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Abstract

With the rapid advancement of artificial intelligence and wireless communication, the volume of textual
information has grown significantly, accompanied by multidimensional metrics such as innovation,
application prospects, key technologies, and expected outcomes. Extracting valuable insights from these
multifaceted metrics and establishing an effective composite evaluation weighting framework poses a pivotal
challenge in the text information processing. In this work, we propose a novel approach for textual
information processing, leveraging multi-dimensional indicator weights (MDIWs). Our method involves
extracting semantic information from text and inputting it into a long short term memory (LSTM)-based
textual information processor (TIP) to generate MDIWs. These MDIWs are then processed to create a judgment
matrix following by eigenvalue decomposition and normalization, capturing intricate semantic relationships.
Our framework enhances the comprehension of multi-dimensional aspects within textual data, offering
potential benefits in various applications such as sentiment analysis, information retrieval, and content
summarization. Experimental results underscore the effectiveness of our approach in refining and utilizing
MDIWs for improved understanding and decision-making.
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1. Introduction
The convergence of wireless communication has
ushered in a transformative era in the realm of text
information processing [1–3]. These interconnected
technological advancements have collectively created
an ecosystem where the acquisition, transmission, and
analysis of textual data have reached unprecedented
levels of efficiency and capability [4–6]. With the
proliferation of wireless communication technologies,
ranging from 4G to 5G and beyond, information can
be exchanged in real-time, facilitating the seamless
flow of text-based data across various communication
platforms, social networks, and messaging applications.
This surge in data generation, fueled by the widespread
use of smartphones, tablets, and other smart devices,
has led to an exponential increase in the volume and
diversity of textual content available for analysis [7–10].

∗Corresponding author. Email: linjiecspg@126.com.

In parallel, the rise of edge computing has redefined
the processing landscape by bringing computation
closer to data sources [11–13]. Edge devices, ranging
from edge servers to IoT endpoints, possess increasing
computational power and intelligence, allowing them
to perform complex text analytics and natural language
processing tasks at the edge of the network [14–
16]. This paradigm shift has not only reduced
the latency associated with transmitting data to
distant cloud servers but has also paved the way
for enhanced data privacy and security [17–20]. By
processing sensitive text data locally, edge computing
mitigates potential risks associated with data exposure
during transmission, catering to the stringent privacy
requirements of various industries.

Additionally, the integration of IoT networks has
contributed a plethora of data-generating devices to
the ecosystem, each capable of producing a wealth
of textual information [21–23]. These devices, which
include sensors, wearables, smart appliances, and
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industrial machinery, communicate with each other
and with centralized systems, generating a constant
stream of textual data that reflects user interactions,
environmental conditions, and operational statuses
[24–27]. This vast and dynamic pool of data presents
an invaluable resource for text analytics applications
such as sentiment analysis, contextual understanding,
and predictive modeling. Insights extracted from this
text data offer a deep understanding of user behavior,
preferences, and experiences, enabling organizations to
tailor their offerings to meet evolving demands [28–30].

In this landscape, applications of text informa-
tion processing have become increasingly diverse
and impactful. Real-time language translation ser-
vices have harnessed edge computing to provide
instant and contextually accurate translations, improv-
ing cross-cultural communication. Sentiment analysis
algorithms, capable of swiftly processing vast volumes
of text from social media platforms and customer
reviews, offer businesses insights into customer opin-
ions, enabling them to make data-driven decisions.
Moreover, edge devices within IoT networks can col-
laboratively process and analyze textual data, yielding
timely insights that empower predictive maintenance,
anomaly detection, and more.

Motivated by the above literature review, we intro-
duce an innovative approach to the textual informa-
tion processing in this paper, by leveraging the con-
cept of multi-dimensional indicator weights (MDIWs).
Our method encompasses the extraction of semantic
information from text, which is subsequently input
into an long short term memory (LSTM)-based textual
information processor (TIP) to generate MDIWs. These
MDIWs undergo a series of transformations, culmi-
nating in the creation of a comprehensive judgment
matrix that incorporates eigenvalue decomposition and
normalization techniques. This process effectively cap-
tures intricate semantic relationships inherent in the
data. Simulation results are demonstrated to show the
efficacy of our approach, revealing its capability to
refine and harness MDIWs for enhanced understanding
and decision-making.

2. Textual Information Processing
2.1. Semantic extraction
Semantic extraction in textual information processing
involves the task of understanding and extracting
the underlying meaning and relationships present
in text data. It goes beyond simple keyword-based
extraction by focusing on the context, structure, and
relationships between words and phrases. This process
is crucial for various natural language processing
(NLP) applications like information retrieval, sentiment
analysis, question answering, and more. The textual
information processing is detailed as follows.

• Word embeddings and named entity recognition
(NER): Word embeddings are numerical repre-
sentations of words that capture their semantic
meaning. One common method to generate word
embeddings is Word2Vec. It uses the skip-gram
model where given a target word wt and a context
window of surrounding words wc, it maximizes
the probability of context words associated with
the target word, given by

θwe = max
wc

∑
wt

log P (wc |wt). (1)

NER identifies entities such as names of persons,
organizations, locations, dates, etc., in text. It
involves classifying words into predefined cate-
gories. A popular approach is using conditional
random fields (CRFs) that models the conditional
probability of a sequence of labels given the input
sequence, given by

θner = arg max
x

P (y|x), (2)

where y denotes the sequence of labels and x is the
input sequence.

• Dependency parsing and semantic role labeling
(SRL): Dependency parsing reveals the grammat-
ical relationships between the words in a sentence.
A common approach is to represent the sentence
as a dependency tree where words are nodes, and
edges represent the syntactic relationship, given
by

Score(wi , R, wj ) = f (wi , wj ) + g(wi , wj ) + h(wi , wj ),
(3)

where SRL aims to identify the predicate-
argument structure in a sentence. Given a
sentence and its predicate, it involves labeling the
roles of words in the sentence with respect to that
predicate, given by

θsrl = arg max
x

P (y1, y2, ..., yn|x, p), (4)

where yi is the semantic role label for word i, and
p denotes the prediction result.

• Coreference resolution: Coreference resolution
deals with identifying when different words refer
to the same entity. It is typically modeled as a
clustering problem, given by

Score(mentioni ,mentionj ) = f (mentioni ,mentionj )

+ g(mentioni ,mentionj )
(5)

where mentioni is the mention of word i.
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Figure 1. Framework of LSTM-based textual information
processing.
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Figure 2. Structure of an LSTM cell.

2.2. LSTM-based Textual Information Processing
After obtaining the above semantic information in
the text, we proceed to perform the LSTM-based
textual information processing, where the framework
is shown in Fig. 1. In this framework, the obtained
semantic information θwe, θner , Score(wi , R, wj ), θsrl ,
and Score(mentioni ,mentionj ) are sequentially to
LSTM network, fully connected network, softmax
function and multi-dimensional indicator weights
processing.

Specifically, the LSTM network is a type of recurrent
neural network designed to process sequential data,
such as text. In this step, the input semantic information
is sequentially fed into the LSTM network. The LSTM
is capable of capturing and learning the temporal
dependencies within the input sequence, by utilizing
gating mechanisms to address the vanishing gradient
problem. In particular, Let xt be the input at time step
t, ht be the hidden state at time step t, and ct be the cell
state at time step t.

Fig. 2 shows a typical LSTM cell, which consists of
three main gates and their corresponding operations:

• Forget gate (ft): The forget gate decides what
information to forget from the cell state. It takes
the previous hidden state ht−1 and the current
input xt as inputs. The forget gate output is in the
range of [0, 1], indicating how much information
should be discarded from the cell state, given by,

ft = σ (Wf · [ht−1, xt] + bf ). (6)

• Input gate (it) and candidate cell state (c̃t): The
input gate determines which values to update in
the cell state. Additionally, a new candidate cell
state c̃t is computed, representing potential new
values to add to the cell state, given by,

it = σ (Wi · [ht−1, xt] + bi), (7)

c̃t = tanh(Wc · [ht−1, xt] + bc). (8)

• Update cell state (ct): The cell state is updated by
combining the information to forget and the new
candidate information, given by

ct = ft · ct−1 + it · c̃t . (9)

• Output gate (ot) and hidden state (ht): The
output gate determines what information to
output from the cell state. It takes into account
the current input xt and the previous hidden state
ht−1. The hidden state at the current step ht is
computed using the updated cell state, given by,

ot = σ (Wo · [ht−1, xt] + bo), (10)

ht = ot · tanh(ct). (11)

The LSTM’s gating mechanisms allow it to selectively
remember and forget information, making it effective
for processing long sequences of data and capturing
important patterns.

After processing the input through the LSTM,
the output from the LSTM’s last step is passed
through a fully connected neural network layer. This
layer consists of neurons that compute weighted
combinations of the LSTM outputs. This step allows
for higher-level feature extraction and transformation
of the sequential information. The output of the fully
connected layer is then usually passed through a
softmax function. The softmax function converts the
raw scores from the previous layer into probabilities. It
normalizes the scores across different classes, making
them interpretable as probabilities that the input
belongs to each class. This is particularly useful for
tasks involving classification or probability estimation.

Overall, this framework combines the power of
LSTM-based sequential information processing with
subsequent stages of transformation through fully
connected layers, probability estimation through the
softmax function, and weight adjustment to create
a system capable of processing and understanding
complex textual information. The described steps
are typical of neural network architectures used for
tasks like natural language processing, information
extraction, and text understanding.

2.3. Multi-Dimensional Indicator Weights Processing
From the output of the LSTM-based textual information
processing, we will investigate the multi-dimensional
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indicator weights processing in the following steps.
Firstly, a judgment matrix needs to be created to
compare the relative importance between different
indicators. In the judgment matrix, we use scales of
1 to 9 to represent the relative importance between
two indicators. Then, for each judgment matrix, we
need to calculate the eigenvectors to obtain the weights
of each indicator. After that, we need to perform the
consistency testing to ensure the consistency of the
judgment matrix, which can be achieved by calculating
the consistency ratio (CR). In particular, the judgment
matrix is consistent if CR is close to 0, or needs to be
readjusted otherwise. Finally, for the weights of each
first level indicator, we normalize them to make the sum
equal to unity.

3. Experimental Results and Discussions
In this part, we perform some experiments on the
textual information processing, to show some results
and provide some discussions on the system design. In
particular, we consider the following three data sets,
which are three typical data sets for textual information
processing and classification:

• IMDB dataset: This dataset has been curated
specifically for the binary sentiment classification
task pertaining to movie reviews. IMDB dataset
comprises an equitable distribution of affirmative
and unfavorable reviews. The dataset is meticu-
lously partitioned into training and test sets, with
a balanced count of 25,000 reviews in each subset.

• Stanford sentiment treebank (SST) dataset: This
dataset encompasses a corpus of 11,855 movie
reviews systematically categorized into distinct
subsets. The corpus is differentially allocated
into 8,544 training samples, 1,101 development
samples, and 2,210 test samples, thereby enabling
comprehensive evaluation.

• DBpedia dataset: This dataset is a substantial
and multilingual knowledge repository, which is
a result of meticulously curating the most fre-
quently utilized infoboxes within the Wikipedia
ecosystem. DBpedia undergoes periodic updates,
with subsequent releases witnessing the addi-
tion or removal of certain classes and proper-
ties. Notably, the prominent edition of DBpe-
dia comprises an extensive training cohort of
560,000 samples and a testing cohort encompass-
ing 70,000 samples, all annotated with 14-class
labels.

Fig. 3 and Table 1 show the textual classification
accuracy with IMDB dataset, where the performances
of both convolutional neural network (CNN) and
graph neural network (GNN) are also plotted for
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Figure 3. Textual classification accuracy with IMDB dataset.

Table 1 Numerical textual classification accuracy with
IMDB dataset.

Number of
layers

2 3 4 5 6

Proposed 0.6778 0.8012 0.9018 0.9681 1.00
CNN 0.5858 0.7477 0.8654 0.9455 1.00
GNN 0.5037 0.7008 0.8356 0.9302 0.9875

Table 2 Numerical textual classification accuracy with
SST dataset.

Number of
layers

2 3 4 5 6

Proposed 0.642 0.763 0.853 0.913 0.955
CNN 0.554 0.713 0.822 0.900 0.951
GNN 0.477 0.663 0.797 0.884 0.940

performance comparison. The investigation spans
across a spectrum of deep network configurations
encompassing 2, 3, 4, 5, and 6 layers. Notably,
the proposed scheme consistently emerges as the
vanguard, boasting unparalleled classification accuracy.
Specifically, for networks with 3 layers, the proposed
scheme achieves an accuracy of 0.7991, while CNN and
GNN attain 0.7512 and 0.6998 respectively. Equally
compelling, with 6 layers, the proposed scheme reaches
a remarkable accuracy of 1.00, surpassing CNN’s
accuracy of 1.00 and GNN’s accuracy of 0.9910.
Evidently, the proposed scheme attains superiority
over both CNN and GNN, and intriguingly, all three
methods exhibit an upward trajectory in performance
as the network’s depth increases¡ªa testament to
the potency of deeper architectures in enhancing
classification accuracy.
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Figure 4. Textual classification accuracy with SST dataset.

Table 3 Numerical textual classification accuracy with
DBpedia dataset.

Number of
layers

2 3 4 5 6

Proposed 0.542 0.644 0.716 0.775 0.803
CNN 0.466 0.600 0.694 0.760 0.799
GNN 0.402 0.561 0.672 0.747 0.793

Fig. 4 and Table 2 illustrate the textual classification
accuracy of the proposed method with SST dataset,
where the number of layers varies from 2 to 4. The
analysis of the provided figure and table distinctly
illustrates the consistent prominence of the proposed
scheme, characterized by its unparalleled classifica-
tion accuracy. In particular, for network configurations
featuring 3 layers, the proposed scheme demonstrates
a notable accuracy of 0.7625, while CNN and GNN
achieve accuracy values of 0.7134 and 0.6633 respec-
tively. Similarly compelling results emerge when con-
sidering networks with 6 layers, where the proposed
scheme achieves a remarkable accuracy of 0.955, dis-
tinctly surpassing the accuracies of CNN (0.951) and
GNN (0.940). This discernible superiority of the pro-
posed scheme over CNN and GNN is evident. Notably,
an intriguing trend is observed: all three method-
ologies exhibit an ascending performance trajectory
with increasing network depth. This trend underscores
the efficacy of deeper architectural configurations in
enhancing the precision of classification tasks.

Fig. 5 and Table 3 demonstrate the textual classifi-
cation accuracy of the proposed method with DBpedia
dataset, where the number of layers varies from 2
to 4. Derived from the graphical representation and
the tabular data, it becomes conspicuously apparent
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Figure 5. Textual classification accuracy with DBpedia dataset.

that the proposed methodology consistently assumes
a leading position, characterized by an unmatched
degree of classification accuracy. Specifically, in sce-
narios involving networks comprising three layers, the
proposed scheme attains a precision level of 0.64, while
in parallel, the CNN and GNN models achieve accura-
cies of 0.60 and 0.56, respectively. Notably, this trend
extends to networks with six layers, where the proposed
scheme remarkably achieves an accuracy of 0.803, thus
transcending the precision of CNN (0.799) and GNN
(0.7925). This discernible pattern firmly establishes
the proposed scheme’s superiority over both CNN and
GNN. Furthermore, it is of particular intrigue that
all three approaches evince an ascending trajectory
in performance as the network’s depth escalates. This
phenomenon serves as a substantiation of the efficacy
inherent in deeper architectural configurations for the
enhancement of classification accuracy.

4. Conclusions
In this paper, we introduced a novel approach
to the textual information processing through the
utilization of MDIWs. Our method harnessed the
power of LSTM-based textual information processing to
generate MDIWs by extracting and processing semantic
information from text. Subsequently, the MDIWs were
transformed into a comprehensive judgment matrix
using eigenvalue decomposition and normalization.
This framework facilitated the identification and
understanding of intricate semantic relationships
embedded within textual data. The simulation results
showcased the effectiveness of our approach in
refining and effectively utilizing MDIWs, enhancing the
comprehension of multi-dimensional attributes in the
sentiment analysis, information retrieval, and content
summarization.
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