
EAI Endorsed Transactions
on Scalable Information Systems Research Article

1

Heterogeneous High-Performance System Algorithm
Based on Computer Big Data Technology
Dongyang Pan*

School of Mathematics and Information Engineering, Xinyang Vocational and Technical College, Xinyang 464000, Henan,
China

Abstract
INTRODUCTION: This paper proposes a scheduling algorithm for heterogeneous systems based on prioritization
(PQDSA). This algorithm is a sort method based on a directed acyclic graph (DAG). The critical nodes in the network are
grouped according to the communication and computing costs in the network. This increases the parallelism between task
schedules and reduces the completion time of work sets. Then, a method of assigning multiple tasks to multiple processors
using interpolation is proposed. The PQDSA method can effectively reduce the time of scheduling multiple tasks and
improve the scheduling effect. PQDSA is compared with EDL-θ and EDF scheduling methods. The results show that this
method has better scheduling efficiency.

Keywords: Priority queue division, Heterogeneous system, High-performance computing, Time of completion, Dispatching Efficiency

Received on 24 August 2023, accepted on 06 October 2023, published on 18 October 2023

Copyright © 2023 D. Pan et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-SA 4.0,
which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the
original work is properly cited.

doi: 10.4108/eetsis.3789

*Corresponding author. Email: pandongyang@xyvtc.edu.cn

1. Introduction

Heterogeneous computing is a kind of computing mode
composed of arithmetic units with different kinds of
instructions and structures. Commonly used computing
units include CPU, GPU, DSP, ASIC, FPGA, etc. [1]. Its
advantage is that in addition to using the traditional CPU
calculation, it can accelerate the computing processing
speed through other computing units so that the
computing device has a more efficient processing
capacity. Heterogeneous computing has been increasingly
applied in cluster systems such as supercomputers and
cloud servers. Graphical Processing units (GPUs) are
increasingly used in compute-intensive software fields
because of their high computing speed, fast storage
bandwidth, and parallelization. Whether on a PC or a
supercomputer, GPUs play a dominant role. Among the
500 supercomputers in the world, including the SGI
AltixUV and CrayXK6, all use graphics processors on a
large scale. GPU parallel computing is moving into the
mainstream. In recent years, with the development of

CPU and GPU technologies, many high-performance
computers have been used to build heterogeneous
computing platforms [1].

CPU and GPU hardware characteristics are different.
The CPU uses a chaotic mode of operation, which uses
the prefetch and Cache hierarchy to reduce the memory
access delay. It has a larger cache capacity and more data
and logical computing units, which makes the CPU ideal
for performing complex and data-dependent computing
tasks such as distributed computing, data compression,
artificial intelligence, and physical simulation. The GPU
uses a continuous running method. It operates in many
units. It relies on massive multithreading to hide its
memory access latency, while GPU performance depends
on the application [1]. Even the same program can impact
the performance of the GPU. The main uses of graphics
processors are image analysis, data processing, video
processing, etc. These differences lead to significant
differences in CPU and GPU execution performance.
Some applications can run fast on the CPU (GPU) but
slow on the GPU (CPU) [2]. It is imperative to effectively
utilize the advantages of CPU and GPU in heterogeneous
systems, improve the operating efficiency of hardware,

EAI Endorsed Transactions on
Scalable Information Systems

Volume 11 | Issue 1 | 2024

https://creativecommons.org/licenses/by-nc-sa/4.0/

D. Pan

2

and achieve optimal resource allocation. Therefore, a
dynamic task scheduling algorithm is adopted to
reasonably allocate computing tasks to corresponding
hardware computing units in a particular proportion to
achieve the above purpose [3].

The academic community divides workload balancing
in computer systems into two types: one is static, and the
other is dynamic. Static scheduling refers to setting the
assignment rate of work according to the expected work
cycle before the work starts. The theoretical calculation of
the prediction time is realized by calculating the execution
performance of each processor, compiling time
parameters and offline learning time. Although this
method does not need synchronization between multiple
tasks and the communication cost is low, its application
scope is narrow, and there are problems of unequal load
distribution. Qilin method is a classical static task
scheduling method. It applies the running and data
transfer speeds tested in the learning process and
constructs the evaluation model between CPU and GPU.
A hybrid static scheduling algorithm is presented in the
literature [4]. An optimization method based on a genetic
algorithm is proposed. Firstly, it uses a list heuristic
scheduling algorithm, including subsequent nodes, to
obtain a scheduling result close to the best. Then the
genetic algorithm is used to optimize the scheduling
results in the first stage. Communication and calculation
methods are proposed in the literature [5]. The algorithm
realizes the real-time statistics of system running time and
data sending time by offline method. The predicted
operation and delivery accuracy depend primarily on the
actual operation. Due to different operation requirements
and different hardware conditions, the required operation
time will be different. This method has some limitations
in practice.

Dynamic scheduling is an algorithm that determines
the load allocation ratio based on resource sharing
between GPU and CPU. Although dynamic scheduling
costs are higher than static scheduling, its time estimation

is more accurate. Literature [6] proposes a dynamic
scheduling algorithm based on universal memory address
space access (AHS). The system's load characteristics and
the CPU and GPU computing speed are analysed in
real-time without offline data processing. Literature [7]
proposes a dynamic adaptive scheduling algorithm (DSS).
The work blocks assigned to the processor during the
initial work process are relatively large. As the number of
tasks remaining decreases, so does the number of tasks for
the CPU and GPU. Literature [8] describes a method of
job theft. Because the GPU cannot actively communicate
with the CPU, the GPU cannot make load requests to the
work pool. In literature [9], when there is no dedicated
route, the communication is controlled by a dynamic
program combined with GPU and CPU, but this method
will reduce the operation efficiency. This thesis aims to
improve the parallelism of multi-core systems and
improve the efficiency of multi-core systems. A priority
queue partitioning scheduling algorithm (PQDSA) is
designed for parallel work with multiple entries and
multiple exits. First, the number of priority queues is
determined according to the number of input nodes, and
then it is sorted and scheduled. This article can simplify a
complex and diverse set of tasks.

2. Task scheduling model

In a heterogeneous system, assigning a limited number of
tasks to different processing units to complete the
operation is complex. Usually, such problems are
described by DAG diagrams. A task can be expressed as a
node. Nodes are the minor units in the scheduling process
[10]. When a task is to be completed, the host finds the
appropriate processor according to a particular search
strategy and schedules it. It distributes the work to the
appropriate processor to achieve a predetermined optimal
solution. Figure 1 shows a task assignment model that
assigns five tasks to two processors.

Figure 1. A scheduling model for five jobs on two processors

EAI Endorsed Transactions on
Scalable Information Systems

Online First

Heterogeneous High-Performance System Algorithm Based on Computer Big Data Technology

3

2.1 Description of the application model

Scheduling of multiple tasks is a significant problem in
heterogeneous computing environment. Such

{ , , , }F P H D V= class of tasks with a restrictive
relationship can be described by a DAG graph. In this
model, { | (1, 2, ,)}iP p i n= =  represents a set of
multiple task nodes. n is the number of knots for the
whole job. { |ij ijH h h= stands for the edge} between

node ip and node jp . There is a priority constraint

relationship between node ip and node jp , and jp
is the direct successor of ip . { |ij ijV v v= stands for

the cost of communication between ip and E. ip is

the direct leader of jp . ijv stands for additional
communication load when two work nodes are running on
different processors. { |ijD d= represents the

computation cost of node ip on processing jq }. Here

jq refers to the j handler in a heterogeneous system.

P is a set of handlers. 1 2{ , , , },mP q q q m= 

represents the total number of processors. When one or
more entry and exit nodes exist, a virtual node with only
entry and exit nodes can be constructed [11]. This virtual
node requires neither extra communication cost nor extra
operation cost. When scheduling, we need to receive all
the information from each leading node, and then we can
enter the ready state and schedule. The DAG task diagram
is shown in Figure 2. The value at the oriented edge
represents the dependence between the two nodes and is
called the communication cost.

Figure 2. DAG application with ten work nodes

Definition 1: Start and end times. If 1(,)i jT p q and

2(,)i jT p q represent the start and end times of work

ip on a processor jq , then the mathematical
relationship between the two problems can be expressed
by the formula (1) :

2(,) 1(,)i j i j ijT p q T p q v= + (1)
Definition 2: Precursor and successor nodes.

()ipred p represents the precursor node of work ip . If

task ip has no prefix node, then the job is the input

node. ()isucc p represents the next work node

performed under item ip . If there is no subsequent node,
then this node is the output node. The average operational
cost of working node ip is:

1

n
ij

i
j

d
D

n=

=∑ (2)

ijd represents the amount of computation of task ip
in processor iq . n represents the number of
processors. Among them, the communication cost in the
network, the computing cost of the network itself on the
processor and the resource allocation of the front end of
the network are three important factors that affect the
network performance.
Definition 3: Task Level ()iTV p value. Each node is

recursively calculated, and the T-level value ()iTV p of
each node is obtained. Its formula is:

()
() max { () }

j i
i j ij ip pred p

TV p TV p v D
∈

= + + (3)

The calculation formula for input node ()iTV p is
expressed as formula (4):

()entry entryTV p D= (4)

Definition 4: Plan the length. exitP represents the

output node. 2(,)exit jT P q represents the completion
time of the entire schedule [12]. If there are multiple
output nodes, virtual nodes with zero computation cost
and zero communication cost are added to the output node
so that the output node becomes the final unique output
node. The scheduling length is:

max{ 2(,)}exit jmakespan T P q= (5)
The ultimate goal of the sorting problem is to distribute

the work of each node in the network reasonably
according to a particular order to achieve the shortest
sorting time.

Definition 5: Scheduling effectiveness [13]. The
scheduling efficiency of the algorithm refers to the ratio
of task scheduling acceleration to the total number of

EAI Endorsed Transactions on
Scalable Information Systems

Online First

D. Pan

4

processors. Its value varies between 0 and 100%. This
method not only considers the execution speed of the
DAG algorithm, but also considers the number of
processing units. Its formula is:

SpeedupEfficiency
n

= (6)

n represents the number of processors. Speedup
is the acceleration ratio. Acceleration ratio refers to the
ratio of the sequential computation time of the task set to
the scheduling length. The notations and parameters that
can be used in this article are summarized (Table 1).

Table 1. Symbol definitions

Argument Definition
P Working set

ip Task i

jP
Process j

ijd
The computational cost of task node ip on processor jq

ijv
Communication overhead between task nodes ip and jp

()ipred p
The pilot Node set of Task Node ip

()isucc p
A group of subsequent nodes of Task Node ip

iD The cost of averaging operations

entryP Inlet node

exitP Exit node

iS Priority queue the blank queue required for sorting

()iAVGT p Average completion time of task node ip

()iMpred p
Sum of direct leader nodes of task node ip

()iMexit S
Sum of Output nodes of queue iS

()iTV p
t level of Task Node ip

2.2 Preference Quality Distribution
System (PQDSA) Algorithm

Priority queue division Phases
When the task is scheduled, the number of entering nodes
determines the priority. More than one direct leader node
is called a critical node. The main idea of task partitioning
is to divide key nodes into suitable queues to generate the
best task-scheduling queue. This calculates the average
AVGT completion time for each node [14]. The node is
divided into several small blocks based on the value of
AVGT. And assign it to the appropriate processor. A
blank queue (1, 2,3)iS i = L must be used when
prioritizing. The size of i is determined by the number
of input nodes. The parameter ()iMexit S represents

the number of nodes expelled from queue iS .

()iMpred p represents the total number of direct

leading nodes in node ip . For complex task applications
with multiple input and output nodes, nodes with no
operational cost and no transmission delay can act as
pseudo-input and pseudo-output nodes. Virtual nodes do
not affect the overall task assignment. AVGT is obtained
from the input node by recursion. Its expression is
expressed in formula (7):

()
() max { () }

j i
i j ij ip pred p

AVGT p AVGT p v D
∈

= + + (7)

ijv represents the communication cost required to

transmit data from task node ip to task node jp .

EAI Endorsed Transactions on
Scalable Information Systems

Online First

5

When nodes ip and jp are assigned to the same

processor, the value of ijv is 0. iD represents the

computation of node ip per processor. The average

AVGT of input node entryP can be expressed as:

()entry entryAVGT P D= (8)

entryD is the average value of the input node entryp .
The sorting order is determined according to the number
of input nodes in the DAG task graph. With the help of
blank queue entryD , select the item node and place it in
the blank queue. The AVGT of each node is recursively
calculated from the input node. When a node is selected in
the queue, it is processed as follows:

If node ip has only one direct precursor node, then
this node is placed directly in the queue of its predecessor
nodes. 2) If node ip has multiple direct leader nodes,

that is, node () 1iMpred p > , the node is a key node.
AVGT was compared with their leading nodes. Place a
node in the queue of nodes with the largest AVGT value.
Figure 3 shows the result of the task splitting queue
(image cited in Wireless Communications and Mobile
Computing, 2018, 2018.).

Figure 3. Results of task priority queue partitioning

Stages of prioritization
The number of input nodes determines the queue order.
Adding nodes in the queuing process increases the
communication cost and parallelism between nodes in the
network. Because of the presence of essential nodes, the
data correlation between queues will not be eliminated.
When deciding the order of A group of multiple tasks, we

must first estimate ()iTV p of each work node and then
sort each working node. In the process of executing tasks,
a significant problem is how to determine the location of
essential node tasks [15]. If the previous node of a critical
node has not been arranged, the previous node must be
arranged first before the next node can be arranged. If this
node is crucial, then the number of direct leading nodes

()iMpred p of this node is more than one. If all direct
leaders of a node come out of the same queue, then the
key node is assigned directly. If one of its immediate front
ends has other queued nodes, consider whether this node
has been scheduled and whether the data has arrived.
When it is judged that the leading node has been arranged
and the data has arrived, the critical node can be arranged.
Nodes of ()iTV p with the same value can be assigned
arbitrarily. In the priority selection phase of the task, the

()iTV p values of the nodes in priority queue 1S and

2S are first calculated. Sort by its size in units of

()iTV p . You get an example to represent priorities 1S
and 2S . The corresponding set of nodes is

1 3 6 8 9{ , , , , }P P P P P and 2 4 5 7 10{ , , , , }P P P P P .

Processor selection phase
The algorithm sorts multiple tasks in order, dramatically
reduces the correlation between tasks and increases the
parallelism, thus shortening the average execution time of
multiple nodes. Then, according to the tasks in the
queuing process, determine the order in which they are
produced. Determine that the critical node meets the
priority constraint condition [16]. This section focuses on
scheduling tasks on the appropriate processor to execute
to make the node progress faster. In applying the DAG
work chart, work is assigned to specific processing units
to be completed. When the node is finished, it needs to
wait until all of its work is completed, send the
corresponding data to its processor, and start its work.
There is no communication overhead when two work
nodes run simultaneously on the same processor. This
critical node has the highest task priority in the same
hierarchy. The formula for calculating the real start time
()ST and the actual end time ()FT of work is as
follows:

() 0entryST p = (9)

() ()i i ijST p FT p d= − (10)

()
() max { () }

j i
i i ij ijp pred p

FT p ST p d k v
∈

= + +  (11)

0k = when ip and its start node jp are running

on the same processor. 1k = when ip and its leader

jp are running on different processors.
If each job in the queue has only one direct leading

node, then all the jobs are assigned to the same processor.

EAI Endorsed Transactions on
Scalable Information Systems

Online First

Heterogeneous High-Performance System Algorithm Based on Computer Big Data Technology

D. Pan

6

There is no additional communication burden in this case,
and no need to wait for transmission from other nodes.
When the task has more than one direct leader node, this
node is the critical node. The last precursor node where
data arrives is the crucial parent node.

3. Experiment and analysis

3.1 Experimental parameter setting and
deployment

The hardware requirements for this test are shown in
Table 2. Using Rodinia standard system, 11 open CL
systems are selected as research objects [17]. They are
backprop, bfs, gaussian, Hotspot, hotspot3D, lud, nn, nw,
pathfinder, srad and streamcluster. Because the
voltage/frequency range that each CPU/GPU can adjust is
different, the voltage/frequency setting is standardized
first. The minimum CPU frequency is 1200 MHZ. Its
maximum operating frequency is 3300 MHZ. These
frequencies are divided into ten frequency levels at a step
size of 233 MHZ. fC∈ [0.59, 1.64] can be obtained by
standardizing it with the default CPU frequency of 2100
MHz. A GPU core with a minimum frequency of 567
MHz and a maximum frequency of 1595MHz was used.
The article divides it into ten levels. The default frequency
of the GPU core is 1357 MHz, which is standardized to
obtain fGc∈[0.44,1.22].

Table 2. Experimental environment

Operating system Ubuntu 16.04
CPU Intel Xeon E5-2695∗2
GPU Nvidia Tesla P40∗4
Internal memory 32GB DDR 4∗8
Hard disk 480GB SSD 4T BHDD

The precise figures of DVFS power consumption
parameters 0CP andλ of CPU are given. Perform 11
tasks on the CPU with ten different voltage and frequency
Settings. The average result is obtained by fitting the
obtained results. The result is 0CP =57.57W and λ
=31.75. Use ten different voltages/frequencies on the
GPU to complete 11 tasks. The result of fitting was 0CP
=65.11W, σ =66.44.

Eleven tasks are completed at ten different frequencies
on the CPU. The measured execution time and energy
consumption value establish the system performance
model. The state of operation of a particular type of task
at a particular type of voltage/frequency on the processor
can be derived from the system performance model.

When the task of 11 test sets is executed on the GPU
when the number of cores on the CPU to assist the GPU

calculation is less than 3, the execution efficiency of the
GPU will be significantly affected. Therefore, in this
experiment, three cores from the 18 cores of the
XeonE5-2695 CPU were selected as auxiliary cores to run
at the highest frequency of 3300MHz. The remaining 15
cores are used as computing cores to maximize the
utilization of CPU computing resources.

This paper adopts the CPU Freq tool under Linux to
realize the dynamic adjustment of CPU voltage and
frequency level. It can view and individually adjust the
frequency of each core in the CPU. Use the Nvidia-semi
software on the GPU to adjust the voltage/frequency. This
tool, developed by Nvidia Inc., monitors GPU usage and
changes its state. Use Intel's Power Governor tool to
measure the power consumption of the CPU. Use
Nvidia-smi to measure the power consumption of your
GPU. The energy consumption of the whole server and
the energy consumption of the switch is measured by the
energy meter.

The energy consumption /turnon offE of the server
switch is 262.50MJ. When the CPU and GPU are idle,
power consumption is set to the lowest voltage/frequency
setting. The CPU power consumption at 1200 MHZ is
28.05W, the GPU power consumption is 9.49W, and the
GPU power consumption is 9.89W at 544MH core
frequency. The measured other power consumption P0
value is 44.46 W. It is also assumed that each server can
be equipped with 1/2/4/8/16/32 CPU/GPU pairs. It is
expressed as P1/P2/P4/P8/P16/P32.

This paper models the case of sending a task to a task
cluster in one hour. In the base unit of 1 second, Time∈
[1,3600]. The amount of work completed in each period
corresponds to the normal distribution. Each completed
assignment was randomly selected from 11 assignments.

3.2 Experimental comparison algorithm

This paper will give a comprehensive evaluation of these
new scheduling methods. PQDSA, EDL-θ scheduling
algorithm and EDF algorithm were configured on
different server CPU/GPU pairs. The experimental results
are given under different running times and load
conditions [18]. The three methods' energy consumption
and running speed differences were compared. EDL-θ
algorithm is a new method combining DVFS technology
with DRS technology.

3.3 Algorithm comparison and result
analysis

Algorithm comparison results
PQDSA method is a priority queuing method based on job
category. The benefits of this approach are shown in
Figure 4. Compared with the standard EDF method, the
PQDSA method can save
20.52%,26.15%,30.42%,31.56%,36.25%, and 39.17%
energy consumption at P1~P32. Compared with the EDL

EAI Endorsed Transactions on
Scalable Information Systems

Online First

7

- theta method can save 7.08%, 5.1%, 5.73%, 6.67%,
10.73%, and 2.92% of the energy consumption. The
server's idle energy consumption and switching energy
consumption can be effectively reduced by using the
heterogeneous algorithm of the platform. The PQDSA
method is first to determine the optimal execution times
of each job and then schedule it. And default tasks on that
processor at an optimal frequency. In addition, the
PQDSA algorithm also uses a way to group work. The
characteristic of the algorithm is that there is low energy
consumption and a short execution time between the tasks
in the execution process. Ensure that most of the work is

done at the optimal frequency on the preferred processor.
Most work is done at the lowest theoretical state [19]. It
also prevents DVFS tasks from executing at high
frequencies on undesirable processors. Before the DVFS
alternative method is applied, the alternative method that
does not increase the system's energy consumption should
be adopted as far as possible. The PQDSA algorithm
generates a smaller energy consumption in the system,
significantly reducing idle and server switching
consumption. It has the best energy consumption
efficiency compared with the other two methods.

Figure 4. Cluster energy consumption for different CPUs/GPUs

EDL-θ algorithm is based on DVFS technology. The
performance of this method is not ideal under the
experimental environment in this paper. In P1-P32 cases,
the performance is worse than the EDF algorithm. Total
energy consumption is 148.33%, 155.31%, 161.35%,
158.54%, 152.50%, and 152.40% of EDF, respectively.
Although DVFS technology can significantly reduce the
number of open servers and the system's idle energy
consumption and switching energy consumption, the
current DVFS technology does not divide the system into
multiple types, resulting in solid randomness in the
system's work. In addition, because DVFS technology is
used, tasks are executed at a higher frequency when not
preferentially selected [20]. This will cause the energy
consumption in the execution process to increase sharply
and affect the execution efficiency of the algorithm. The
PQDSA method has the best energy consumption
efficiency in the case of high load. Compared with EDF
and EDL-theta algorithms, the PQDSA algorithm can
achieve 31.56% and 56.46% energy-saving effects when 8
CPU/GPU pairs are loaded on each processor.

Processor The effect of CPU/GPU logarithm on
algorithm performance

When the number of CPU/GPU pairs in the server is
small, the running power consumption accounts for most
of the total power consumption. At the same time, in the
operation of the system, the running consumption of the
server side and the server switch consumption also
occupy a large proportion. The reason is that the number
of CPU/GPU dual cores is too small, making the
computing power of a single server too low. More servers
must be opened to process the submitted tasks, resulting
in a significant server switch energy drain (Figure 5).

The total energy consumption of the three methods
decreases as the logarithm of CPU/GPU in each server
increases. The overall energy consumption of 32
CPUs/GPUs on EDF was reduced by 14.48% compared to
1 CPU/GPU pair. Compared with the traditional PQDSA
method, the energy consumption of the whole system is
reduced by 36.68%. The overall energy consumption of
the EDL-θ algorithm is reduced by 11.00%. When the
number of CPUs and GPUs in a single server increase, the
computing capacity of a single server increases, and the
number of servers that need to be opened significantly

EAI Endorsed Transactions on
Scalable Information Systems

Online First

Heterogeneous High-Performance System Algorithm Based on Computer Big Data Technology

D. Pan

8

decreases. This dramatically reduces the energy
consumption of the server switch, which in turn reduces
the overall energy consumption. Under the proposed test
conditions, when the number of CPU/GPU pairs is more,
the total energy consumption of the cluster to complete
the task is less. The energy consumption ratio during

working hours to total energy consumption is taken as the
effective energy consumption ratio, as shown in Table 3.
The PQDSA method has good performance. Especially
when the logarithmic ratio of CPU and GPU is large, the
effective energy utilization of the system reaches nearly
100%. 107

Table 3. Effective energy consumption ratio

Indicates the number of CPU/GPU Effective energy consumption ratio (%)
EDF algorithm EDL-θ algorithm PQDSA algorithm

1 71.30% 66.74% 83.98%
2 81.24% 80.06% 91.99%
4 86.70% 90.05% 96.65%
8 91.42% 94.82% 98.58%
16 91.49% 97.37% 99.80%
32 93.24% 99.16% 99.98%

Figure 5. Clustering energy consumption under three different time Settings

4. Conclusion

This paper presents a scheduling algorithm based on
priority queue partitioning (PQDSA). The PQDSA
algorithm sorts the nodes and divides the node tasks with
high complexity and low parallelism into several
sequences. There is a dependency between the key node
and the leader node. In the grouping process, the critical
nodes are placed in the corresponding team according to
the average arrival time of nodes. This can reduce the task
time consumption. Compared with the traditional EDF
and EDL-θ methods, it is found that the PQDSA method
has more significant advantages in scheduling length and
scheduling efficiency.

Acknowledgments.
This work was supported by Xinyang Vocational and Technical
College.

References
[1] Saritha, S., Mamatha, E., Reddy, C. S., & Rajadurai, P. A

model for overflow queuing network with two-station
heterogeneous system. International Journal of Process
Management and Benchmarking, 2022; 12(2):147-158.

[2] Tian, S., Ren, W., Deng, Q., Zou, S., & Li, Y. A predictive
energy consumption scheduling algorithm for
multiprocessor heterogeneous system. IEEE Transactions
on Green Communications and Networking,
2021;6(2):979-991.

[3] Moori, A., Barekatain, B., & Akbari, M. LATOC: an
enhanced load balancing algorithm based on hybrid

60.00%
65.00%
70.00%
75.00%
80.00%
85.00%
90.00%
95.00%

100.00%

1 2 4 8 1 6 3 2

EF
FE

C
TI

V
E

EN
ER

G
Y

C

O
N

SU
M

PT
IO

N
 R

A
TI

O
 (%

)

INDICATES THE NUMBER OF CPU/GPU

EDF algorithm EDL-θ algorithm PQDSA algorithm

EAI Endorsed Transactions on
Scalable Information Systems

Online First

9

AHP-TOPSIS and OPSO algorithms in cloud computing.
The Journal of Supercomputing, 2022;78(4):4882-4910.

[4] Ben Alla, H., Ben Alla, S., Ezzati, A., & Touhafi, A. A
novel multiclass priority algorithm for task scheduling in
cloud computing. The Journal of Supercomputing,2021;
77(10):11514-11555.

[5] Wagner, C., Dhanaraj, N., Rizzo, T., Contreras, J., Liang,
H., Lewin, G., & Pinciroli, C. SMAC: Symbiotic
multi-agent construction. IEEE Robotics and Automation
Letters, 2021;6(2):3200-3207.

[6] Liu, L., Tang, J., Liu, S., Yu, B., Xie, Y., & Gaudiot, J. L.
π-rt: A runtime framework to enable energy-efficient
real-time robotic vision applications on heterogeneous
architectures. Computer, 2021;54(4):14-25.

[7] Hu, B., Cao, Z., & Zhou, M. Energy-minimized scheduling
of real-time parallel workflows on heterogeneous
distributed computing systems. IEEE Transactions on
Services Computing, 2021;15(5):2766-2779.

[8] Mack, J., Arda, S. E., Ogras, U. Y., & Akoglu, A.
Performant, multi-objective scheduling of highly
interleaved task graphs on heterogeneous system on chip
devices. IEEE Transactions on Parallel and Distributed
Systems, 2021;33(9):2148-2162.

[9] Ulugbek, A., & Azamat, Q. Model of optimal distribution
of network resources with constraints on quality of service
indicators. Bulletin of Electrical Engineering and
Informatics, 2023;12(2):835-842.

[10] Jenila, L., & Canessane, R. A. Cross Layer Based Dynamic
Traffic Scheduling Algorithm for Wireless Multimedia
Sensor Network. IJEER, 2022;10(2):399-404.

[11] Khenwar, M., Sisodia, A., Vishnoi, S., & Kumar, R.
Exploration: Cloud Computing Scheduling Techniques.
Scandinavian Journal of Information Systems,
2023;35(1):673-679.

[12] Madhura, R., Uthariaraj, V. R., & Elizabeth, B. L. An
efficient list ‐ based task scheduling algorithm for
heterogeneous distributed computing environment.
Software: Practice and Experience, 2023;53(2):390-412.

[13] Huang, J., Li, R., An, J., Zeng, H., & Chang, W. A
DVFS-weakly dependent energy-efficient scheduling
approach for deadline-constrained parallel applications on
heterogeneous systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 2021;40(12):2481-2494.

[14] Kaur, N., Kumar, A., & Kumar, R. 2022; TRAP:
task-resource adaptive pairing for efficient scheduling in
fog computing. Cluster Computing, 25(6):4257-4273.

[15] Hamid, L., Jadoon, A., & Asghar, H. Comparative analysis
of task level heuristic scheduling algorithms in cloud
computing. The Journal of Supercomputing,
2022;78(11):12931-12949.

[16] Tran-Dang, H., & Kim, D. S. FRATO: Fog resource based
adaptive task offloading for delay-minimizing IoT service
provisioning. IEEE Transactions on Parallel and
Distributed Systems, 2021; 32(10):2491-2508.

[17] Azizi, S., Othman, M., & Khamfroush, H. DECO: A
Deadline-Aware and Energy-Efficient Algorithm for Task
Offloading in Mobile Edge Computing. IEEE Systems
Journal, 2022;17(1):952-963.

[18] Yesil, S., & Ozturk, O. Scheduling for heterogeneous
systems in accelerator-rich environments. The Journal of
Supercomputing, 2022;78(1):200-221.

[19] Serdaroglu, K. C., & Baydere, S. An efficient multipriority
data packet traffic scheduling approach for fog of things.
IEEE Internet of Things Journal, 2021;9(1):525-534.

[20] Liu, J., Huang, J., Li, Z., Li, Y., Wang, J., & He, T.
Achieving per-flow fairness and high utilization with
limited priority queues in data center. IEEE/ACM
Transactions on Networking, 2022;30(5):2374-2387.

EAI Endorsed Transactions on
Scalable Information Systems

Online First

Heterogeneous High-Performance System Algorithm Based on Computer Big Data Technology

