
EAI Endorsed Transactions
on Scalable Information Systems Research Article

1

RBOIRA: Integrating Rules and Reinforcement
Learning to Improve Index Recommendation
Wenbo Yu1, Jinguo You1,2, *, Xiangyu Niu1, Jianfeng He1,2 and Yunwei Zhang1,2

1 Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500,
Yunnan, China
2Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology, Kunming, 650500,
Yunnan, China

Abstract

INTRODUCTION: The index is one of the most effective ways to improve the database query performance. The expert-
based index recommendation approach cannot adjust the index configuration in real time. At the same time, reinforcement
learning can automatically update the index and improve the recommended configuration by leveraging expert experience.
OBJECTIVES: This paper proposes the RBOIRA, which combines rules and reinforcement learning to recommend the
optimal index configuration for a set of workloads in a dynamic database.
METHODS: Firstly, RBOIRA designed three heuristic rules for pruning index candidates. Secondly, it uses reinforcement
learning to recommend the optimal index configuration for a set of workloads in the database. Finally, we conducted
extensive experiments to evaluate RBOIRA using the TPC-H database benchmark.
RESULTS: RBOIRA recommends index configurations with superior performance compared to the baselines we define and
other reinforcement learning methods used in related work and also has robustness in different database sizes.

Keywords: index recommendation, heuristic rules, dynamic database, reinforcement learning

Received on 04 September 2023, accepted on 15 September 2023, published on 18 September 2023

Copyright © 2023 W. Yu et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-SA 4.0,
which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original
work is properly cited.

doi: 10.4108/eetsis.3822

*Corresponding author. Email: jgyou@126.com

1. Introduction

The advent of big data has significantly impacted the query
efficiency of massive data in traditional relational
databases. In database optimization, there are many
different ways to improve the query performance of a
database, such as by creating indexes and materializing
views. Creating appropriate indexes for a set of workloads
in the database can effectively improve query performance
[1]. The approach to index creation is no longer limited to
a traditional manual approach that relies on the expertise
and experience of the database administrator (DBA) to
recommend index configurations for a set of workloads in
a database. With the rise of machine learning in various
research fields [2, 3], it is gradually being applied to the

self-tuning of databases, such as using reinforcement
learning to recommend the optimal index configuration [3]
and join order selection for query statements for a set of
workloads in a database [4, 5].

The most typical traditional index recommendation for
relational databases is expert-based, with some limitations:
Firstly, it targets static databases to create an index.
Secondly, it cannot update the index configuration on time.
Although using reinforcement learning to recommend
index configurations is better than the traditional approach.
Therefore, this paper optimizes the following two aspects:

(1) Many index candidates are trained, which reduces
the training efficiency of the algorithm with the
recommended suboptimal index configuration because
many related works extract index candidates from

EAI Endorsed Transactions on
Scalable Information Systems

2023 | Volume 10 | Issue 6

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:jgyou@126.com

W. Yu et al.

2

databases [6] or workloads [7] (such as group by or order
by) without pre-processing, which reduces the training
efficiency of the algorithm and increases the execution
cost.

(2) Part of the related work still only targets static
databases without considering the actual production
environment of databases, which leads to recommending
suboptimal index configuration.

Based on the above, this paper proposes the RBOIRA,
which combines rules and reinforcement learning to
recommend the optimal index configuration for a set of
workloads in a dynamic database. The RBOIRA execution
steps include two main steps: firstly, it prunes the index
candidates using designed heuristic rules. Secondly, it uses
reinforcement learning to update the indexes in real time,
enabling the recommendation of the optimal index
configuration for a set of workloads in a dynamic database.

In summary, our work contributes the following:
(1) Three heuristic rules are proposed for the pruning

index candidates, significantly reducing the dimensions of
action and state space, which improves execution
efficiency and reduces the execution cost.

(2) RBOIRA integrates rules and reinforcement learning
to configure and update indexes in real time for a set of
workload recommendation indexes under a dynamic
database.

(3) We conducted extensive experiments to evaluate
RBOIRA’s performance using the TPC-H database
benchmark. Experimental results show that RBOIRA
recommends index configurations with superior
performance to comparison methods and it also has some
robustness in different database sizes.

2. Related work

Machine learning (ML) is currently applied to many fields,
such as a distributed cooperative coevolutionary genetic
algorithm to optimize multi-objective data publishing [8],
optimize stragglers in edge federated learning (EFL) [9],
and uncertain data query [10]. In recent years, machine
learning has been continuously integrated into traditional
relational databases or NoSQL databases to implement
components for automation and self-optimization [11-13].
The limitations of traditional tuning methods can be
effectively addressed by using ML techniques, which
significantly promote the development of AI4DB [11, 12].
Moreover, researchers can consider enhancing database
performance using hardware devices [14].

Database tuning can be divided into external tuning and
internal tuning [15, 16]. Configuring the database
management system through the application programming
interface (API) is called external tuning, and embedding
algorithms into the database management system is called
internal tuning. Integrating ML technology into index
selection is part of internal tuning and is one of the most
critical parts of achieving database self-tuning [17, 18]. For
example, Ge et al. [19] designed a distributed prediction-

randomness framework for the evolutionary dynamic
multiobjective partitioning optimization of databases.

Creating an index will directly affect the database's
query performance and transaction load-handling
capabilities [20]. Especially when the database system
processes transactions, creating indexes on corresponding
columns can improve the query efficiency of the database
[21]. Jan et al. [22] described and analyzed 8 traditional
index selection methods and compared them in different
dimensions, such as the time complexity of the algorithm.
They also designed a system that could choose the right
index for different situations. On the contrary, Ding et al.
[23] proposed a method to improve the query efficiency of
workload in the database by using data rules, which
improved the query performance to some extent. Sadri et
al. [24] designed a deep reinforcement learning algorithm
to minimize the total execution cost of the workload in the
cluster to recommend the best index configuration for the
cluster database, where each replica database can
recommend the same index configuration or a different
index configuration.

Lan et al. [7] proposed five heuristic rules to extract the
corresponding index candidates from the workload, which
significantly reduced the dimensionality size of the action
space and state space, and designed a deep reinforcement
learning algorithm to recommend the index, but the
shortcoming was that it only targeted at static databases and
could not update the index configuration in time. Licks et
al. [6] designed SmartIX that is a reinforcement learning
algorithm to recommend the index configuration for the
next set of workloads in a dynamic database. The limitation
of this method is that it does not prune the index candidates
extracted from the database, but takes all columns as the
index candidates, resulting in low efficiency of algorithm
training, so it recommends the second-best index
configuration. Sharma. et al. [25] designed MANTIS
which uses a deep reinforcement learning algorithm to
implement index type recommendation and index
selection. However, MANTIS still neglected to further
process the index candidates, it did not screen the
candidates according to the characteristics of the data in the
database, which resulted in long algorithm training time
and high cost.

3. Methodology

3.1. The architecture of RBOIRA

By constructing its architecture to clarify further the
execution process of each functional module of RBOIRA,
as shown in Figure 1. The description of each functional
module is detailed as follows:

EAI Endorsed Transactions on
Scalable Information Systems

Online First

RBOIRA: Integrating Rules and Reinforcement Learning to Improve Index Recommendation

3

Figure 1. The architecture of RBOIRA

(1) Workload module. It is responsible for providing
query statements and embedding them into the relational
database for later running by script functions.

(2) Index candidate based on rules module. Heuristic
rules prune the index candidates extracted from the
database table and input them into the reinforcement
learning agent module as an input stream.

(3) Reinforcement learning agent module. It is
responsible for training the algorithm, including updating
the action parameters, updating the status, and selecting the
action by using strategies and other operations.

(4) Index selection module. Execute the operation of
creating an index and deleting an index.

(5) Reward module. The reward for the action is
calculated by the reward function and then feedback to the
agent.

(6) Recommended optimal index configuration module.
The module recommends the index configuration in the last
training episode as the optimal index configuration.

3.2. Heuristic rules

The heuristic rules are defined as follows:
Rule 1 (R1): When the data volume is the smallest and

much smaller than other tables (at least one scale is 103),
the columns in this table are not considered index
candidates.

Rule 2 (R2): The column of the longest type in the
database table is not recommended to be indexed which is
not considered an index candidate.

Rule 3 (R3): A column with too many duplicate values
or null values is not considered an index candidate, but
must meet two conditions as follows:

Condition 1: It is the minimum selectivity of a column
in the table.

Condition 2: Selectivity is less than 20%. This column
is not considered an index candidate if and only if both
conditions are met.

The above three rules are applicable rules defined based
on database index optimization experience. The reasons for
selecting them are as follows:

For R1: (i) Indexes occupy storage space and require
maintenance. The additional storage space and
maintenance costs of establishing indexes on small data
tables outweigh the performance advantages. (ii) For small
tables, the database query optimizer may choose a full table
scan instead of using an index to improve query
performance because it may be faster.

For R2: (i) Building indexes on long fields consumes
larger storage space and increases index maintenance costs.
(ii) It may hurt query performance and does not work with
all database storage engines.

For R3: (i) Selectivity measures the number of distinct
values in the index column relative to the total number of
rows. If the selectivity is very small, that is, most of the
values in the index columns are the same, then the index
will provide a limited filtering effect and cannot bring
about performance improvement. (ii) The query optimizer
may not be able to use this index, and it may be difficult to
maintain in a highly concurrent database environment.

In addition, the index candidates are pruned by each
rule, as shown in Table 1.

Table 1. Pruned Index candidates under each rule

Rule Pruned index candidates
R1 n_name, n_comment, r_name, r_comment
R2 p_name, ps_comment, n_comment, r_comment,

c_comment, s_comment, o_comment,
l_comment

R3 p_mfgr, ps_availqty, l_linestatus,
c_mktsegment, o_shippriority

3.3. The algorithm of RBOIRA

The basic design of the pseudo-code of the RBOIRA is
shown in algorithm 1.

Algorithm 1: Index recommendation of RBOIRA

Input: Index candidate set DBS, a set of workloads W.

Output: Optimal Indexing Configuration OIC.

1. Initializing the environment Env
2. While 0episode > do
3. Initializing the environment Env
4. Extract index candidates from the database based

on rules and map to the initial state of S
5. While 0step > do

EAI Endorsed Transactions on
Scalable Information Systems

Online First

W. Yu et al.

4

6. The agent selects action A based on the
current state St and ε -greedy policy

7. Execute A to get the next state St+1 and
reward R

8. Update parameters θ of A
9. Store (St, R, A, St+1) in the experience pool E
10. Extract mini-batch data from E to perform

experience playback
11. St = St+1

12. end
13. ε = ε – ε * 0.1
14. end

The execution steps are as follows: Step 1, initializes the
environment, including the initialization state and action
parameters, in which ,α γ and ε are set as 0.01, 0.85,
and 0.9. Step 2 to step 12 into each episode and set it to 30.
Step 3, initialize the environment again to delete all
indexes. Step 4, prune index candidates based on heuristic
rules. Step 5 to step 11 into each step and set it to 100. Step
6, select an action based on ε -greedy and the current state
St. Step 7 executes the action to update the next current
state and get a reward. Step 8 updates the parameters of

action [6]. Step 9 store (St, R, A, St+1) in the experience
pool. Step 10, random extract mini-batch data used to train.
Step 11 updates the current state. Step 12 end of steps. Step
13 update ε . Step 14 end of episodes and output OIC.

4. Experiments

4.1. Experimental setup

Experimental environment. All experiments are
conducted in an 8-core AMD R7-5800X CPU @ 3.80 GHz
and 32 GB of RAM running Ubuntu Linux 18.04 and
Python 3.6.6.
Dataset and workload. We use the TPC-H tool to
generate a 1 GB dataset (containing 8 relation tables and
8,661,245 records as shown in Table 2 stored in MySQL
and generate a workload consisting of 22 queries with
different levels of complexity.
Index candidates. All index candidates are extracted
from the database tables and pruned by our three heuristic
rules. The number of index candidates is pruned from the
initial 45 to the final 30 index candidates for model
training.

Table 2. The description of 8 relational tables

Table Record Description
CUSTOMER 150000 Stores information about customers who purchase parts from the SUPPLIER, including name,

address, etc.
LINEITEM 6001215 Stores all the customer's order details and component information, including order number,

part number, etc.
NATION 25 Stores information about some countries in the world, including country names, etc.
ORDERS 1500000 Store order information, including the order number, customer number, price, etc.
PART 200000 Stores part information provided by the SUPPLIER, including part number, part name, part

type, and so on.
PARTSUPP 800000 Stores the supply information between the PART and the SUPPLIER, including the part

number, supplier name, etc.
REGION 5 It stores information about the world's five continents, including their names.
SUPPLIER 10000 Stores the supplier information of the parts, including the supplier name, supplier address, etc.

4.2. Evaluation metric

The TPC-H is a well-known non-profit organization that
creates database performance benchmarks [26]. We get
outputs from three metrics based on the TPC-H benchmark:

@Power Size , @Throughput Size , and @QphH Size .
While @QphH Size is obtained by computing

@Power Size and @Throughput Size metrics. The
@Power Size evaluates how fast the DBMS computes

the answers to single queries. This metric is computed
using formula (1):

22 2

24

1 1

3600@
(,0) (,0)

i j

Power Size SF
QI i RI j

= =

= ×

×∑ ∑
 (1)

Where SF is the scale factor or database size, (,0)QI i
is a set of query streams, (,0)RI j is a refresh function,
and 3600 is the number of seconds per hour.

The @Throughput Size measures the ability of the
system to process the most queries in the least amount of
time, taking advantage of I/O and CPU parallelism. It
evaluates the system's performance against a multi-user

EAI Endorsed Transactions on
Scalable Information Systems

Online First

RBOIRA: Integrating Rules and Reinforcement Learning to Improve Index Recommendation

5

workload that is completed in a set amount of time, using
the formula in (2):

22@ = 3600
s

SThroughput Size SF
T
×

× × (2)

Where S is the number of query streams executed, and

sT is the total time required to run the throughput test for
s streams.

Equation (3) depicts the Queries-per-Hour Performance
@QphH Size metric, calculated by taking the geometric

mean of the previous two metrics and reflecting various
aspects of a database's query processing capability.

@ @ @QphH Size Power Size Throughput Size= × (3)
The ACT is used to compare the time consumption of

the algorithm, which reflects the efficiency of the algorithm,
as equation (4). Where The Total Costing Time
represents the total training time of the algorithm, and
The Number Of Episodes represents the total training
episodes.

The Total Costing TimeACT
The Number Of Episodes

= (4)

The Selectivity is used to control the selectivity of
attributes, as shown in equation (5). Col represents the
corresponding column; (*)Count represents the total
number of rows in the column in the table.

(*)Distinct Count indicates the cardinality of the
column.

((*))= 100%
((*))

Col Distinct CountSelectivity
Col Count

× (5)

4.3. Baseline

To make a full and comprehensive experimental
comparison of the proposed RBOIRA method, this section
describes in detail the self-defined comparison baseline and
the related method of using reinforcement learning
algorithm to implement database index recommendation,
as follows:

1. Initial_State: It is the default TPC-H configuration
and contains only the indexes on the primary and foreign
keys.

2. Expert-Based: Indicates the index configuration
based on expert suggestions.

3. ALL-S: Indicates the index configuration in which all
columns in the database are indexed.

4. ALL-R: Using heuristic rules prune single-attribute
index candidates, and indexes are built on the remaining
index candidates.

5. SmartIX [6]: A real-time creation and deletion of
single-attribute index candidates in a dynamic database to
recommend the optimal index configuration.

6. DQN-S [7]: The deep reinforcement learning
algorithm in the Index Advisor method is used to
recommend the single-attribute index configuration for a
set of workloads in the database.

7. NoDBA [27]: A system based on cross-entropy deep
reinforcement learning method used to recommend the best
index configuration for a given workload in a set of
databases.

8. POWA [28]: Index configuration recommended by
PostgreSQL Workload Analyser which is an open-source
index recommendation tool.

9. ITLCS [29]: An index tuning and learning classifier,
which combines a learning classifier and genetic algorithm
to make efficient index configuration recommendations.

5. Experimental results and analysis

5.1. Model Training

The RBOIRA model was trained based on algorithm 1,
where the training episodes of RBOIRA are set to 30, and
the training steps for each episode are set to 100. The index
configuration corresponding to the maximum reward of the
last training episode is taken as the optimal index
configuration and its convergence is shown in Figure 2.

Figure 2. Accumulated reward per episode

Besides, we also compare the training time consumption
of SmartIX and RBOIRA under the same experimental
environment and the same training episodes and calculate
their respective ACT, as shown in Figure 3. The ACT of
SmartIX and RBOIRA are 3894.48s and 2839.74s,
respectively. RBOIRA is about 1.37 times more effective
than SmartIX. By analyzing the experimental results of
Figure 3, it can be found that there is one main reason.

EAI Endorsed Transactions on
Scalable Information Systems

Online First

W. Yu et al.

6

Figure 3. Algorithm time efficiency comparison

RBOIRA's index candidates only account for the total
number of index candidates in SmartIX, which greatly
reduces the dimensions of state space and action space,
improving agent learning efficiency and reducing cost.

As can be seen from Figures 2 and 3, although the
reinforcement learning algorithm 1 finally
successfully converged and the improved algorithm was
more efficient, it still consumed huge time costs and
hardware costs. In addition, the dimensional space
explored by the agent is still relatively large, which
increases the complexity of reinforcement learning to
explore the optimal solution.

5.2. Incremental data experiments

It conducts an incremental data experiment to prove
the robustness of RBOIRA in different data sizes.
Data description, query performance, and TPC-H
benchmark are shown in Table 3, Figure 4, and Table
4, respectively. Table 3 includes 10 levels of data sizes
to simulate data sizes. The data size ranges from
100MB to 1GB, and the experimental data is increased
by 100MB each time. A

detailed description of the number of records for tables is
shown in Table 3.

By analyzing the experimental results in Figure 4 and
Table 4, we can find that the query performance gradually
stabilizes as the data size gradually increases where the
high performance at the beginning is caused by small-
volume data. This is mainly because when the size of data
in the database is too small, even creating primary and
foreign keys in the database still brings significant
performance improvement to the database. On the contrary,
as the size of database data gradually increases,
reinforcement learning dynamically adjusts the index
configuration according to the current data changes in the
database, ensuring that the query performance of the
database does not fall dramatically and keeps the database
query performance stable. Therefore, this incremental data
analysis experiment further illustrates the robustness of
RBOIRA in different data sizes.

Table 3. Description of the number of data records in different data sizes

Data Size CUSTOMER LINEITEM NATION ORDERS PART PARTSUPP REGION SUPPLIER
100MB 15000 600572 25 150000 20000 80000 5 1000
200MB 30000 1199969 25 300000 40000 160000 5 2000
300MB 45000 1800093 25 450000 60000 240000 5 3000
400MB 60000 2399740 25 600000 80000 320000 5 4000
500MB 75000 2999671 25 750000 100000 400000 5 5000
600MB 90000 3601036 25 900000 120000 480000 5 6000
700MB 105000 4200337 25 1050000 140000 560000 5 7000
800MB 120000 4800841 25 1200000 160000 640000 5 8000
900MB 135000 5400556 25 1350000 180000 720000 5 9000
1GB 150000 6001215 25 1500000 200000 800000 5 10000

EAI Endorsed Transactions on
Scalable Information Systems

Online First

RBOIRA: Integrating Rules and Reinforcement Learning to Improve Index Recommendation

7

Table 4. TPC-H performance of RBOIRA under different data sizes

Data Size Power@Size Throughput@Size QphH@Size
100MB 11258.71 5582.72 7928.06
200MB 8760.91 5299.35 6813.75
300MB 8435.62 4683.21 6285.36
400MB 8157.86 4017.93 5725.18
500MB 7629.05 3966.45 5500.93
600MB 7767.71 3999.58 5573.83
700MB 7835.42 3939.52 5555.88
800MB 7720.88 3944.81 5518.83
900MB 7609.50 3890.23 5440.84
1GB 7616.37 3836.23 5405.38

Figure 4. Query performance of RBOIRA in different
data sizes

5.3. Performance comparison experiment

We conduct a query performance comparison experiment
and index size experiment, and the results are analyzed in
comparison. Experiment results are shown in Figures 5 and
6 respectively. It also gives the detailed experimental
results of each baseline configuration in the TPC-H
standard database, shown in Table 5.

The analysis of the performance comparative
experimental results in Figure 5, shows that RBOIRA
outperforms the other comparison methods on query
performance. By analyzing the experimental results in
Figure 5, it is clear that the index configuration
recommended by RBORIA outperforms the other baselines
in terms of QphH. The following two reasons mainly
explain this:

(1) Compared to traditional methods such as Expert-
Based, ALL-S, and POWA, RBOIRA maximizes the query
performance of a set of workloads in the dynamic database
by using reinforcement learning methods to constantly
update index configurations, which helps reinforcement
learning agents find better index configurations.

(2) Compared to machine learning methods such as
SmartIX, DQN-S, and ITLCS, RBOIRA uses rules to

prune the initial index candidates. This operation
effectively improves the learning efficiency of the agent
and reduces the execution cost of the algorithm, thus
helping the agent explore better index configuration.

Besides, by comparing and analyzing the experimental
results in Figure 6, it is found that although RBOIRA does
not have the smallest of all methods on index size, it's still
much smaller than other baselines like ALL-S and
SmartIX. Although the index size of RBOIRA is somewhat
larger than that of POWA, DQN-S, and NoDBA, RBORIA
improves query performance by sacrificing less space, and
the swap of space for performance is adequate.

Figure 5. Hourly query performance

Figure 6. Index size

EAI Endorsed Transactions on
Scalable Information Systems

Online First

8

Table 5. TPC-H performance comparison

Index Config Power@1GB Throughput@1GB QphH@1GB Index Size
Initial_State 5640.16 3374.04 4362.35 248.82
NoDBA 5827.56 3464.15 4493.05 770.63
Expert-Based 6190.36 3430.81 4608.47 412.68
POWA 6826.56 3607.24 4962.36 463.25
DQN-S 6515.25 3559.16 4815.44 789.61
ALL-S 7252.57 3650.08 5145.00 2519.96
ITLCS 7261.62 3852.82 5289.40 496.56
ALL-R 7440.80 3791.19 5311.24 1849.62
SmartIX 7583.89 3809.10 5374.74 1932.08
RBOIRA 7700.02 3890.26 5473.13 1582.19

5.4. Ablation experiment and selectivity
experiment

We conducted the TPC-H performance test experiments for
each rule to verify the effectiveness of a single rule and
analyzed its experimental results. The experimental results
are shown in Table 6, including index size.

Analyzing the experiment results in Table 6 gives the
following conclusions:

(1) Compared with ALL-S, R1 has no significant change
in TPC-H query performance and index size, which
indicates that when the capacity of data in the table is too
small, the create index or not create index does not have a
significant impact on the database query performance and
space consumption proving the rationality of R1.

(2) Although R2 has decreased performance compared
with ALL-S, it has significantly decreased index size,
indicating that less storage space is consumed. R2's index
size was significantly reduced when it slightly affected
query performance degradation, indicating that this
replacement operation is worthwhile, which proves the
rationality of the R2.

(3) Compared with ALL-S, R3 outperforms ALL-S in
both TPC-H performance and index size, which proves the
validity of R3.

(4) Compared with R1, R2, R3, and ALL-S, ALL-R has
better query performance and a smaller index size, which
indicates the rationality of the integration of the three rules.

Table 6. TPC-H performance comparison and index size under different rules

Index Config Power@1GB Throughput@1GB QphH@1GB Index Size
ALL-S 7252.57 3650.08 5145.00 2519.96
R1 7185.83 3668.22 5135.24 2512.88
R2 7001.01 3629.27 5040.66 1992.43
R3 7397.14 3750.99 5267.47 2373.18
ALL-R 7440.80 3791.19 3791.19 1849.62

Furthermore, we also conducted a selectivity threshold
experiment for R3, with experimental results as shown in
Figure 7, where selectivity is calculated by Formula 5. As
the selectivity increases, more and more index candidates
are pruned, leading to the deterioration of database query
performance. As the selectivity gradually increases, the
index candidates extracted from the database have a higher
selectivity. However, because the attributes themselves are
too long (they do not meet R1), taking the index scan
consumes more time than taking the full table scan, thus

reducing the query efficiency. As Figure 7 shows, if the
selectivity is within the range of 0.2, the query performance
is still close to the Initial_State.

EAI Endorsed Transactions on
Scalable Information Systems

Online First

W. Yu et al.

RBOIRA: Integrating Rules and Reinforcement Learning to Improve Index Recommendation

9

Figure 7. Comparison experiment of selectivity
threshold

This situation indicates that the selectivity of 0.2 can
reduce the number of index candidates and ensure that the
database query performance does not change significantly.

6. Conclusion

In this paper, we propose RBOIRA which is a practical and
flexible index advisor that integrates three heuristic rules
and reinforcement learning to recommend the optimal
index configuration for a set of workloads in a dynamic
database. We have designed extensive experiments to
prove the superiority of RBOIRA, and the experimental
results show that RBOIRA outperforms other existing
related methods.

The RBOIRA still has some areas that can be optimized,
such as improving the algorithm efficiency of
reinforcement learning and reducing the resource usage
required for intelligent index recommendation. In the
future, we will improve the efficiency and reduce the cost
of the reinforcement learning recommendation index.

Declarations

Ethical Approval.
Not Applicable

Data Availability Statements.
The data of TPC-H that support the findings of this study are
openly available at: http://www.tpc.org/, reference number [26].

Competing interests.
The authors have no competing interests to declare that are
relevant to the content of this article.

Funding.

This work was partially supported by the Natural Science
Foundation of China (NO.62062046), CCF Opening Project of
Information System (NO.HZ2021F0055A).

Author Contributions.
Yu - Conceptualization, Methodology, Software, Writing
Original draft preparation and Editing. You - Conceptualization,
Supervision, Reviewing, and Editing. He, Zhang, and Niu -
Reviewing.

Acknowledgements.
Thanks to all the authors for their help in creating the revised
manuscript.

References
[1] Ramakrishnan R, Gehrke J. Database management systems

(3. ed.)[M]. DBLP,2003.
[2] Li Y. Deep Reinforcement Learning: An Overview[J].

2017.
[3] Lahdenmaki T, Leach M. Relational Database Index Design

and the Optimizers: DB2, Oracle, SQL Server. John Wiley
\& Sons, 2005.

[4] Tan J, Zhang T, Li F, et al. ibtune: Individualized buffer
tuning for large-scale cloud databases[J]. Proceedings of the
VLDB Endowment, 2019, 12(10): 1221-1234.

[5] Marcus R, Papaemmanouil O. Deep reinforcement learning
for join order enumeration[C]//Proceedings of the First
International Workshop on Exploiting Artificial
Intelligence Techniques for Data Management. 2018: 1-4.

[6] Paludo Licks G, Colleoni Couto J, de Fátima Miehe P, et al.
SMARTIX: A database indexing agent based on
reinforcement learning [J]. Applied Intelligence, 2020,
50(8):2575-2588.

[7] Lan Hai, Bao Zhifeng, Peng Yuwei. An Index Advisor
Using Deep Reinforcement Learning. CIKM ’20: The 29th
ACM International Conference on Information and
Knowledge Management. ACM, 2020.

[8] Sultana K, Ahmed K, Gu B, et al. Elastic Optimization for
Stragglers in Edge Federated Learning[J]. Big Data Mining
and Analytics, 2023, 6(4): 404-420.

[9] Ge Y F, Bertino E, Wang H, et al. Distributed Cooperative
Coevolution of Data Publishing Privacy and
Transparency[J]. ACM Transactions on Knowledge
Discovery from Data, 2023, 18(1): 1-23.

[10] Wang Bin, Zhu Rui, Luo Shiying, et al. H-MRST: A Novel
Framework for Supporting Probability Degree Range Query
using Extreme Learning Machine[J]. Cognitive
Computation, 2017, 9(1): 68-80.

[11] Li Guoliang, Zhou Xuanhe, Cao Lei. AI Meets Database:
AI4DB and DB4AI. Proceedings of the 2021 International
Conference on Management of Data. 2021: 2859-2866.

[12] Li GL, Zhou XH. XuanYuan: An AI-native Database
Systems[J]. Journal of Software, 2020, 31(3): 831-844.

[13] Yan Yu, Yao Shun, Wang Hongzhi, et al. Index Selection
for NoSQL Database with Deep Reinforcement Learning[J].
Information Sciences, 2021, 561: 20-30.

[14] Pei W, Li Z H, Pan W. Survey of key technologies in GPU
database system. Ruan Jian Xue Bao[J]. Journal of
Software, 2021, 32(3): 859-885.

[15] Van Aken D, Pavlo A, Gordon G J, et al. Automatic
Database Management System Tuning Through Large-scale

EAI Endorsed Transactions on
Scalable Information Systems

Online First

W. Yu et al.

10

Machine Learning. Acm International Conference on
Management of Data. ACM, 2017:1009-1024.

[16] Pavlo A, Butrovich M, Joshi A, et al. External vs. Internal:
An Essay on Machine Learning Agents for Autonomous
Database Management Systems[J]. IEEE bulletin, 2019,
42(2).

[17] Welborn J, Schaarschmidt M, Yoneki E. Learning Index
Selection with Structured Action Spaces[J]. arXiv preprint
arXiv:1909.07440, 2019.

[18] Basu D, Lin Q, Chen W, et al. Regularized cost-model
oblivious database tuning with reinforcement learning[J].
Transactions on Large-Scale Data and Knowledge-Centered
Systems XXVIII: Special Issue on Database-and Expert-
Systems Applications, 2016: 96-132.

[19] Ge Y F, Wang H, Bertino E, et al. Evolutionary dynamic
database partitioning optimization for privacy and utility[J].
IEEE Transactions on Dependable and Secure Computing,
2023.

[20] Lan Hai, Bao Zhifeng, Peng Yuwei. A Survey on
Advancing the DBMS Query Optimizer: Cardinality
estimation, cost model, and plan enumeration[J]. Data
Science and Engineering, 2021, 6(1): 86-101.

[21] Gani A, Siddiqa A, Shamshirband S, et al. A Survey on
Indexing Techniques for Big Data: Taxonomy and
Performance Evaluation[J]. Knowledge and information
systems, 2016, 46(2): 241-284.

[22] Kossmann J, Halfpap S, Jankrift M, et al. Magic Mirror in
My Hand, Which is The Best in the Land? An Experimental
Evaluation of Index Selection Algorithms[J]. Proceedings
of the VLDB Endowment, 2020, 13(12): 2382-2395.

[23] Ding Bailu, Das S, Marcus R, et al. Ai Meets Ai: Leveraging
Query Executions to Improve Index Recommendations.
Proceedings of the 2019 International Conference on
Management of Data. 2019: 1241-1258.

[24] Sadri Z, Gruenwald L, Lead E. DRLindex: Deep
Reinforcement Learning Index Advisor for A Cluster
Database. Proceedings of the 24th Symposium on
International Database Engineering and Applications. 2020:
1-8.

[25] Sharma V, Dyreson C, Flann N. MANTIS: Multiple Type
and Attribute Index Selection using Deep Reinforcement
Learning. 25th International Database Engineering and
Applications Symposium. 2021: 56-64.

[26] Thanopoulou A, Carreira P, Galhardas H. Benchmarking
with TPC-H on off-the-shelf hardware[J]. ICEIS (1), 2012:
205-208.

[27] Graefe G. B-tree Indexes for High Update Rates[J]. ACM
SIGMOD Record, 2005, 35(1): 39-44.

[28] POWA (2019) PostgreSQL workload analyzer.
https://powa.readthedocs.io/

[29] Pedrozo W G, Nievola J C, Ribeiro D C. An adaptive
approach for index tuning with learning classifier systems
on hybrid storage environments[C]//Hybrid Artificial
Intelligent Systems: 13th International Conference, HAIS
2018, Oviedo, Spain, June 20-22, 2018, Proceedings 13.
Springer International Publishing, 2018: 716-729.

EAI Endorsed Transactions on
Scalable Information Systems

Online First

https://powa.readthedocs.io/

