/27002 being such an example [11].

By condensing the information above, it can be
concluded that the impact of security incidents affects
organizations negatively in different ways. The costs are
not only the productive impact, the media buzz and the
reputational costs that come with it, but also the financial
costs. Organizations might need to comply with
cybersecurity norms to conduct their business, and this
requires a systematic approach to cybersecurity auditing.
On top of this, there’s also a difficulty to cope with the
increasing need for professionals with cybersecurity skills.
Poorer countries are especially impacted by these
problems, as they have less resources to prevent and
respond to cybersecurity related incidents. Automation
plays a big part in helping conducting security audits, and
it’s important that the solutions provide outputs that
properly prioritize what needs to be addressed.

Given the problems and needs described above, the
following research question was formulated, as the starting
point of this work: “Is it possible to create and use a “plug
and play / install and forget” system that enables the
automation of continuous security auditing processes of
organizations, using open-source software and low-cost
hardware?”

The developed work answers this question by adding
further value to the existing efforts from academies and
businesses to automate security audits, as well as making
the results available to the community. Its major
contribution is offering a free, comprehensive, and “plug
and play” (PnP) vulnerability scanning solution – from
network discovery till e-mail reporting of the findings –
which runs on low-cost hardware, for anyone to use, even
with no previous cybersecurity expertise. Such a solution,
as the next section will show, does not exist at current time.
This solution is named Intelligent System for Automation
of Security Audits (also referred to in its Portuguese
acronym: SIAAS), and is divided in 3 main modules, which
will be detailed during the next sections.

Finally, it should be mentioned that this work integrates
in emergent DevSecOps paradigms, like the stack of
security-related technologies called Security
Orchestration, Automation, and Response (SOAR) [12].

This document started by providing a short introduction
to the problem and will now present the methodology and
results of the research made on related works, to justify the

pertinency of the presented work. The following section
then describes design choices and the implementation
process of the resulting artifact. The next section will
present the results of the validation tests, which were made
both locally and with the help of external testers. The last
section will detail the conclusions obtained from the
conducted work.

2. Related Work

When it comes to the methodology used to search for
related work, it was decided to use PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-
Analysis) [13] as guidance to systematize the research. This
methodology was boiled down to the following main steps:
selection of databases; criteria and filters for searches;
removal of duplicates; removal of non-related titles;
removal of non-related abstracts. Figure 1 describes this
sequence of steps.

Figure 1. The PRISMA flow [13]

The search for academic works was made in the B-On
portal (a Portuguese online knowledge library which
provides access to scientific releases), IEEE, Google
Scholar, and Google. A search in the Portuguese language
was done as well, to eliminate any language bias, but no
relevant documents in this language were found. Some
examples of the queries used for this research are
“vulnerability+scan+solutions”, and
“security+audit+solutions”.

In the end, were considered a total of 47 documents
being 18 from IEEE, 3 from B-On, 10 from Google
Scholar, and 16 from Google. It’s important to note that
these numbers serve as an approximation, and for the
reader to have an idea how they were obtained. Not all
these references are used in this document.

EAI Endorsed Transactions on
Scalable Information Systems

Online First

Intelligent System for Automation of Security Audits (SIAAS)

 3

The following paragraphs describes the findings
obtained.

Authors of [14] developed a security auditing solution
using the libnet and libpcap libraries. The first library
allows to create and send network packets, and the second
library performs packet listening and analysis. This
solution detects open ports, OS details, and vulnerabilities
(from the CVE DB).

In [15], authors have developed a vulnerability scanner
in Python named “Net-Nirikshak”. It does target
enumeration (finding open ports and running services), and
interfaces with NVD to discover known vulnerabilities
associated with them. Additionally, it has a SQL injection
exploitation module to detect this type of vulnerability in
websites.

In [16] is described an implementation of a vulnerability
scanner based on NVTs (the plugins supported by
OpenVAS/Nessus). It performs a vulnerability scan and
generates a report in the end, so the administrator can
perform remediation activities.

Work in [17] describes a vulnerability scanner, focused
on web servers and vulnerabilities, namely SQL injection
and XSS. It performs vulnerability assessment by
leveraging pocsuite3, which is an open-source
vulnerability scanning framework for web services. It has
a web interface for the end user.

Authors of [18] created a vulnerability scanner focused
also on web servers. Contains a web crawler and tests SQL
injection, XSS, and directory traversal vulnerabilities. No
relevant details are shared about the user interface.
Supports reporting, but not continuous auditing.

Authors of [19] created a vulnerability scanner also
focused on web servers, named “FalconEye”. This artifact
has an interesting design aspect: the scanning process is
distributed amongst servers that act as "workers". It
leverages common messaging protocols like AMQP to
handle communication between the components. It focuses
only on finding vulnerabilities related to web applications,
including XSS and XXE injection. No relevant details are
shared about the user interface.

The work in [20] implements a vulnerability scanner
based on Nmap that supports target enumeration,
vulnerability scanning, and remote network mapping,
focused on organizations and professionals that have little
cybersecurity expertise (relevant to this work). It has a
web-based interface.

Artifact developed in [21] is named “SecuBat”, and is a
very similar scanner to [18]. Focused on web applications,
has a website crawler, and tests the target against SQL
injection and XSS vulnerabilities. Has a graphical user
interface, and an API is provided that enables the users to
launch customized attacks. It implements reporting (but no
continuous auditing) and stores historical data.

Finally, the work in [22] is another high-level scanner
focused on web vulnerabilities. It performs URL crawling
and attacks the resulting URLs, to detect XSS, SQL
injection, between other vulnerabilities. It has a web
interface to launch scans, generating a report at the end.

None of these works is prepared for automatic network
discovery. In some of them, problems with memory
exhaustion were reported.

From the analysis conducted on all the tools described
before, the following was possible to conclude:

• Some of the solutions are too high-level. In order
words, they don’t have a generic nature. They either
focus exclusively on specific operating systems, or on
specific services.

• Most of the solutions require inbound network
permissions to access the target hosts, if run from
outside of their network, to the exception of the
solutions that allow local agents to be installed. Some
of them also require that target host credentials are
known.

• Most of the solutions don’t automatically discover
infrastructure information. This means that
information about target hosts must be obtained by
system administrators and manually configured in the
tool, before scans are run.

• Some of these scanners require that a daemon is
running. This implies potential issues if a disruptive
situation appears, like a filled disk or memory
exhaustion and, therefore, it requires the
implementation of a watchdog to bring the service
back up if needed.

• PnP philosophy is not adopted. No tool or framework
that worked out of the box was found. All of them
require previous configuration before running.

The fact that all the studied solutions have at least one
of these shortcomings, means that no studied artifact above
solves the problem this work attempts to tackle. The work
presented in this document differs from these projects, as it
condenses a set of characteristics that solve the current
shortcomings in a single open-source artifact that requires
little to no specialized staff to enable its installation and
operation, as the next section will detail in terms of
architecture and implementation.

A final note to mention [23]. Its authors consider that
there is a failure in current studies/works in analyzing "the
inner relationships between different vulnerabilities". Their
work consisted in using graph-driven intelligence to predict
co-exploits between multiple vulnerabilities (CVE). Such
intelligence can potentially be applied on top of the results
of this work, to make vulnerability remediation more
efficient by system administrators (as part of the suggestion
“AI/ML”, in the “Conclusions and Future Work” section).

3. System Design and Implementation

This section starts by giving an overview of the preliminary
design choices that were made, for the developed artifact
to attain its goal. Then, it provides details on the
architecture of the artifact, tooling choices, and the
implementation process.

EAI Endorsed Transactions on
Scalable Information Systems

Online First

J. P. Seara and C. Serrão

 4

3.1. Design Choices

The main goal of this work was to develop a vulnerability
scanning and reporting system that is free to use and does
not require any cybersecurity expertise to operate. To
achieve this, a set of characteristics – or sub-goals – that
the solution must implement, were defined:

• Agent-server architecture: This allows easy
scalability (by adding or removing agents), load
distribution, and the flexibility of placing agents
directly inside multiple LANs – behind firewalls and
proxies and therefore hitting target hosts directly –
while the operator can access all the metrics from all
agents in one single server. It’s also possible to access
metrics from agents independently from having a
server, making it possible for the operator to have a
portable vulnerability scanner. These aspects will be
further detailed below.

• Low-cost hardware: The agent hardware is mostly
focused on the Raspberry Pi board, which uses the
ARM architecture, but the solution should be flexible
enough to even run on a regular computer/server with
a x86 architecture.

• Free software: Only open-source software (FOSS)
and tools – preferably portable and low on resource
requirements, due to the nature of the hardware used
– must be used for the implementation. Some choices
made: Linux (OS), Python (programming language),
Nmap (open-source port scanning tool), MongoDB
(database).

• Scalability: It should be easy to add resources and
processing power to the solution, as well as remove
them. The approach is to use a multi-agent solution,
where agents can easily be added or removed from the
environment.

• Modularity: Implementation details should be flexible
enough to let users develop and customize on top of
it, whenever possible. The API-centric approach
allows users to interact directly with it by using the
standard CLI, or even developing their own CLIs, web
frontends, mobile applications, or AI/ML systems for
data treatment and generation of remediation
proposals. Agents should also be able to be used in
isolation if needed, independently from the backend
server.

• Plug and play (PnP): Should be up and running after
being installed, but highly configurable at the same
time, if needed. The operator can optionally define
which scans to run and hosts to target, but otherwise
the application should automatically enumerate hosts
in its neighborhood and scan them without any
operator’s intervention. By “plug and play”, it is also
meant that the connectivity for agent-server
communication should be established using as few
ports as possible (only HTTP/HTTPS), and only
outbound (agent reaching out to the server, and not the
other way around). This makes it easier for agents to

work behind firewalls and in air-gapped environments
where incoming connections are usually blocked,
diminishing the chance of having to manually
configure network permissions across the
organization. Finally, the discovery and vulnerability
scanning process should be a continuous process,
running periodically in the background, indefinitely,
with no human intervention.

• E-mail reporting: Automatic e-mails with security
vulnerability reports should be sent to configured
recipients. The reporting granularity should also be
configurable (as in, having the possibility of filtering
only the vulnerabilities that can be exploited [24],
hence needing to be fixed more urgently).

• Security: Communication between the solution’s
elements and the final consumers should be
authenticated and run over HTTPS (which uses
SSL/TLS).

• Future-proofing: Consider the evolution of the
technological environment (IPv6 capability).

The developed artifact not only builds from the current
state-of-the-art but, as mentioned before, also solves some
of its current shortcomings.

3.1. Implementation

SIAAS Agent and SIAAS Server are the two core software
pieces of the developed work. Figure 2 depicts a diagram
of the SIAAS architecture, from a high-level perspective.

Figure 2. SIAAS high-level architecture

The central part of the diagram shows a multiple number
of agents – these can be any Linux machine or VM, but
considering the paradigm proposed in this work it shall be
assumed they are Raspberry Pi boards – contacting the
server. The connections between the agents and the server
are always started from the agent, hence the arrows point
from the agents to the server. All communications use
HTTPS and HTTP password authentication, being
therefore secured.

EAI Endorsed Transactions on
Scalable Information Systems

Online First

Intelligent System for Automation of Security Audits (SIAAS)

 5

To obtain metrics, agents start by scanning their
surroundings to check which hosts exist in the local
network. This is done, firstly, by checking their local ARP
tables. Then, by doing an ARP scan of the local IPv4
networks (IPv6 networks are too big to be scanned this
way). The agents use these hosts, plus a list of manually
configured hosts by the system administrator (if existing),
and then run a Nmap vulnerability scan against the
resulting list of hosts. This scan is divided in two parts: first
is identifying the running OS in the target and running
services in all the open UDP and TCP ports, and the second
part is running a vulnerability scan using Nmap scripts
against those ports, which – as per the default configured

script (“vuln”) – returns a list of found CVEs. All of this is
configurable, giving the system administrator the option to
scan only the manually configured hosts, or allow the
agents to automatically discover and scan the surrounding
hosts on their own (which is the default behavior). This last
option allows the operator to just disconnect the agent from
one network switch and connect it to a different network
switch, and the agent will scan the new network with no
new configurations being needed.

The collected metrics are merged into a single JSON
object and then, periodically, sent to the server. Figure 3
shows a graphical representation of the structure of this
JSON object.

Figure 3. Graphical representation of the JSON’s object schema

In this figure, it can be observed that the JSON object
contains information about the main modules of the agent:
the first module shows the currently active configuration of
the agent (see next paragraph), the second module shows
the IPs of the hosts discovered in the agent’s neighborhood
(in this example: 192.168.122.51), the third module
contains information about the platform of the agent itself
(like CPU and memory usage) and, finally, the fourth
module contains system information, service list,
vulnerability scanning results, and stats, of the targeted
hosts.

After this information is sent to the server (upload
phase), the agents then check if any new configurations are
published to them (download phase). These consist of
configurations published specifically for a certain agent
UID (which is based on their product or serial number, or
a randomly generated UUID if the former is not possible)
and broadcasted configurations for all agents. Then, these
configurations are downloaded and applied locally. Just a
few possible examples of agent configurations might be the
frequency of scans, Nmap scripts to be run, or the list of
manually configured target hosts to scan.

As mentioned above, agents write metrics into, and
obtain their configurations from, the server’s API. This
API allows the agents and any other clients to read and
write data from and into the server’s database (these clients
might be the CLI developed in this work, a command-line
HTTP client like cURL, a web browser like Firefox (which
has a JSON parser that cascades the API data in a human-
readable way, as shown in Figure 6), or any frontend that

can eventually be developed in the future for this matter;
even an AI system that uses the API’s outputs for further
analysis). When it comes to the scanned metrics, it’s the
agents who write the data, and the consumer that reads it
(like a human operator using one of the clients described
before). When it comes to configurations, it’s the operator
who uploads them (again possibly by using one of the
clients described above), and the agents who read them.
The API also supports querying historical metric data from
the agents. The maximum time range of this historical data
is configurable, and the server uses this value to regularly
clean the older records from the DB.

The server also supports reporting via e-mail. The
operator can configure the server to send e-mails with the
most recently discovered vulnerabilities, containing reports
in CSV format, to a list of recipients. The granularity of
these reports can be configured. They can contain all the
vulnerabilities, or only the exploits that need urgent care.
This is very useful for system administrators to prioritize
what needs to be actioned upon.

A convenient aspect of the designed architecture is that
the agents’ data can be accessed directly for read-only
purposes, independently from the server. A local API that
runs in the agents (which is disabled by default) can be
activated. This allows an operator to carry the Raspberry Pi
with oneself, and perform vulnerability scans in an isolated
environment, even when the server is not accessible. In this
case, configurations can be changed locally by editing the
configuration file and then restarting the services.
Obviously, this has the disadvantages of the data not being

EAI Endorsed Transactions on
Scalable Information Systems

Online First

J. P. Seara and C. Serrão

 6

uploaded to the server (and therefore data will not be
available centrally) and of e-mails not being sent.

There’s even the possibility of both the agent and the
server being installed in a single machine, or virtual
machine, in an AIO setup. In case of the latter, the operator
now has a fully-fledged vulnerability scanner in a single
portable VM. However, in this case, the flexibility and
scaling benefits from a distributed architecture with
multiple agents is lost.

The next paragraphs will drill down on specific choices
that were made regarding the software platforms and tools
chosen for the deployment of the artifact.

Nmap [25] was chosen as the port/vulnerability scanner
as it is a simple – yet powerful – tool when it comes to
vulnerability scanning. One advantage of Nmap is that it
does not require a daemon to operate. Furthermore, since it
is portable, it can be installed and ready for use by running
a single installation command. It can also be easily
parallelized, allowing multiple instances to be run at the
same time (useful to scan multiple targets simultaneously).
Nmap supports NSE scripts, using the Lua language,
allowing Nmap to perform enumeration, vulnerability
scanning, and penetration testing (or, simply, pentesting).

The systematic research also found some commercial
alternatives to Nmap, like the already mentioned
OpenVAS and Nessus, but also Nexpose, Scanner-VS,
Cybot, Xspider, and Qualys, as per [26][27][28]. Other
tools were also found in academic works, like Faraday.
None of these were considered for use because they either
have one of the issues detailed at the end of Section 2, or
they are paid and therefore do not fit in the paradigm of this
work.

Although the focus of the presented work revolves
around vulnerability scanning, there are several other
features that had to be implemented. The tools to
implement these features were not part of systematic
research; instead, the process involved searching online for
the most famous tools to meet each requirement, briefly
studying each of them, and then making a decision.

In terms of the language to be used, the decision was to
use Python 3. Python is a free high-level programming
language and has a widespread community of developers
and maintainers around the world. It has a deep integration
with the underlying OS (easily allowing file manipulation,
grabbing platform information (as exampled in [29]), and
running commands in the OS shell), and it has a vast
collection of libraries and modules necessary to implement
the required features. Some of these Python libraries and
modules are now discussed below.

Scapy is a packet manipulation Python library. It is
useful to perform ARP-related operations, like scanning
the neighborhood of a network adapter. This is especially
useful to implement an automated scanning of
neighborhood hosts. Project in [30] implements such a
network scanner to find hosts in the same subnet.

In terms of the REST API implementation on the server
side, there are several solutions based on Python. The
solutions considered were Django, Flask, and FastAPI.
Django is the most versatile and complex. However, this
makes it hard to learn. Flask and FastAPI were the two
remaining valid options and had all the required
functionalities to implement the API. Having FastAPI the
smaller community and therefore less support, Flask was
the choice.

The server API runs behind an Apache web server
reverse proxy. It is responsible for authenticating and
encrypt HTTP connections between the agents/clients and
the API, using its SSL and HTTP authentication modules.
Nginx could be an acceptable choice as well. Both these
servers are available in the repositories of most Linux
distributions. As the specific advantages/disadvantages of
each of these web servers do not play a crucial role in this
work, Apache was chosen due to the author’s familiarity
with it.

For the database technology running on the server side,
the main contenders were MySQL and MongoDB. These
solutions are fundamentally different, as MySQL is a
structured DB, whereas MongoDB is a document-oriented
DB (usually known as a NoSQL DB). MySQL allows for
greater data integrity, as it must obey the fixed structure of
SQL tables. MongoDB, by its turn, is usually better suited
for real-time analytics, and it has an easy integration with
Python (it recognizes out-of-the-box objects created in
Python; for example, a Python dictionary object can be
uploaded to MongoDB directly as a DB document). Both
have solid Python client support. The flexibility and ease
of integration with Python data structures made MongoDB
become the choice.

A CLI was developed as part of this work (SIAAS CLI),
making it easier to perform tasks like consulting data, or
adding or removing agent configurations. There’s a
specialized module for Python, for CLI implementation,
called Click, which was used. Figure 4 shows two
examples of CLI outputs (the complete list of available
commands, as well as a vulnerability report showing only
exploits).

EAI Endorsed Transactions on
Scalable Information Systems

Online First

Intelligent System for Automation of Security Audits (SIAAS)

 7

Figure 4. SIAAS CLI showing help and vulnerability report outputs

As seen in the mentioned figure, the output of the CLI
commands is in colored JSON format, so it allows the
operator to use a JSON parser like jq to slice and filter the
output. The CLI automatically disables colors when the
output is redirected, as colorization adds special characters
to the output which might not be recognized by JSON
parsers. All of the development was done in Ubuntu 20.04
“Focal”, but it was also installed and tested in Ubuntu 22.04
“Jammy” (Server edition, or ARM edition in the agents),
Debian 11 “Bullseye” (main edition, or ARM edition in the
agents), and Raspberry Pi OS (previously known as
“Raspbian”) 11 “Bullseye” (exclusively in the agents), due
to being the most mature releases of these operating
systems at current date, and all of the needed software
packages being available in their native repositories or
made available by product owners for them. All of them
are Debian-based releases, so the installation scripts and
source code are the same for all; Python 3 (3.9 is the default
for upstream Debian, at current date) is also available on
all.

4. Validation

The validation and testing of the artifact was performed
both in a local laboratory and by external testers which
tested the artifact in a real-world environment and then
answered a survey. Local tests provide technical metrics
related to the agent’s performance (reliability and
accuracy) and security, whereas the surveys have the
objective of testing usability and quantifying what is the
added value of the artifact to an organization.

Regarding local tests, when it comes to “reliability”, the
parameters taken into consideration were service stability
over a prolonged uptime (days-long), and resource usage
(CPU/memory) under stress. Some tests were also done
regarding the impact of a more/less aggressive thread
parallelization on scanning times and resource usage.
“Accuracy” consisted in testing the scanner's ability to
accurately detect the target hosts’ OS/service information
and existing vulnerabilities. This is done by creating a test
environment with known vulnerabilities and confirming

EAI Endorsed Transactions on
Scalable Information Systems

Online First

J. P. Seara and C. Serrão

 8

that the scanner is reporting the correct results. Lastly, the
“security” tests had the objective of validating that the API
does not allow unauthenticated or insecure connections, at
a protocol/service level.

While selecting the external testers, it was attempted to
diversify their nature, to have different perspectives based
on different knowledge levels and organizational
complexity. As such, the testers were: one organization in
the IT and cloud business, one organization in the
telecommunications business with specialization in
cybersecurity, one organization in the intersection of the IT
and financial businesses, and an individual IT freelancer in
the open-source field (more details about the testers in the
acknowledgments at the end of this paper).

The artifact was provided to an individual tester from
each organization, and instructions were sent on how to set
it up (these instructions already exist inside the project
deliverables, whose links are available at the end of this
document). Then, a survey was produced, containing 10
statements related to user experience, 5 statements related
to organizational impact, 2 statements related to overall
experience, and 3 open-ended questions. The first 17
statements were to be answered using the Likert scale: the
tester had to select a value, from the range 1 to 5, to
describe how strongly he or she agrees or disagrees with
each of the statements. The surveys were answered via
video call, to give the testers the chance to elaborate on
each point, if needed, as well as to let the conversation flow
to different perspectives and opinions from them on current
shortcomings and possible improvements. Testers were
also given the option to answer via a written form, if they
preferred, but none opted for this method.

3.1. Local Tests

The hardware used for the local tests used consisted of a
Sony Vaio E11 laptop (2013) with the hostname “JP-OLD”
running as server/agent, and two Raspberry Pi running as
agents (“RPI4” being a 4th generation Model B (2019), and
“RPI1” being a 1st generation Model B (2012)). A VM
named “SIAAS”, running in an external hypervisor, was
also used for development and testing purposes.

Specifications of this environment:

• JP-OLD (Server and agent, for testing/staging): 1.75
GHz dual-core processor, 8 GB RAM, connected via
Wi-Fi.

• RPI4 (Agent for testing/staging): 1.5 GHz quad-core
processor, 2 GB RAM, connected via Wi-Fi.

• RPI1 (Agent for testing/staging): 700 MHz single-
core processor, 256 MB RAM, connected via
Ethernet.

• SIAAS (VM running in an external hypervisor;
mostly for deployment): 1.8 GHz quad-core
processor, 8 GB RAM, connected via Ethernet and
Wi-Fi.

Figure 5 shows a photo of the setup of the local
laboratory.

Figure 5. Local laboratory

The SIAAS artifact operated continuously and
uneventfully in terms of uptime and resource management
during the entirety of the tests. In the agent running in older
hardware, the configuration of which scripts to run and
number of workers to launch had to be adapted, which is
completely acceptable, as the first versions of Raspberry Pi
are short on resources when compared to more recent
hardware. But once the proper configuration was set, this
agent also ran completely fine for hours in a row, till the
end of the tests. During the whole time, the agents were
successfully reporting data to the server.

In terms of vulnerability scanning accuracy, the
developed artifact successfully detected OS (even though
sometimes the versions of the Kernel were not correct –
merely a cosmetic issue as this has no impact in service
version detection), services and versions, and
vulnerabilities, considering as far as it can go due to being
a network-based scanner.

Figure 6 shows the SIAAS API output from a scan done
against a Microsoft Windows Server 2022 VM, using the
script “vulscan” (not active by default), showing a list of
found vulnerabilities from different databases.

EAI Endorsed Transactions on
Scalable Information Systems

Online First

Intelligent System for Automation of Security Audits (SIAAS)

 9

Figure 6. Scanning results for a Windows Server VM during local tests

There’s an inherent limitation to the type of scanner this
work implements. The developed artifact is a “network-
based” vulnerability scanner and, therefore, it has no access
to the internal patch level of the services running on a host.
It can only know what is the upstream version which is
presented in the banner of the service running in a said port.
In other words, it cannot know if a vulnerability is solved
by internal patching of the service. This can eventually be
solved by developing a module to be installed in the target

hosts (this is suggested as future work, in the “Conclusions
and Future Work” section).

Finally, an extra test was done regarding API security.
User authentication is implemented using only simple
HTTP authentication, so the login credentials are hard
coded in the host (even though they can be changed in the
SIAAS Server installation script). Therefore, only
minimalistic tests were done, to validate that the HTTPS

EAI Endorsed Transactions on
Scalable Information Systems

Online First

J. P. Seara and C. Serrão

 10

protocol and simple HTTP authentication were correctly
implemented. These tests passed successfully.

The raw outputs from all local tests can be consulted
online (check the data availability links at the
“Acknowledgements” section, at the end of this document).

4.2 User Tests

As mentioned above, a total of 4 organizations and 1
freelancer tested and replied to the testers’ survey. Figure
7 shows a graphical distribution of the agreeableness
replies obtained.

Figure 7. Graphical distribution of the agreeableness replies given by the testers

As seen in this figure, the large majority of the replies
are in the “agree” and “strongly agree” area, which denotes
a strong satisfaction overall from all the testers.

Regarding open-ended questions, testers were asked for
problems found and suggestions for improvement. The

following problems were reported: the inability of the
vulnerability scanner to detect backported vulnerabilities
(as explained in the last sub-section), a limitation in the
object size that the agent can upload to the server (this is
rarely observed, but a known documented issue

EAI Endorsed Transactions on
Scalable Information Systems

Online First

Intelligent System for Automation of Security Audits (SIAAS)

 11

nevertheless), and the possibility of the agents being
sensitive to ARP spoofing (as they rely on the ARP
protocol to discover hosts in the neighborhood). When it
comes to suggestions of future work, these were focused
mostly on creating a web interface, having further details
from the target’s OS distribution versions and lifecycle,
and containerization (all of these are incorporated as
suggestions of future work, in the next section).

The final open-ended question was about final
comments. All of the testers gave very positive feedback in
terms of their perception of added value to the
organizations, and some even considered adopting this
artifact for their own toolkit.

In conclusion, external testers reported that the usage of
the artifact is simple, effective, and would help an
organization automate and improve their efforts towards
having a better and more efficient cybersecurity posture. It
helps them know which vulnerabilities need to be fixed on
an urgent basis, by filtering exploits. It was also concluded
that this tool provides special value for organizations that
don’t have paid solutions or specialized cybersecurity
specialists.

5. Conclusions and Future Work

The main goal of this work was to design and develop a
vulnerability scanner that was simple to use, configure, and
scale, worked out of the box, could run on low-cost
hardware, and available to the community.

The authors consider that this goal was completely
accomplished. The main aspects to consider about the
developed artifact are the following:

It provides port scanning performed by Nmap, which
was chosen for its simplicity, portability, efficiency,
possibility of using varied scripts that can do tasks that go
beyond checking vulnerability DBs (like penetration
testing or vendor-specific service verification), and easy
integration with Python.

It automatically discovers hosts in the neighborhood,
which are fed automatically to the port scanner by default,
allowing a system administrator with no cybersecurity-
related skills to operate it with minimal configuration
effort. Advanced configuration is still supported (like
restricting which scripts to run, or hosts/ports to scan), if
needed.

It operates in an agent-server architecture, giving the
operator the flexibility to distribute load and/or connect
agents directly to internal LANs.

It is fully modular. An agent can work independently
from a server, or both server and agent can run together in
an AIO environment. The fully featured API can be
consumed by web interfaces, mobile clients, or even AI
systems, implemented by the community.

It provides vulnerability reporting reports via e-mail
using the well-known CSV format. The granularity of these
reports can be configured, allowing system administrators
to focus on only exploitable vulnerabilities that need to be
fixed on priority.

Testing the artifact revealed that it is stable and reliable,
even in older hardware with fewer resources (given the
proper configuration). Considering the limitations inherent
to the type of scanner that is implemented in this artifact, it
effectively and accurately detects hosts in the network,
their OSes and services, and vulnerabilities. Nmap scripts
allow the operator to use the best option for a given target
host’s OS, or for a specific mode of operation of the agent.
The security-related tests, even though minimalistic, have
shown that the API implementation does not allow
unauthorized or untrusted connections.

Survey responses by external users – even those with no
cybersecurity-specific background – have shown that the
artifact adds value in automating the security audit
processes of organizations, even if no other software
options are available, as it was easy to install and operate,
didn’t impact current infrastructure, and gave reliable
results.

To the best extent of the author’s knowledge – and
considering the study of the current state-of-the-art
solutions and their limitations – there is no solution at this
time that covers all the aspects detailed above in a single
open-source offering.

The authors provide some suggestions for future work,
based on own observations and feedback got from testers:

Related to UI/UX, a web frontend that interfaces with
the server’s API. Some features that this frontend could
implement: AAA/SaaS multi-tenant cloud, advanced
graphical reporting, stateful metadata information (like
marking vulnerabilities as resolved or already seen),
improved e-mail reports, advanced scheduling of the
agent’s and server’s modules’ runs. This web frontend
could also have a mobile application version.

Related to AI/ML, an AI system that feeds on the API’s
output and determines courses of remediation.

Related to vulnerability scanning, an optional agent-
based software module that could be installed in target
hosts and report extra information directly to the server
(like identifying backported vulnerability fixes for older
versions of services, or obtaining more detailed
information about the OS distribution, version, and
lifecycle);

And, finally, the possibility of adding extra
tools/modules to the agent (suggestion: using specialized
tools like Metasploit to perform extensive pentesting on
specific services/applications, by probing found exploits
and then running post-exploitable code).

Acknowledgements.
GitHub repository containing the source code, installation scripts,
and “readme” files, of the SIAAS Agent artifact:
https://github.com/jpseara/siaas-agent (accessed 6 Jun 2023).
GitHub repository containing the source code, installation scripts,
and “readme” files, of the SIAAS Server artifact:
https://github.com/jpseara/siaas-server (accessed 6 Jun
2023). GitHub repository containing the source code, installation
scripts, and “readme” files, of the SIAAS CLI artifact:
https://github.com/jpseara/siaas-cli (accessed 6 Jun 2023).
GitHub repository containing complete configuration and API

EAI Endorsed Transactions on
Scalable Information Systems

Online First

https://github.com/jpseara/siaas-agent
https://github.com/jpseara/siaas-server
https://github.com/jpseara/siaas-cli

J. P. Seara and C. Serrão

 12

references, outputs of local tests, sample API outputs, and user
survey form and response transcriptions:
https://github.com/jpseara/siaas-research (accessed 6 Jun
2023). Original recordings of the user surveys can be requested
by contacting the corresponding author(s) via e-mail. Finally, we
would like to thank all the testers of this work: Matt Golden,
Customer Success Engineer at Trilio Data (USA); Ricardo
Ramalho, Head of Cybersecurity Behaviour and Automation at
Altice Portugal; Jorge Teixeira, IT Team Lead at VTXRM –
Software Factory (Portugal); and David Negreira (IT Freelancer,
active member of the Ubuntu community).

References
[1] Check Point Blog, “Check Point Research: Third quarter of

2022 reveals increase in cyberattacks and unexpected
developments in global trends”, checkpoint.com,
https://blog.checkpoint.com/2022/10/26/third-quarter-of-
2022-reveals-increase-in-cyberattacks/ (accessed:
2023/08/31)

[2] Cybersecurity and Infrastructure Security Agency (CISA),
“Cost of a Cyber Security Incident: Systematic Review and
Cross-Validation”, 2020

[3] S. Morgan (Cybercrime Magazine), “Cybercrime To Cost
The World $10.5 Trillion Annually By 2025”,
cybersecurityventures.com,
https://cybersecurityventures.com/hackerpocalypse-
cybercrime-report-2016/ (accessed: 2023/08/31)

[4] S. Furnell, P. Fischer, and A. Finch, “Can't get the staff? The
growing need for cyber-security skills”, Computer Fraud &
Security, 2017, vol. 2017, i. 2, pp. 5-10, doi:
10.1016/S1361-3723(17)30013-1

[5] S. Furnell, “The cybersecurity workforce and skills”,
Computer Fraud & Security, 2021, vol. 100, i. C, doi:
10.1016/j.cose.2020.102080

[6] C. Russu, “The impact of low cyber security on the
development of poor nations”, developmentaid.org,
https://www.developmentaid.org/news-
stream/post/149553/low-cyber-security-and-development-
of-poor-nations (accessed: 2023/08/31)

[7] G. Smith, “The intelligent solution: automation, the skills
shortage and cyber-security”, Computer Fraud & Security,
2018, vol. 2018, i. 8, pp. 6-9, doi: 10.1016/S1361-
3723(18)30073-3

[8] R. K. L. Ko, “Cyber Autonomy: Automating the Hacker –
Self-healing, self-adaptive, automatic cyber defense
systems and their impact to the industry, society and
national security”, arXiv, 2020, doi:
10.48550/arXiv.2012.04405

[9] Deascona, “How ChatGPT will revolutionize the cyber
security industry”, uxdesign.cc,
https://bootcamp.uxdesign.cc/how-chat-gpt-will-
revolutionize-the-cyber-security-industry-7847cc7fc24e
(accessed: 2023/08/31)

[10] Ponemon Institute (sponsored by Rezilion), "The State of
Vulnerability Management in DevSecOps", 2022

[11] Julia Anderson, “Updates to ISO 27001/27002 raise the bar
on application security and vulnerability scanning”,
invict.com, https://www.invicti.com/blog/web-security/iso-
27001-27002-changes-in-2022-application-security-
vulnerability-scanning/ (accessed: 2023/08/31)

[12] S. Shea, “SOAR (security orchestration, automation and
response)”, techtarget.com,

https://www.techtarget.com/searchsecurity/definition/SOA
R (accessed: 2023/08/31)

[13] D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, and The
PRISMA Group, “Preferred Reporting Items for Systematic
Reviews and Meta-Analyses: The PRISMA Statement”,
PLoS Medicine, 2009, vol. 6, no. 7, doi:
10.1371/journal.pmed.1000097

[14] W. Liu, "Design and Implement of Common Network
Security Scanning System", 2009 International Symposium
on Intelligent Ubiquitous Computing and Education, 2009,
pp. 148-151, doi: 10.1109/IUCE.2009.24

[15] S. Shah and B. M. Mehtre, "An automated approach to
Vulnerability Assessment and Penetration Testing using
Net-Nirikshak 1.0", 2014 IEEE International Conference on
Advanced Communications, Control and Computing
Technologies, 2014, pp. 707-712, doi:
10.1109/ICACCCT.2014.7019182

[16] Y. Wang, Y. Bai, L. Li, X. Chen, and A. Chen, "Design of
Network Vulnerability Scanning System Based on NVTs",
2020 IEEE 5th Information Technology and Mechatronics
Engineering Conference (ITOEC), 2020, pp. 1774-1777,
doi: 10.1109/ITOEC49072.2020.9141812

[17] H. Chen, J. Chen, J. Chen, S. Yin, Y. Wu, and J. Xu, "An
Automatic Vulnerability Scanner for Web Applications",
2020 IEEE 19th International Conference on Trust, Security
and Privacy in Computing and Communications
(TrustCom), 2020, pp. 1519-1524, doi:
10.1109/TrustCom50675.2020.00207

[18] X. Zhang et al., "An Automated Composite Scanning Tool
with Multiple Vulnerabilities”, 2019 IEEE 3rd Advanced
Information Management, Communicates, Electronic and
Automation Control Conference (IMCEC), 2019, pp. 1060-
1064, doi: 10.1109/IMCEC46724.2019.8983828

[19] C. Wang et al., "FalconEye: A High-Performance
Distributed Security Scanning System", 2019 IEEE Intl
Conf on Dependable, Autonomic and Secure Computing,
Intl Conf on Pervasive Intelligence and Computing, Intl
Conf on Cloud and Big Data Computing, Intl Conf on Cyber
Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech), 2019, pp. 282-
288, doi:
10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.000
59

[20] P. Davies and T. Tryfonas, “A lightweight web-based
vulnerability scanner for small-scale computer network
security assessment”, Journal of Network and Computer
Applications, 2009, vol. 32, i. 1, pp. 78-95, doi:
10.1016/j.jnca.2008.04.007

[21] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic, “SecuBat:
a web vulnerability scanner”, WWW ‘06: Proceedings of
the 15th International Conference on World Wide Web,
2006, pp. 247-256, doi: 10.1145/1135777.1135817

[22] M. Noman, M. Iqbal, K. Rasheed, and M. Muneeb Abid,
“Web Vulnerability Finder (WVF): Automated Black-Box
Web Vulnerability Scanner”, International Journal of
Information Technology and Computer Science, 2020, vol.
12, pp. 38-46, doi: 10.5815/ijitcs.2020.04.05

[23] J. Yin, M. Tang, J. Cao, M. You, H. Wang, and M. Alazab,
“Knowledge-Driven Cybersecurity Intelligence: Software
Vulnerability Coexploitation Behavior Discovery”, IEEE
Transactions on Industrial Informatics, 2023, vol. 19, no. 4,
pp. 5593-5601, doi: 10.1109/TII.2022.3192027

[24] W. Haydock, "But is it exploitable?", deploy-securely.com,
https://www.blog.deploy-securely.com/p/but-is-it-
exploitable (accessed: 2023/08/31)

EAI Endorsed Transactions on
Scalable Information Systems

Online First

https://github.com/jpseara/siaas-research
https://blog.checkpoint.com/2022/10/26/third-quarter-of-2022-reveals-increase-in-cyberattacks/
https://blog.checkpoint.com/2022/10/26/third-quarter-of-2022-reveals-increase-in-cyberattacks/
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
https://www.developmentaid.org/news-stream/post/149553/low-cyber-security-and-development-of-poor-nations
https://www.developmentaid.org/news-stream/post/149553/low-cyber-security-and-development-of-poor-nations
https://www.developmentaid.org/news-stream/post/149553/low-cyber-security-and-development-of-poor-nations
https://bootcamp.uxdesign.cc/how-chat-gpt-will-revolutionize-the-cyber-security-industry-7847cc7fc24e
https://bootcamp.uxdesign.cc/how-chat-gpt-will-revolutionize-the-cyber-security-industry-7847cc7fc24e
https://www.invicti.com/blog/web-security/iso-27001-27002-changes-in-2022-application-security-vulnerability-scanning/
https://www.invicti.com/blog/web-security/iso-27001-27002-changes-in-2022-application-security-vulnerability-scanning/
https://www.invicti.com/blog/web-security/iso-27001-27002-changes-in-2022-application-security-vulnerability-scanning/
https://www.techtarget.com/searchsecurity/definition/SOAR
https://www.techtarget.com/searchsecurity/definition/SOAR
https://www.blog.deploy-securely.com/p/but-is-it-exploitable
https://www.blog.deploy-securely.com/p/but-is-it-exploitable

Intelligent System for Automation of Security Audits (SIAAS)

 13

[25] G. F. Lyon, Nmap Network Scanning; The Official Nmap
Project Guide to Network Discovery and Security Scanning,
Insecure Press, 2008, ISBN 978-0-9799587-1-7. [Online]
Available: https://nmap.org/book/toc.html (accessed:
2023/08/31)

[26] I. Chalvatzis, D. A. Karras, and R. C. Papademetriou,
"Evaluation of Security Vulnerability Scanners for Small
and Medium Enterprises Business Networks Resilience
towards Risk Assessment", 2019 IEEE International
Conference on Artificial Intelligence and Computer
Applications (ICAICA), 2019, pp. 52-58, doi:
10.1109/ICAICA.2019.8873438

[27] Y. Wang and J. Yang, "Ethical Hacking and Network
Defense: Choose Your Best Network Vulnerability
Scanning Tool", 2017 31st International Conference on
Advanced Information Networking and Applications
Workshops (WAINA), 2017, pp. 110-113, doi:
10.1109/WAINA.2017.39

[28] I. Zulkarneev and A. Kozlov, "New Approaches of Multi-
agent Vulnerability Scanning Process", 2021 Ural
Symposium on Biomedical Engineering, Radioelectronics
and Information Technology (USBEREIT), 2021, pp. 488-
490, doi: 10.1109/USBEREIT51232.2021.9455061

[29] A. Rockikz, “How to Get Hardware and System Information
in Python”, thepythoncode.com,
https://www.thepythoncode.com/article/get-hardware-
system-information-python (accessed: 2023/08/31)

[30] B. Waldvogel, “Layer 2 network neighbourhood discovery
tool”, github.com,
https://github.com/bwaldvogel/neighbourhood (accessed:
2023/08/31)

EAI Endorsed Transactions on
Scalable Information Systems

Online First

https://nmap.org/book/toc.html
https://www.thepythoncode.com/article/get-hardware-system-information-python
https://www.thepythoncode.com/article/get-hardware-system-information-python
https://github.com/bwaldvogel/neighbourhood

