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Abstract 

INTRODUCTION: The index is one of the most effective ways to improve the database query performance. The expert-
based index recommendation approach cannot adjust the index configuration in real time. At the same time, reinforcement 
learning can automatically update the index and improve the recommended configuration by leveraging expert experience. 
OBJECTIVES: This paper proposes the RBOIRA, which combines rules and reinforcement learning to recommend the 
optimal index configuration for a set of workloads in a dynamic database. 
METHODS: Firstly, RBOIRA designed three heuristic rules for pruning index candidates. Secondly, it uses reinforcement 
learning to recommend the optimal index configuration for a set of workloads in the database. Finally, we conducted 
extensive experiments to evaluate RBOIRA using the TPC-H database benchmark. 
RESULTS: RBOIRA recommends index configurations with superior performance compared to the baselines we define and 
other reinforcement learning methods used in related work and also has robustness in different database sizes. 
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1. Introduction

The advent of big data has significantly impacted the query 
efficiency of massive data in traditional relational 
databases. In database optimization, there are many 
different ways to improve the query performance of a 
database, such as by creating indexes and materializing 
views. Creating appropriate indexes for a set of workloads 
in the database can effectively improve query performance 
[1]. The approach to index creation is no longer limited to 
a traditional manual approach that relies on the expertise 
and experience of the database administrator (DBA) to 
recommend index configurations for a set of workloads in 
a database. With the rise of machine learning in various 
research fields [2, 3], it is gradually being applied to the 

self-tuning of databases, such as using reinforcement 
learning to recommend the optimal index configuration [3] 
and join order selection for query statements for a set of 
workloads in a database [4, 5]. 

The most typical traditional index recommendation for 
relational databases is expert-based, with some limitations: 
Firstly, it targets static databases to create an index. 
Secondly, it cannot update the index configuration on time. 
Although using reinforcement learning to recommend 
index configurations is better than the traditional approach. 
Therefore, this paper optimizes the following two aspects:  

(1) Many index candidates are trained, which reduces
the training efficiency of the algorithm with the 
recommended suboptimal index configuration because 
many related works extract index candidates from 
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databases [6] or workloads [7] (such as group by or order 
by) without pre-processing, which reduces the training 
efficiency of the algorithm and increases the execution 
cost.  

(2) Part of the related work still only targets static
databases without considering the actual production 
environment of databases, which leads to recommending 
suboptimal index configuration.  

Based on the above, this paper proposes the RBOIRA, 
which combines rules and reinforcement learning to 
recommend the optimal index configuration for a set of 
workloads in a dynamic database. The RBOIRA execution 
steps include two main steps: firstly, it prunes the index 
candidates using designed heuristic rules. Secondly, it uses 
reinforcement learning to update the indexes in real time, 
enabling the recommendation of the optimal index 
configuration for a set of workloads in a dynamic database. 

In summary, our work contributes the following: 
(1) Three heuristic rules are proposed for the pruning

index candidates, significantly reducing the dimensions of 
action and state space, which improves execution 
efficiency and reduces the execution cost. 

(2) RBOIRA integrates rules and reinforcement learning 
to configure and update indexes in real time for a set of 
workload recommendation indexes under a dynamic 
database. 

(3) We conducted extensive experiments to evaluate
RBOIRA’s performance using the TPC-H database 
benchmark. Experimental results show that RBOIRA 
recommends index configurations with superior 
performance to comparison methods and it also has some 
robustness in different database sizes. 

2. Related work

Machine learning (ML) is currently applied to many fields, 
such as a distributed cooperative coevolutionary genetic 
algorithm to optimize multi-objective data publishing [8], 
optimize stragglers in edge federated learning (EFL) [9], 
and uncertain data query [10]. In recent years, machine 
learning has been continuously integrated into traditional 
relational databases or NoSQL databases to implement 
components for automation and self-optimization [11-13]. 
The limitations of traditional tuning methods can be 
effectively addressed by using ML techniques, which 
significantly promote the development of AI4DB [11, 12]. 
Moreover, researchers can consider enhancing database 
performance using hardware devices [14]. 

Database tuning can be divided into external tuning and 
internal tuning [15, 16]. Configuring the database 
management system through the application programming 
interface (API) is called external tuning, and embedding 
algorithms into the database management system is called 
internal tuning. Integrating ML technology into index 
selection is part of internal tuning and is one of the most 
critical parts of achieving database self-tuning [17, 18]. For 
example, Ge et al. [19] designed a distributed prediction-

randomness framework for the evolutionary dynamic 
multiobjective partitioning optimization of databases.  

Creating an index will directly affect the database's 
query performance and transaction load-handling 
capabilities [20]. Especially when the database system 
processes transactions, creating indexes on corresponding 
columns can improve the query efficiency of the database 
[21]. Jan et al. [22] described and analyzed 8 traditional 
index selection methods and compared them in different 
dimensions, such as the time complexity of the algorithm. 
They also designed a system that could choose the right 
index for different situations. On the contrary, Ding et al. 
[23] proposed a method to improve the query efficiency of
workload in the database by using data rules, which
improved the query performance to some extent. Sadri et
al. [24] designed a deep reinforcement learning algorithm
to minimize the total execution cost of the workload in the
cluster to recommend the best index configuration for the
cluster database, where each replica database can
recommend the same index configuration or a different
index configuration.

Lan et al. [7] proposed five heuristic rules to extract the 
corresponding index candidates from the workload, which 
significantly reduced the dimensionality size of the action 
space and state space, and designed a deep reinforcement 
learning algorithm to recommend the index, but the 
shortcoming was that it only targeted at static databases and 
could not update the index configuration in time. Licks et 
al. [6] designed SmartIX that is a reinforcement learning 
algorithm to recommend the index configuration for the 
next set of workloads in a dynamic database. The limitation 
of this method is that it does not prune the index candidates 
extracted from the database, but takes all columns as the 
index candidates, resulting in low efficiency of algorithm 
training, so it recommends the second-best index 
configuration. Sharma. et al. [25] designed MANTIS 
which uses a deep reinforcement learning algorithm to 
implement index type recommendation and index 
selection. However, MANTIS still neglected to further 
process the index candidates, it did not screen the 
candidates according to the characteristics of the data in the 
database, which resulted in long algorithm training time 
and high cost. 

3. Methodology

3.1. The architecture of RBOIRA 

By constructing its architecture to clarify further the 
execution process of each functional module of RBOIRA, 
as shown in Figure 1. The description of each functional 
module is detailed as follows: 

EAI Endorsed Transactions on 
Scalable Information Systems 

Online First



RBOIRA: Integrating Rules and Reinforcement Learning to Improve Index Recommendation 

3 

Figure 1. The architecture of RBOIRA 

(1) Workload module. It is responsible for providing
query statements and embedding them into the relational 
database for later running by script functions. 

(2) Index candidate based on rules module. Heuristic
rules prune the index candidates extracted from the 
database table and input them into the reinforcement 
learning agent module as an input stream. 

(3) Reinforcement learning agent module. It is
responsible for training the algorithm, including updating 
the action parameters, updating the status, and selecting the 
action by using strategies and other operations. 

(4) Index selection module. Execute the operation of
creating an index and deleting an index. 

(5) Reward module. The reward for the action is
calculated by the reward function and then feedback to the 
agent. 

(6) Recommended optimal index configuration module.
The module recommends the index configuration in the last 
training episode as the optimal index configuration. 

3.2. Heuristic rules 

The heuristic rules are defined as follows: 
Rule 1 (R1): When the data volume is the smallest and 

much smaller than other tables (at least one scale is 103), 
the columns in this table are not considered index 
candidates. 

Rule 2 (R2): The column of the longest type in the 
database table is not recommended to be indexed which is 
not considered an index candidate. 

Rule 3 (R3): A column with too many duplicate values 
or null values is not considered an index candidate, but 
must meet two conditions as follows: 

Condition 1: It is the minimum selectivity of a column 
in the table. 

Condition 2: Selectivity is less than 20%. This column 
is not considered an index candidate if and only if both 
conditions are met. 

The above three rules are applicable rules defined based 
on database index optimization experience. The reasons for 
selecting them are as follows: 

For R1: (i) Indexes occupy storage space and require 
maintenance. The additional storage space and 
maintenance costs of establishing indexes on small data 
tables outweigh the performance advantages. (ii) For small 
tables, the database query optimizer may choose a full table 
scan instead of using an index to improve query 
performance because it may be faster. 

For R2: (i) Building indexes on long fields consumes 
larger storage space and increases index maintenance costs. 
(ii) It may hurt query performance and does not work with
all database storage engines.

For R3: (i) Selectivity measures the number of distinct 
values in the index column relative to the total number of 
rows. If the selectivity is very small, that is, most of the 
values in the index columns are the same, then the index 
will provide a limited filtering effect and cannot bring 
about performance improvement. (ii) The query optimizer 
may not be able to use this index, and it may be difficult to 
maintain in a highly concurrent database environment. 

In addition, the index candidates are pruned by each 
rule, as shown in Table 1. 

Table 1. Pruned Index candidates under each rule 

Rule Pruned index candidates 
R1 n_name, n_comment, r_name, r_comment 
R2 p_name, ps_comment, n_comment, r_comment, 

c_comment, s_comment, o_comment, 
l_comment 

R3 p_mfgr, ps_availqty, l_linestatus, 
c_mktsegment, o_shippriority 

3.3. The algorithm of RBOIRA 

The basic design of the pseudo-code of the RBOIRA is 
shown in algorithm 1. 

Algorithm 1: Index recommendation of RBOIRA 

Input: Index candidate set DBS, a set of workloads W. 

Output: Optimal Indexing Configuration OIC. 

1. Initializing the environment Env
2. While 0episode >  do
3. Initializing the environment Env
4. Extract index candidates from the database based

on rules and map to the initial state of S
5. While   0step >  do
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6. The agent selects action A based on the
current state St and ε -greedy policy

7. Execute A to get the next state St+1 and
reward R

8. Update parameters θ of A
9. Store (St, R, A, St+1) in the experience pool E
10. Extract mini-batch data from E to perform

experience playback
11. St = St+1

12. end
13. ε =  ε  – ε * 0.1
14. end

The execution steps are as follows: Step 1, initializes the 
environment, including the initialization state and action 
parameters, in which ,α γ  and ε  are set as 0.01, 0.85, 
and 0.9. Step 2 to step 12 into each episode and set it to 30. 
Step 3, initialize the environment again to delete all 
indexes. Step 4, prune index candidates based on heuristic 
rules. Step 5 to step 11 into each step and set it to 100. Step 
6, select an action based on ε -greedy and the current state 
St. Step 7 executes the action to update the next current 
state and get a reward. Step 8 updates the parameters of 

action [6]. Step 9 store (St, R, A, St+1) in the experience 
pool. Step 10, random extract mini-batch data used to train. 
Step 11 updates the current state. Step 12 end of steps. Step 
13 update ε . Step 14 end of episodes and output OIC. 

4. Experiments

4.1. Experimental setup 

Experimental environment. All experiments are 
conducted in an 8-core AMD R7-5800X CPU @ 3.80 GHz 
and 32 GB of RAM running Ubuntu Linux 18.04 and 
Python 3.6.6. 
Dataset and workload. We use the TPC-H tool to 
generate a 1 GB dataset (containing 8 relation tables and 
8,661,245 records as shown in Table 2 stored in MySQL 
and generate a workload consisting of 22 queries with 
different levels of complexity. 
Index candidates. All index candidates are extracted 
from the database tables and pruned by our three heuristic 
rules. The number of index candidates is pruned from the 
initial 45 to the final 30 index candidates for model 
training. 

Table 2. The description of 8 relational tables 

Table Record Description 
CUSTOMER 150000 Stores information about customers who purchase parts from the SUPPLIER, including name, 

address, etc. 
LINEITEM 6001215 Stores all the customer's order details and component information, including order number, 

part number, etc. 
NATION 25 Stores information about some countries in the world, including country names, etc. 
ORDERS 1500000 Store order information, including the order number, customer number, price, etc. 
PART 200000 Stores part information provided by the SUPPLIER, including part number, part name, part 

type, and so on. 
PARTSUPP 800000 Stores the supply information between the PART and the SUPPLIER, including the part 

number, supplier name, etc. 
REGION 5 It stores information about the world's five continents, including their names. 
SUPPLIER 10000 Stores the supplier information of the parts, including the supplier name, supplier address, etc. 

4.2. Evaluation metric 

The TPC-H is a well-known non-profit organization that 
creates database performance benchmarks [26]. We get 
outputs from three metrics based on the TPC-H benchmark: 

@Power Size , @Throughput Size , and @QphH Size . 
While @QphH Size is obtained by computing

@Power Size and @Throughput Size  metrics. The 
@Power Size  evaluates how fast the DBMS computes 

the answers to single queries. This metric is computed 
using formula (1): 

22 2

24

1 1

3600@
( ,0) ( ,0)

i j

Power Size SF
QI i RI j

= =

= ×

×∑ ∑
 (1) 

Where SF is the scale factor or database size, ( ,0)QI i  
is a set of query streams, ( ,0)RI j  is a refresh function, 
and 3600 is the number of seconds per hour. 

The @Throughput Size  measures the ability of the 
system to process the most queries in the least amount of 
time, taking advantage of I/O and CPU parallelism. It 
evaluates the system's performance against a multi-user 
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workload that is completed in a set amount of time, using 
the formula in (2): 

22@ = 3600
s

SThroughput Size SF
T
×

× ×  (2) 

Where S  is the number of query streams executed, and 

sT is the total time required to run the throughput test for 
s  streams. 

Equation (3) depicts the Queries-per-Hour Performance 
@QphH Size  metric, calculated by taking the geometric 

mean of the previous two metrics and reflecting various 
aspects of a database's query processing capability. 

@ @ @QphH Size Power Size Throughput Size= × (3) 
The ACT  is used to compare the time consumption of 

the algorithm, which reflects the efficiency of the algorithm, 
as equation (4). Where The Total Costing Time
represents the total training time of the algorithm, and 
The Number Of Episodes  represents the total training 
episodes. 

The Total Costing TimeACT
The Number Of Episodes

=     (4) 

The Selectivity  is used to control the selectivity of 
attributes, as shown in equation (5). Col  represents the 
corresponding column; (*)Count represents the total 
number of rows in the column in the table. 

(*)Distinct Count  indicates the cardinality of the 
column. 

( (*))= 100%
( (*))

Col Distinct CountSelectivity
Col Count

×  (5) 

4.3. Baseline 

To make a full and comprehensive experimental 
comparison of the proposed RBOIRA method, this section 
describes in detail the self-defined comparison baseline and 
the related method of using reinforcement learning 
algorithm to implement database index recommendation, 
as follows: 

1. Initial_State: It is the default TPC-H configuration
and contains only the indexes on the primary and foreign 
keys. 

2. Expert-Based: Indicates the index configuration
based on expert suggestions. 

3. ALL-S: Indicates the index configuration in which all
columns in the database are indexed. 

4. ALL-R: Using heuristic rules prune single-attribute
index candidates, and indexes are built on the remaining 
index candidates. 

5. SmartIX [6]: A real-time creation and deletion of
single-attribute index candidates in a dynamic database to
recommend the optimal index configuration.

6. DQN-S [7]: The deep reinforcement learning
algorithm in the Index Advisor method is used to 
recommend the single-attribute index configuration for a 
set of workloads in the database. 

7. NoDBA [27]: A system based on cross-entropy deep
reinforcement learning method used to recommend the best 
index configuration for a given workload in a set of 
databases. 

8. POWA [28]: Index configuration recommended by
PostgreSQL Workload Analyser which is an open-source 
index recommendation tool. 

9. ITLCS [29]: An index tuning and learning classifier,
which combines a learning classifier and genetic algorithm 
to make efficient index configuration recommendations. 

5. Experimental results and analysis

5.1. Model Training 

The RBOIRA model was trained based on algorithm 1, 
where the training episodes of RBOIRA are set to 30, and 
the training steps for each episode are set to 100. The index 
configuration corresponding to the maximum reward of the 
last training episode is taken as the optimal index 
configuration and its convergence is shown in Figure 2. 

Figure 2. Accumulated reward per episode 

Besides, we also compare the training time consumption 
of SmartIX and RBOIRA under the same experimental 
environment and the same training episodes and calculate 
their respective ACT, as shown in Figure 3. The ACT of 
SmartIX and RBOIRA are 3894.48s and 2839.74s, 
respectively. RBOIRA is about 1.37 times more effective 
than SmartIX. By analyzing the experimental results of 
Figure 3, it can be found that there is one main reason. 
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Figure 3. Algorithm time efficiency comparison 

RBOIRA's index candidates only account for the total 
number of index candidates in SmartIX, which greatly 
reduces the dimensions of state space and action space, 
improving agent learning efficiency and reducing cost. 

As can be seen from Figures 2 and 3, although the 
reinforcement learning algorithm 1 finally 
successfully converged and the improved algorithm was 
more efficient, it still consumed huge time costs and 
hardware costs. In addition, the dimensional space 
explored by the agent is still relatively large, which 
increases the complexity of reinforcement learning to 
explore the optimal solution. 

5.2. Incremental data experiments 

It conducts an incremental data experiment to prove 
the robustness of RBOIRA in different data sizes. 
Data description, query performance, and TPC-H 
benchmark are shown in Table 3, Figure 4, and Table 
4, respectively. Table 3 includes 10 levels of data sizes 
to simulate data sizes. The data size ranges from 
100MB to 1GB, and the experimental data is increased 
by 100MB each time. A 

detailed description of the number of records for tables is 
shown in Table 3. 

By analyzing the experimental results in Figure 4 and 
Table 4, we can find that the query performance gradually  
stabilizes as the data size gradually increases where the 
high performance at the beginning is caused by small-
volume data. This is mainly because when the size of data 
in the database is too small, even creating primary and 
foreign keys in the database still brings significant 
performance improvement to the database. On the contrary, 
as the size of database data gradually increases, 
reinforcement learning dynamically adjusts the index 
configuration according to the current data changes in the 
database, ensuring that the query performance of the 
database does not fall dramatically and keeps the database 
query performance stable. Therefore, this incremental data 
analysis experiment further illustrates the robustness of 
RBOIRA in different data sizes. 

Table 3. Description of the number of data records in different data sizes

Data Size CUSTOMER LINEITEM NATION ORDERS PART PARTSUPP REGION SUPPLIER 
100MB 15000 600572 25 150000 20000 80000 5 1000 
200MB 30000 1199969 25 300000 40000 160000 5 2000 
300MB 45000 1800093 25 450000 60000 240000 5 3000 
400MB 60000 2399740 25 600000 80000 320000 5 4000 
500MB 75000 2999671 25 750000 100000 400000 5 5000 
600MB 90000 3601036 25 900000 120000 480000 5 6000 
700MB 105000 4200337 25 1050000 140000 560000 5 7000 
800MB 120000 4800841 25 1200000 160000 640000 5 8000 
900MB 135000 5400556 25 1350000 180000 720000 5 9000 
1GB 150000 6001215 25 1500000 200000 800000 5 10000 
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Table 4. TPC-H performance of RBOIRA under different data sizes 

Data Size Power@Size Throughput@Size QphH@Size 
100MB 11258.71 5582.72 7928.06 
200MB 8760.91 5299.35 6813.75 
300MB 8435.62 4683.21 6285.36 
400MB 8157.86 4017.93 5725.18 
500MB 7629.05 3966.45 5500.93 
600MB 7767.71 3999.58 5573.83 
700MB 7835.42 3939.52 5555.88 
800MB 7720.88 3944.81 5518.83 
900MB 7609.50 3890.23 5440.84 
1GB 7616.37 3836.23 5405.38 

Figure 4. Query performance of RBOIRA in different 
data sizes 

5.3. Performance comparison experiment 

We conduct a query performance comparison experiment 
and index size experiment, and the results are analyzed in 
comparison. Experiment results are shown in Figures 5 and 
6 respectively. It also gives the detailed experimental 
results of each baseline configuration in the TPC-H 
standard database, shown in Table 5. 

The analysis of the performance comparative 
experimental results in Figure 5, shows that RBOIRA 
outperforms the other comparison methods on query 
performance. By analyzing the experimental results in 
Figure 5, it is clear that the index configuration 
recommended by RBORIA outperforms the other baselines 
in terms of QphH. The following two reasons mainly 
explain this:  

(1) Compared to traditional methods such as Expert-
Based, ALL-S, and POWA, RBOIRA maximizes the query 
performance of a set of workloads in the dynamic database 
by using reinforcement learning methods to constantly 
update index configurations, which helps reinforcement 
learning agents find better index configurations.  

(2) Compared to machine learning methods such as
SmartIX, DQN-S, and ITLCS, RBOIRA uses rules to 

prune the initial index candidates. This operation 
effectively improves the learning efficiency of the agent 
and reduces the execution cost of the algorithm, thus 
helping the agent explore better index configuration. 

Besides, by comparing and analyzing the experimental 
results in Figure 6, it is found that although RBOIRA does 
not have the smallest of all methods on index size, it's still 
much smaller than other baselines like ALL-S and 
SmartIX. Although the index size of RBOIRA is somewhat 
larger than that of POWA, DQN-S, and NoDBA, RBORIA 
improves query performance by sacrificing less space, and 
the swap of space for performance is adequate. 

Figure 5. Hourly query performance 

Figure 6. Index size 
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Table 5. TPC-H performance comparison 

Index Config Power@1GB Throughput@1GB QphH@1GB Index Size 
Initial_State 5640.16 3374.04 4362.35 248.82 
NoDBA 5827.56 3464.15 4493.05 770.63 
Expert-Based 6190.36 3430.81 4608.47 412.68 
POWA 6826.56 3607.24 4962.36 463.25 
DQN-S 6515.25 3559.16 4815.44 789.61 
ALL-S 7252.57 3650.08 5145.00 2519.96 
ITLCS 7261.62 3852.82 5289.40 496.56 
ALL-R 7440.80 3791.19 5311.24 1849.62 
SmartIX 7583.89 3809.10 5374.74 1932.08 
RBOIRA 7700.02 3890.26 5473.13 1582.19 

5.4. Ablation experiment and selectivity 
experiment 

We conducted the TPC-H performance test experiments for 
each rule to verify the effectiveness of a single rule and 
analyzed its experimental results. The experimental results 
are shown in Table 6, including index size. 

Analyzing the experiment results in Table 6 gives the 
following conclusions: 

(1) Compared with ALL-S, R1 has no significant change 
in TPC-H query performance and index size, which 
indicates that when the capacity of data in the table is too 
small, the create index or not create index does not have a 
significant impact on the database query performance and 
space consumption proving the rationality of R1. 

(2) Although R2 has decreased performance compared
with ALL-S, it has significantly decreased index size, 
indicating that less storage space is consumed. R2's index 
size was significantly reduced when it slightly affected 
query performance degradation, indicating that this 
replacement operation is worthwhile, which proves the 
rationality of the R2. 

(3) Compared with ALL-S, R3 outperforms ALL-S in
both TPC-H performance and index size, which proves the 
validity of R3. 

(4) Compared with R1, R2, R3, and ALL-S, ALL-R has
better query performance and a smaller index size, which 
indicates the rationality of the integration of the three rules. 

Table 6. TPC-H performance comparison and index size under different rules 

Index Config Power@1GB Throughput@1GB QphH@1GB Index Size 
ALL-S 7252.57 3650.08 5145.00 2519.96 
R1 7185.83 3668.22 5135.24 2512.88 
R2 7001.01 3629.27 5040.66 1992.43 
R3 7397.14 3750.99 5267.47 2373.18 
ALL-R 7440.80 3791.19 3791.19 1849.62 

Furthermore, we also conducted a selectivity threshold 
experiment for R3, with experimental results as shown in 
Figure 7, where selectivity is calculated by Formula 5. As 
the selectivity increases, more and more index candidates 
are pruned, leading to the deterioration of database query 
performance. As the selectivity gradually increases, the 
index candidates extracted from the database have a higher 
selectivity. However, because the attributes themselves are 
too long (they do not meet R1), taking the index scan 
consumes more time than taking the full table scan, thus 

reducing the query efficiency. As Figure 7 shows, if the 
selectivity is within the range of 0.2, the query performance 
is still close to the Initial_State. 
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Figure 7. Comparison experiment of selectivity 
threshold 

This situation indicates that the selectivity of 0.2 can 
reduce the number of index candidates and ensure that the 
database query performance does not change significantly. 

6. Conclusion

In this paper, we propose RBOIRA which is a practical and 
flexible index advisor that integrates three heuristic rules 
and reinforcement learning to recommend the optimal 
index configuration for a set of workloads in a dynamic 
database. We have designed extensive experiments to 
prove the superiority of RBOIRA, and the experimental 
results show that RBOIRA outperforms other existing 
related methods. 

The RBOIRA still has some areas that can be optimized, 
such as improving the algorithm efficiency of 
reinforcement learning and reducing the resource usage 
required for intelligent index recommendation. In the 
future, we will improve the efficiency and reduce the cost 
of the reinforcement learning recommendation index. 
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