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Abstract

The recent big model such as GPT-3.5 possesses an extensive understanding of natural language, and it
can perform a wide range of tasks, making it a significant advancement in the field of artificial intelligence
(AI). A critical challenge in the design and implementation of big model is that it imposes a heavy load on
the wireless transmission due to a huge size of the deep network parameters, especially for the distributed
implementation. To tackle this challenge, we investigate big model transmission under practical double
Rayleigh fading environments, where the big model is simultaneously distributed to multiple training nodes
through wireless transmission. To evaluate the system performance, we study the system outage probability
(OP) based on the transmission latency, where an analytical expression is derived for the OP, which is used
to evaluate the performance of big model transmission under double Rayleigh fading environments. Finally,
we present some simulations under double Rayleigh fading environments, in order to show the validity of the
proposed big model transmission.
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1. Introduction
The development of big model represents a fascinating
journey through the evolution of neural networks,
marked by significant milestones in the field of artificial
intelligence [1–3]. It began with the inception of neural
networks, where early attempts to simulate the human
brain’s interconnected neurons laid the foundation.
However, it was the advent of deep neural networks
that truly revolutionized the landscape [4–6]. With
the introduction of deep learning, multiple layers
of interconnected neurons enabled the extraction of
intricate features from complex data, paving the way
for more accurate and powerful models [7–9]. This
progression led to the birth of big model, exemplified
by giants like GPT-3.5. These models, with their
massive scale and extensive understanding of natural
language, represent the culmination of years of research
and innovation in deep learning. As computational
power, data availability, and algorithmic advancements
grew, big model emerged as pivotal tools, capable of
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performing a wide range of tasks and driving significant
advancements in the field of artificial intelligence [10–
12]. Their development reflects the relentless pursuit
of pushing the boundaries of AI, enabling applications
that were once considered futuristic to become a reality
[13–15].

Developing and deploying big model presents a cas-
cade of challenges. These include acquiring the sub-
stantial computational resources required for training,
curating high-quality and diverse datasets, enhancing
generalization to new tasks through techniques like
transfer learning, addressing interpretability for trans-
parent decision-making, and ensuring energy efficiency
during training and inference. Another challenge is
achieving low-latency inference for real-time applica-
tions via model compression and hardware accelera-
tion. Additionally, fortifying models against adversar-
ial attacks and distribution shifts and navigating ethi-
cal considerations concerning fairness and privacy are
important. Maintaining scalability as data and tasks
grow is another hurdle. Ultimately, there’s the pivotal
challenge of devising efficient wireless transmission
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strategies to distribute big model, particularly in dis-
tributed settings or resource-constrained environments,
where managing the heavy network load imposed by
the size of model parameters is a critical factor in
realizing the practical utility of big model [16–18].

Efficiently transmitting data, especially for support-
ing big model, involves a multi-pronged approach.
One approach is the leveraging model compression
techniques, such as pruning, quantization, and knowl-
edge distillation, which can help reduce the size of
the model. One more approach is to utilize efficient
compression algorithms, like Huffman coding or arith-
metic coding, to minimize the size of the transmitted
data. Another approach is to adopt adaptive transmis-
sion strategies that prioritize sending critical model
components first and utilize error correction codes to
ensure robustness against wireless channel errors. In
this direction, leveraging distributed computing and
edge processing can be used to offload computation and
reduce the amount of data needing transmission. In
addition, the wireless communication protocol can be
optimized by considering factors such as channel condi-
tions, data prioritization, and latency requirements. In
further, some advanced techniques have been explored
like federated learning to enable collaborative model
updates without transmitting raw data, reducing band-
width needs while maintaining model performance,
thus collectively addressing the significant challenge of
wireless transmission for big model [19–22].

Reducing transmission outage probability in wireless
communication has been a focus of extensive research,
with relay, caching, and edge computing techniques
playing pivotal roles [23–25]. Cooperative communi-
cation, network coding, and relay selection strategies
optimize relay-based data transmission, while caching
techniques such as content-centric networking and
proactive caching reduce content retrieval delays. Edge
computing paradigms like Mobile Edge Computing
(MEC) and fog computing bring computation closer
to the network edge, diminishing latency and enhanc-
ing reliability [26–28]. These techniques, coupled with
advances in massive MIMO and coding-based caching,
are collectively contributing to more robust and effi-
cient wireless networks, addressing the critical chal-
lenge of minimizing transmission outage probability in
modern communications.

In order to facilitate the advancement of big model,
we undertake a comprehensive investigation into the
transmission challenges they face within realistic dou-
ble Rayleigh fading environments, where the big model
needs to be efficiently distributed across multiple train-
ing nodes. Our focus extends to evaluate the overall sys-
tem performance, specifically honing in on the critical
metric of system outage probability (OP). This perfor-
mance assessment hinges on the transmission latency, a
pivotal factor in real-world deployments of big model.

Figure 1. System model of big model transmission with multiple
training nodes under double Rayleigh fading channels.

We delve deep into this metric, leveraging our findings
to derive a precise analytical expression that quantifies
the outage probability. To affirm the robustness and
efficacy of our proposed big model transmission strat-
egy, we meticulously execute a series of simulations
conducted under the demanding conditions of double
Rayleigh fading environments. Through these simula-
tions, we aim to showcase the practical validity and
effectiveness of our proposed approach, elucidating its
potential to overcome the challenges posed by wireless
transmission, especially in distributed settings, which
are pivotal for the successful deployment of big model
across a spectrum of applications.

2. SYSTEM MODEL of Big model transmission
As shown in Fig. 1, we study the system model
of big model transmission with multiple training
nodes under double Rayleigh fading channels [29–
32], which includes one sender A, and M receivers
{Bm | 1 ∈ m ∈M}. Moreover, A has a heavy task of big
model parameter that needs to be sent to M training
nodes uniformly and simultaneously. Specifically, the
wireless channel parameter between A and Bm, denoted
as zm, could be represented as

zm = g1,m · g2,m, (1)

where g1,m and g2,m are the first-hop double Rayleigh
fading channel parameter and second-hop double
Rayleigh fading channel parameter, respectively. More-
over, the parameters g1,m and g2,m can be modeled as

g1,m ∼ CN (0, ξ1) , (2)

g2,m ∼ CN (0, ξ2) , (3)

where ξ1 and ξ2 are the average channel gain of the
first-hop and second-hop for the double Rayleigh fading
channels. Thus, the available transmission rate between
A and Bm is

Rm = W log2

(
1 +

P

σ2 |zm|
2
)
, (4)
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where W is the allocated bandwidth of the link A-Bm,
P is the transmit power of A, and σ2 is the variance of
additive white Gaussian noise (AWGN). In this network,
the node A has the task of K bits, that needs to be sent to
M training nodes uniformly and simultaneously. Hence,
the transmission latency from A to the training node Bm
is

tm =
k̃
Rm

, (5)

where k̃ = K
M is denoted by the task length allocated to

each training node.

3. PERFORMANCE ANALYSIS of big model
transmission
In this section, we give a definition of the system
outage probability for the big model transmission, and
then derive the associated closed-form expression for
the outage probability. In particular, the system outage
occurs when at least one transmission latency between
the sender A to the M training nodes is larger than a
given latency threshold γth,

Pout = 1 − Pr (t1 < γth, t2 < γth, · · · , tM < γth) , (6)

= 1 − Pr (t1 < γth) · Pr(t2 < γth) · · · Pr(tM < γth) ,
(7)

= 1 − [Pr (t1 < γth)]M . (8)

Since the transmission latencies {t1, t2, . . . , tM } are
independently and identically distributed, we can
simplify the above probability of the system outage to
solve for the probability that the transmission latency
between the training node Bm and A satisfies the latency
threshold, i.e.,

Pm = 1 − Pr(tm < γth), (9)

= 1 − Pr

 k̃

W log2

(
1 + P

σ2 |zm|2
) < γth

 , (10)

= Pr
(
|zm|2 >

(
2

k̃
Wγth − 1

)
σ2

P

)
. (11)

Secondly, we derive the associated closed-form
expression for the outage probability. In the first,
because of

g1m ∼ CN (0, ξ1), (12)

g2m ∼ CN (0, ξ2), (13)

zm = g1,m · g2,m, (14)

we can simplify the above notations as,

|g1m|2 = X, |g2m|2 = Y , (15)

and then we have,

Pm = 1 − Pr
[
|zm|2 ≤ (2

k̃
Wγth − 1)

σ2

P

]
, (16)

= 1 − Pr

|g1m|2 ≤
(2

k̃
Wγth − 1)σ

2

P

|g2m|2

, (17)

= 1 −
∫ ∞

0

∫ (2
k̃

Wγth −1) σ
2
P

Y

0
fX,Y (x, y)dxdy. (18)

We can further write Pm as,

Pm = 1 −
∫ ∞

0

∫ (2
k̃

Wγth −1)σ2
P y

0

1
ξ1

e
− x
ξ1

1
ξ2

e
− y
ξ2 dxdy, (19)

= 1 −
∫ ∞

0

1
ξ1

e
− x
ξ1

1
ξ2

e
− y
ξ2 |x=0

x= (2
k̃

Wγth −1)σ2
P y

dy, (20)

= 1 −
∫ ∞

0

1
ξ2

e
− y
ξ2 − 1

ξ2
e
− y
ξ2 e
− (2

k̃
Wγth −1)σ2

P yξ1 dy. (21)

By solving the above integral, we can write Pm in further
as

Pm = 1 −
e− y

ξ2 |0∞ −
∫ ∞

0

1
ξ2

e
− y
ξ2 e
− (2

k̃
Wγth −1)σ2

P yξ1 dy

, (22)

=
∫ ∞

0

1
ξ2

e
− y
ξ2 e
− (2

k̃
Wγth −1)σ2

P yξ1 dy. (23)

We can further have,

Pm =
1
ξ2

√√
4(2

k̃
Wγth − 1)σ2ξ2

P ξ1
K1


√√

4(2
k̃

Wγth − 1)σ2

P ξ1ξ2

,
(24)

= 2σ

√√
2

k̃
Wγth − 1
P ξ1ξ2

K1

2σ

√√
2

k̃
Wγth − 1
P ξ1ξ2

, (25)

where K1(x) denotes the first-order modified Bessel
function of the second kind [33].

Finally, the outage probability of the big model
transmission is given by

Pout = 1 − (Pm)M , (26)

= 1 −
2σ

√√
2

k̃
Wγth − 1
P ξ1ξ2

K1

2σ

√√
2

k̃
Wγth − 1
P ξ1ξ2

M . (27)

From the above analytical expression of Pout , we
can readily evaluate the failure probability of big
model transmission, under double Rayleigh fading
environments.
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Figure 2. Outage probability of big model transmission versus
the transmit SNR.

4. SIMULATION RESULTS AND DISCUSSIONS
for big model transmission
In this section, we present a series of simulations
designed to empirically validate the analytical findings
on the big model transmission. If not specified, the
parameters of big model transmission are set as follows.
Firstly, the task length of the big model is K = 1MBits,
while the communication bandwidth is W = 1MHz [34–
36]. Secondly, the average channel gains ξ1 and ξ2 are
both set to unity [37–39]. The transmit signal-to-noise
ratio (SNR) is established at 10 dB, and the variance of
AWGN is σ2 = 1. Finally, the number of training nodes
M is fixed to 5, and the latency threshold is γth = 1s.

Fig. 2 and Table 1 show the simulation and analysis
results of the big model transmission versus the
transmit SNR, where the SNR increases from -5
dB to 30 dB. From Fig. 2 and Table 1, it can be
observed that the outage probability decreases with
increasing SNR, which is due to a larger SNR leading
to a higher transmission rate, which reduces the
task transmission latency and eventually the outage
probability. In addition, the analytical results overlap
with the simulation ones, which validates the closed-
form solution. For example, the simulated OP with
SNR=25dB and γth = 0.1 is about 0.19724, while
the associated analytical OP is about 0.19726. The
simulated OP with SNR=25dB and γth = 1 is about
0.01752, while the associated analytical OP is about
0.01753. Finally, the outage probability with γ = 0.1 is
consistently higher than that with γth = 1, indicating
that a relaxed latency constraint can help reduce the
communication outage probability.

Fig. 3 and Table 2 depict the impact of the task
length K , on both analytical and simulated outage
probabilities of the big model transmission. The value
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Figure 3. Outage probability of big model transmission versus
K .

of K varies from 1 MBits to 9MBits, while ξ1 and
ξ2 take values from the set of {1, 2}. In Fig. 3 and
Table 2, it becomes evident that as the value of K
increases, the outage probability also increases. This
trend indicates that a higher value of K leads to a worse
outage performance. Moreover, the overlap between
the analytical and simulation results in Fig. 3 affirms
the accuracy and validity of the derived expression
for the outage probability. In particular, the simulated
OP with K = 1Mbits and ξ1 = ξ2 = 2 is about 0.09724,
while the associated analytical OP is about 0.09733. The
simulated OP with K = 1Mbits and ξ1 = ξ2 = 1 is about
0.26963, while the associated analytical OP is about
0.26954. Additionally, the outage performance with
ξ1 = 2 and ξ2 = 2 is notably superior to that with ξ1 = 1
and ξ2 = 1. This phenomenon appears from the fact
that an increased value of ξ correlates with improved
channel quality.

Fig. 4 and Table 3 show the effect of communication
bandwidth W on the analyzed and simulated outage
probability of the big model transmission, where W
varies from 1MHz to 9MHz. As shown in Fig. 4 and
Table 3, we can see that the outage probability shows
a decreasing trend with the increase of W , which
indicates that a larger communication bandwidth
effectively reduces the outage probability, and the
analyzed results overlap with the simulated results,
which verifies the closed-form solution. For example,
the simulated OP with W = 9MHz and γth = 0.1 is
about 0.290482, while the associated analytical OP
is about 0.290672. The simulated OP with W =
9MHz and γth = 1 is about 0.048064, while the
associated analytical OP is about 0.048095. Moreover,
the outage probability with γth = 0.1 is always higher
than that with γth = 1, which is because that a higher
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Table 1: Numerical outage probability of big model transmission versus the transmit SNR.

SNR (dB) -5 0 5 10 15 20 25 30

sim: γth =
0.1

1.0000 0.9999 0.9979 0.9436 0.7217 0.4187 0.1972 0.0821

ana: γth =
0.1

1.0000 0.9999 0.9979 0.9437 0.7218 0.4185 0.1973 0.0821

sim: γth =
1

0.9796 0.8289 0.5333 0.2695 0.1170 0.0464 0.0175 0.0064

ana: γth =
1

0.9796 0.8289 0.5334 0.2696 0.1169 0.0464 0.0175 0.0064

Table 2: Numerical outage probability of big model transmission versus K .

K (Mbits) 1 2 3 4 5 6 7 8 9

sim: ξ1,2 = 2 0.0972 0.1741 0.2447 0.3117 0.3756 0.4376 0.4970 0.5542 0.6086
ana: ξ1,2 = 2 0.0973 0.1741 0.2447 0.3116 0.3758 0.4376 0.4970 0.5540 0.6084
sim: ξ1,2 = 1 0.2696 0.4336 0.5581 0.6566 0.7354 0.7988 0.8491 0.8889 0.9201
ana: ξ1,2 = 1 0.2696 0.4339 0.5582 0.6565 0.7353 0.7986 0.8491 0.8890 0.9200

Table 3: Numerical outage probability of big model transmission versusW .

W (MHz) 1 2 3 4 5 6 7 8 9

sim:
γth = 0.1

0.9436 0.7353 0.5934 0.4999 0.4337 0.3847 0.3465 0.3157 0.2905

ana:
γth = 0.1

0.9437 0.7353 0.5934 0.4999 0.4339 0.3847 0.3465 0.3158 0.2907

sim: γth = 1 0.2696 0.1609 0.1173 0.0934 0.0781 0.0673 0.0593 0.0531 0.0481
ana: γth = 1 0.2696 0.1609 0.1174 0.0934 0.0780 0.0672 0.0592 0.0530 0.0481

Table 4: Numerical outage probability of big model transmission versusM.

M 1 2 3 4 5 6 7 8 9 10

sim: ξ1,2 = 2 0.0901 0.0900 0.0926 0.0951 0.0974 0.0993 0.1012 0.1027 0.1041 0.1056
ana: ξ1,2 = 2 0.0899 0.0900 0.0926 0.0951 0.0973 0.0993 0.1011 0.1027 0.1041 0.1054
sim: ξ1,2 = 1 0.2334 0.2422 0.2528 0.2618 0.2701 0.2762 0.2818 0.2870 0.2920 0.2955
ana: ξ1,2 = 1 0.2334 0.2421 0.2528 0.2619 0.2696 0.2762 0.2820 0.2872 0.2918 0.2960

latency threshold can effectively improve the outage
performance.

Fig. 5 and Table 4 illustrate the influence of the
number of training nodes M, on both analytical
and simulated outage probabilities of the big model
transmission, where M varies within the range of 1 to
10, while parameters ξ1 and ξ2 assume values from the
set {1, 2}. From the observation of Fig. 5 and Table 4, it
becomes evident that an increase in the value of M leads
to a corresponding increase in the outage probability.
This observation shows that a higher M is associated
with a deteriorating outage performance. Moreover, it
is worth noting that the outage performance exhibits
noticeable improvement when considering ξ1 = 2 and

ξ2 = 2, in contrast to the scenario with ξ1 = 1 and ξ2 =
1. This gap can be attributed to the inherent correlation
between the larger values of ξ and enhanced channel
quality. It is essential to highlight that the alignment
between the analytical and simulation results depicted
in Fig. 5 substantiates the accuracy and validity of
the derived analytical expression governing the outage
probability.

5. conclusion
In conclusion, this paper addressed a critical challenge
in the field of artificial intelligence, specifically related
to the transmission of large models like GPT-3.5 in
practical double Rayleigh fading environments. The
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Figure 4. Outage probability of big model transmission versus
W .

1 2 3 4 5 6 7 8 9 10

Number of receivers M

0.1

0.15

0.2

0.25

O
u

ta
g

e 
p

ro
b

a
b

il
it

y

Simulation 
1
=2, 

2
=2

Analysis 
2
=2, 

2
=2

Simulation 
1
=1, 

2
=1

Analysis 
1
=1, 

2
=1

Figure 5. Outage probability of big model transmission versus
M .

study focused on distributed implementations, which
were found to impose heavy loads on wireless trans-
mission due to the massive size of network parameters.
The investigation of system outage probability based
on transmission latency provided valuable insights,
and the derived analytical expression offered a frame-
work for understanding the performance of big model
transmission. The presented simulations validated the
proposed approach and offered promising strategies for

handling the transmission challenges associated with
the advanced AI models.
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