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Abstract

This paper proposes a Metapath-Infused Exponential Decay graph neural network (MIED) approach for node
embedding in heterogeneous graphs. It is designed to address limitations in existing methods, which usually
lose the graph information during feature alignment and ignore the different importance of nodes during
metapath aggregation. Firstly, graph convolutional network (GCN) is applied on the subgraphs, which is
derived from the original graph with given metapaths to transform node features. Secondly, an exponential
decay encoder (EDE) is designed, in which the influence of nodes on starting point decays exponentially with
a fixed parameter as they move farther away from it. Thirdly, a set of experiments is conducted on two selected
datasets of heterogeneous graphs, i.e., IMDb and DBLP, for comparison purposes. The results show that MIED
outperforms selected approaches, e.g., GAT, HAN, MAGNN, etc. Thus, our approach is proven to be able to
take full advantage of graph information considering node weights based on distance aspects. Finally, relevant
parameters are analyzed and the recommended hyperparameter setting is given.
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1. Introduction
Graph data, utilizing nodes and edges to represent
entities and their relationships, is a powerful structure
for modeling complex real-world data [1, 2], including
social networks [3] and academic citation networks
[4, 5]. Computing the embedding vectors of the nodes of
the graph in the low-dimensional space is an important
work. Compared to other types of data, graph data
provides flexibility and expressive power for handling
intricate relationships [6]. To take advantage of this,
a variety of graph embedding techniques [7] have
been developed, such as HOPE [8] and GraRep [9]
that use matrix factorization [10], DeepWalk [11] and
Node2Vec [12] that rely on random walks. Powerful
models like Graph Neural Networks (GNNs) [13] can
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also be used to calculate embedding. These methods are
carefully designed and demonstrate strong embedding
capabilities and primarily focus on homogeneous graph
data [14].

However, in the face of real-world data, these
techniques encounter difficulties. Often, data in many
cases presents not as homogeneous graphs but as
heterogeneous structures [15]. These diverse entities
and relationships reflect the complexity of real-world
systems such as movie recommendation systems [16].
Recognizing these complexities, researchers propose
many heterogeneous graph embedding algorithm and
metapath-based [17] methods are widely used in this
area. Metapaths are predefined sequences of node types
that encapsulate high-order semantic relationships
within a heterogeneous graph. By simplifying complex
relationships into homogeneous subgraphs, we can
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apply the homogeneous graph embedding algorithms
that were previously discussed.

MAGNN [17], for instance, is one of best methods
that integrate metapaths and attention mechanism
to achieve efficient node representation learning for
heterogeneous graph. Firstly, it uses dense layers to
transform the features of different type of nodes
into the same dimension. Then it uses metapaths to
connect two same type nodes which are not directly
connected in the original graph and aggregates the
features of the metapaths. When combining results
of different metapaths or their instances, it uses
attention mechanism to find appropriate weights.
This method has strong adaptability. Through the
metapaths, the efficient aggregation of information in
various heterogeneous graphs can be realized, and the
attention mechanism is used to assign appropriate
weights to different metapaths, so as to extract as much
information as possible from the graph.

Despite these advantages, metapath-based meth-
ods still have room for improvement. Current mod-
els often neglect important adjacency relationships
between nodes during feature alignment. To address
these limitations, we propose a novel model called
Metapath-Infused Exponential Decay graph neural net-
work (MIED) for heterogeneous graph embedding. The
model includes three parts: GCN-based node feature
alignment, exponential decay encoder and metapath
aggregation. Specifically, MIED first utilizes GCN to
align the node features in the heterogeneous graph,
enabling the aligned features to have the same dimen-
sion and reside in a unified feature space. Additionally,
GCN effectively utilizes the neighborhood information
based on metapaths during feature alignment, resulting
in improved graph embeddings for downstream tasks.
Next, when encoding features on metapath instances we
introduce an exponential decay encoder to aggregate
the features of nodes on the metapath with varying
importance due to their distance to starting node.
Finally, MIED employs the attention mechanism for
metapath aggregation, fusing latent vectors obtained
from multiple metapaths into the final node embed-
dings.

In summary, this work makes the following major
contributions:

(1) We propose a novel GCN-based node feature
alignment method for metapath-based heterogeneous
graph node embedding.

(2) We design an effective encoder function for
metapath instances called exponential decay encoder
which reasonably encode the features on the metapath
according to the node importance.

(3) We conduct extensive experiments on the IMDb
[18] and DBLP datasets [19] for node classification
and node clustering, demonstrating that the node

embeddings learned by MIED consistently outperform
those generated by other state-of-the-art baselines.

2. Related works
This chapter will focus on heterogeneous graph
representation learning methods relevant to our
research. Through a comprehensive analysis of these
methods, we will uncover their characteristics in
practical applications and gain valuable insights for our
research.

2.1. Graph Neural Networks
GNN [13, 20] is a kind of specialized machine learning
models designed for processing graph data. Graph
Convolutional Networks (GCNs) extend convolution
operation to GNN field. However, GCN suffers
from "over-smoothing" [21–23] where its performance
decreases with an increasing number of layers. Several
algorithms have been proposed to address this problem
or extend the GCN model. For example, Simplified
Graph Convolution (SGC) [24] simplifies GCN by
removing non-linear activation functions to enhance
the propagation mechanism.

GCN requires that all nodes of the graph are present
during training and do not naturally generalize to
new added nodes. GraphSage [25] is designed to learn
aggregators that samples and aggregates features from
a node’s neighbors. Therefore, it allows for efficiently
generate node embeddings for previously unseen data.

Graph Attention Networks (GAT) [26] introduced
attention-based neighborhood aggregation, allowing
each node to attend to its neighbors and update
its representation. GATv2 [27] modifies the order of
internal operations in its attention function, working
better in some cases.

2.2. Heterogeneous Graph Embedding
The distinct structures and properties of heterogeneous
graphs make the direct application of homogeneous
algorithms unsuitable [28–30]. To address these limita-
tions, researchers have introduced heterogeneous graph
embedding techniques.

In this area, early algorithms like Metapath2Vec
[31] utilized metapaths to generate node sequences in
heterogeneous networks, capturing complex semantic
relationships. However, they primarily focused on
local structures, neglecting global information. To
rectify this, Heterogeneous Graph Attention Networks
(HAN) [32–34] and ESim [35] were introduced. HAN
incorporates node types and neighbor data through
a hierarchical attention mechanism, enhancing the
capture of node attributes and topological data, and
ESim provides a embedding-based similarity search
framework for heterogeneous information networks,
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enabling effective handling of large-scale networks and
capturing rich semantics.

In the domain of analyzing heterogeneous graph net-
works, MAGNN [17] has demonstrated promising per-
formance. This method leverages a multi-head atten-
tion mechanism to adaptively allocate weights during
the learning process, enabling a more comprehensive
exploration of node data. MAGNN enhances graph
embedding by aggregating neighbor features via com-
bining node content transformation, intra-metapath
and inner-metapath aggregation.

Furthermore, the application of knowledge graphs
in online learning frameworks has been explored,
with a focus on access control decision-making [36,
37]. Another notable work is SMiLE, which presents
a schema-augmented multi-level contrastive learning
approach for knowledge graph link prediction [38].

3. Definition
When describing the symbolic definition of heteroge-
neous graph embedding, we first need to clarify the
symbolic representations of concepts. To facilitate the
understanding of the symbols used throughout the
discussion, Table 1 provides a comprehensive list of
symbols and their respective descriptions.
Heterogeneous Graph. A heterogeneous graph is

represented as G = (V , E), where V and E represent the
sets of nodes and edges. T and R represent the sets of
node types and edge types. ψV : V → T and ψE : E → R
denote the node type mapping function and the edge
type mapping function with |T | + |R| > 2.
Metapath. In the context of heterogeneous graphs, a

metapath is a sequence defined by alternating nodes
and edges. A metapath P is formally defined by the
Equation (1), where ti and ri respectively represent the
node types and edge types in the graph.

P = t1
r1−−→ t2

r2−−→ t3
r3−−→ . . .

rn−1−−−→ tn (1)

Metapath-based Neighbor. For a given metapath P
and a node v ∈ V , the metapath-based neighbors of
node v, denoted as NP (v), are defined as nodes that can
be reached from node v through the metapath P .
Metapath-based Subgraph. For a node type t and

a given metapath P , we can derive a homogeneous
subgraph GtP = (V t , EtP ) from graph G. We define
the adjacency matrix AtP = [ai,j ] ∈ Rnt×nt , where nt
represents the number of nodes of type t. If node vi is
adjacent to node vj with respect to metapath P , then
ai,j = 1 else ai,j = 0. The node feature matrix for node
type t is represented as Xt ∈ Rnt×dt , where dt represents
the dimension of the original node features.
Heterogeneous Graph Embedding: For a node type

t in heterogeneous graph G, Xt ∈ Rnt×dt denotes its
feature matrix, in which dt represents the dimension

of node features. Heterogeneous graph embedding aims
to learn d-dimensional node representationsH t ∈ Rnt×d
(usually d ≪ dt) which captures structural information
for all nodes of type t.

4. Methodology
Our model MIED consists of three main parts: GCN-
based node feature alignment, exponential decay
encoder and metapath aggregation. It is outlined in
Figure 1. The calculation process of heterogeneous
graph embedding is illustrated in Algorithm 1.

4.1. GCN-based node feature alignment
In heterogeneous graphs, different types of nodes
may have different feature dimensions. Even with
the same dimension, different structures may have
different feature distributions, demanding feature
space alignment. In order to take into account the
structural information of the graph, we propose node
feature alignment using GCN.

If the adjacency matrix of a homogeneous graph is
denoted as A, and I is its corresponding identity matrix,
the output of (l + 1)-th GCN layer H (l+1) is calculated
in the form of Equation (2), where Ã = A + I , H t

P
(0) =

Xt , D̃i,i =
∑
j Ãi,j is a diagonal matrix and W (l) is the

weights of l-th layer. φ is used to denote the activation
function, such as ReLU (x) = max(0, x) or sigmoid(x) =

1
1+ex .

H (l+1) = φ(D̃−
1
2 ÃD̃−

1
2H (l)W (l)) (2)

For a heterogeneous graph G and a node type t,
if given a metapath P , we can derive a homogeneous
subgraph from G by using P and denote its adjacency
matrix as AtP . We can apply GCN for each homogeneous
subgraph and can get the transformed hidden states as
in Equation (3).

H t
P

(l+1) = φ(D̃t−
1
2

P ÃtP D̃
t−

1
2

P H t
P

(l)
W t (l)) (3)

If given a set of metapaths P t = {P1, P2, ..., Pn} for node
type t, We can apply GCN to each metapath according
to the above method. Then we sum the hidden states
computed by each metapath and get the final hidden
states for each node of type t, as shown in Equation (4),
where H t

P represents the final output of GCN layers.

H t =
∑
P ∈P t

H t
P (4)

During the alignment process, the features of
each node type are transformed into the same
dimension, and feature space and graph information
from neighbor nodes is aggregated, enriching the
information contained in the aligned results.
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Table 1. Symbols and Descriptions.

Symbol Description

G Graph
V Set of nodes in the graph G
E Set of edges in the graph G
T Set of node types
R Set of edge types
ψV Function mapping nodes to their types
ψE Function mapping edges to their types
P Metapath, a sequence defined by alternating nodes and edges

NP (v) Set of metapath-based neighbors of node v
GtP Homogeneous subgraph derived from G using metapath P for node type t
AtP Adjacency matrix for node type t derived using metapath P
Xt Node feature matrix for node type t
hvP t Aggregated information representation of node v for node type t
Ã Adjusted adjacency matrix
D̃ Diagonal matrix corresponding to Ã

H (l+1) Output of the l + 1-th GCN layer
W (l) Weights of the l-th GCN layer
α Decay parameter in the exponential decay encoder

Figure 1. Framework of MIED (GCN feature transformations for yellow and blue nodes are executed but not illustrated for clarity).

Regarding computational complexity, in comparison
to the baseline MAGNN, the addition of GCN-based
node feature alignment involves GCN aggregation
for each node type. Consequently, the increased
computational complexity can be expressed as

∑|T |
i=1(Ni ·

O(Mi · Ki)), where |T | represents the number of node
types, Ni denotes the number of nodes of the i-th type,
Mi signifies the mean number of neighbors for the
i-th type, and Ki represents the number of features
for the i-th type. In many real-world graph data, the
mean number of neighbors and the number of features
for different node types may be constrained by a
constant. Therefore, if we denote the maximum number
of neighbors and features by M and K respectively,

the total computational complexity increased by GCN-
based node feature alignment compared to MAGNN is
O(M · K ·N ), where N corresponds to the total number
of nodes in the graph.

4.2. Exponential Decay Encoder
After feature alignment, feature aggregation on the
metapath must consider that nodes farther from the
starting point have less relevance. Some proposed
methods use average encoder, linear encoder or RNN-
based encoder, but they lack effectiveness in capturing
node weight decay on a metapath because of a long
path of gradient backpropagation. MAGNN’s relational
rotation encoder [39] mitigates this to some extent but
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increases computational complexity and has potential
for improvement.

We propose an exponential decay encoder (EDE)
for better feature aggregation on a metapath. Given a
metapath P for node type t, the encoder function is
fθ(P (v, u)), where P (v, u) denotes the metapath from
target node v to a neighbor instance u ∈ NP (v). The

aggregation process is in Equation (5), with h(i)
P ∈ R

d as
the aligned feature vector of the i-th node on P (v, u)
from v to u and α as the decay parameter. The length
of P (v, u) is denoted |P (v, u)|.

hP (v,u) = fθ(P (v, u))

= fθ(hv , ..., hu)

=
|P (v,u)|∑
i=1

αi ∗ h(i)
P

(5)

Algorithm 1 : MIED forward propagation.

Input: The heterogeneous graph G = (V , E) ,
node types T = {t1, t2, ..., t|T |},
metapaths P t = {P1, P2, ..., P|P t |} for node type t ,
node features {Xt ,∀t ∈ T },
the number of attention heads K ,
the number of layers L,
the number of GCN layers I ,
the exponential decay weight α

Output: The node embeddings {hv ,∀v ∈ V }
1: for node type t ∈ T do
2: for metapath P ∈ P t do
3: Set H tP

(0) = Xt ;
4: for i = 1, 2, .., I do

5: H tP
(i) = φ(D̃t

− 1
2

P ÃtP D̃
t−

1
2

P H tP
(i−1)

W t (i−1));
6: end for
7: end for
8: Aligned node feature matrix H t =

∑
P ∈P t

H tP
(I);

9: end for
10: for l = 1, 2,...,L do
11: for node type t ∈ T do
12: for metapath P ∈ P t do
13: for v ∈ V t do
14: Calculate hlP (v,u) for all u ∈ NP (v) using EDE refer to Equation (5);

15: Calculate βP (v,u) refer to Equation (7);
16: Combine extracted metapath instances of multi-head attention:
17: [hvP ]l = ∥Kk=1σ (

∑
u∈NP (v)

βkP (v,u) · h
l
P (v,u));

18: end for
19: end for
20: Calculate γP for each metapath P ∈ P t refer to Equation (12) and get :
21: [hvP t ]

l =
∑
P ∈P t

γP · [hvP ]l ;

22: end for
23: Layer output projection: [hv]l = σ (Wo · [hvP t ]

l )
24: end for

In order to reduce the impact of different magnitudes
of features on EDE, techniques such as normalization
can also be used to normalize the aligned features.
Many normalization methods can be used, such as Min-
Max normalization and Z-score normalization [40].
During actual training, these methods can be set as
a hyperparameter to let the model choose the most
suitable normalization method.

The computational complexity of EDE on a metapath
instance with n nodes is

∑n
i=1(i − 1 + K) = O(n2) +O(K ·

n), where K represents the number of aligned features.

In contrast, for a similar method, the relational rotation
encoder of the baseline model has a computational
complexity of K +

∑n
i=1(2 · K) = O(K · n). EDE has an

increase of O(n2), but n represents the length of a
metapath, which is usually not large and much smaller
than K . Additionally, EDE reduces data storage space
from O(K · n) to O(1) compared with relational rotation
encoder.

4.3. Metapath Aggregation
Upon aggregating features of nodes on each metapath
instance to hP (v,u), we seek to aggregate all metapath
instances linking node v. Appropriate weights must be
assigned to each metapath instance’s vector representa-
tion, as they influence the target node v differently. A
graph attention layer is applied to metapath instances
related to v, allowing the model to find optimal weights.
The process uses ∥ for vector concatenation.

eP (v,u) = LeakReLU (aTP · [hv ||hP (v,u)]) (6)

βP (v,u) =
exp(eP (v,u))∑

s∈Np(v) exp(eP (v,s)))
(7)

hvP = σ (
∑

u∈NP (v)

βP (v,u) · hP (v,u)) (8)

Similarly, this method can be extended to incorporate
a multi-head attention mechanism, as shown in
Equation (9). Here, K represents the number of
attention heads and βkP (v,u) represents the relative
contribution value of the k-th attention head.

hvP = ∥Kk=1σ (
∑

u∈NP (v)

βkP (v,u) · hP (v,u)) (9)

After aggregating the instances of the metapath P for
node v, we need to further aggregate the information
about the metapath set P t = {P1, P2, ..., Pn} for node type
t. For a node v, we denote {hvP1

, hvP2
, ..., hvPm } as the

aggregated representation of each metapath, where m
represents the number of metapaths corresponding to
its node type t. Therefore, considering the different
contributions of metapaths, we can apply an attention
mechanism to find the weights of these metapaths.

Firstly, we average the representations of all nodes of
type t with each metapath P ∈ P t , as shown in Equation
(10). Here, |V t | represents the number of nodes of type t,
Mt ∈ Rdm×d and bt ∈ Rdm are the weight parameters and
bias vector. We denote the dimension of parameterized
attention vector as dm.

sP =
1
|V t |

∑
v∈V t

tanh(Mt · hvP + bt) (10)

Then the attention mechanism can be represented as
follows, where qt ∈ Rdm is the parameterized attention
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vector. By summing all the weighted vectors, we
calculate the aggregation of information for node v.

eP = (qt)T · sP (11)

γP =
exp(eP )∑

Pi∈P t
exp(ePi ) (12)

hvP t =
∑
P ∈P t

γP · hvP (13)

Finally, we use a linear layer followed by a non-
linear activation function to map the aggregation of
information for node v into the desired dimension of
the vector feature space. This can be represented by
Equation (14), where σ is the activation function and
Wo ∈ Rdo×d is the weight matrix. The entire equation
can be seen as the output layer that connects to
downstream tasks.

hv = σ (Wo · hvP t ) (14)

4.4. Training
After obtaining the embedding representation hv

for each node, using the node labels, we perform
backpropagation and gradient descent to minimize the
cross-entropy and optimize the model weights. The
loss function can be expressed by Equation (15), where
C represents the number of classes, yv[c] represents
the one-hot vector of the node label c, and log(hv[c])
represents the predicted vector for the node label c.

L = −
∑
v∈VL

C∑
c=1

yv[c] · log(hv[c]) (15)

The MIED forward propagation algorithm, as delin-
eated in Algorithm 1, is meticulously designed to pro-
duce node embeddings from a heterogeneous graph G
with its nodes and edges.

Starting with the inputs, the algorithm receives the
heterogeneous graph G, node types T , metapaths P t for
each node type t, initial node features Xt , the number of
attention heads K , the number of layers L, the number
of GCN layers I , and the exponential decay weight α.
The end goal is to compute the node embeddings hv for
every node v in G.

For every node type t, the algorithm, in lines 1-9
of Algorithm 1, initializes the feature matrix for each
related metapath P using Xt and subsequently refines
it over I GCN layers. The formula H t

P
(i) (line 5 of

Algorithm 1) depicts the GCN transformation, which
incorporates adjacency and degree matrices with the
node features to capture the graph structure. After
iterating over all metapaths, the aligned node feature
matrix is produced in line 8 by summing the outputs.

Delving deeper, lines 10-24 of Algorithm 1 iterate
over L layers. Within each layer, for every node v of type
t, the algorithm calculates features for all its neighbors
using the metapath and the Exponential Decay Encoder
(EDE) as detailed in line 14 of Algorithm 1. The
attention mechanism is then invoked in lines 15-17 to
aggregate these features into a single representation
for the node. This ensures that more significant
neighboring nodes, as described by the metapath, have
a stronger influence on the node’s representation.

Subsequent to aggregating features for each metap-
ath, the algorithm, in line 20 of Algorithm 1, computes
weights γP for every metapath. This information is then
employed in line 21 to combine embeddings across
metapaths, forming a complete representation for each
node type. Lastly, line 26 of Algorithm 1 applies a dense
layer to refine these embeddings, making them suitable
for downstream tasks.

By intertwining information from various metapaths
in a heterogeneous graph, and leveraging the power
of GCN and attention mechanisms, this algorithm effi-
ciently derives rich and informative node embeddings.

5. Experiment
In this section, we apply MIED on two datasets to
compare MIED with baselines on node classification
task and node clustering task. We also try different
normalization strategies and different hyperparameters
α for exponential decay encoder to further explore their
impact.

5.1. Experimental Settings

Figure 2. Schemas of the two heterogeneous graph datasets
used in experiment.

Dataset. We experiment with two heterogeneous graph
datasets, similar to the base model MAGNN. The
detailed information of the two datasets is shown in
Table 2 and the schemas of the datasets are shown
in Figure 2. IMDb is a database about movies and
television programs and has three kinds of labels:
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Table 2. Dataset details.

Dataset Node Edge Metapath

IMDb
movie(M):4278

director(D):2081
actor(A):5257

M-D:4278
M-A:12828

MDM
MAM
DMD

DMAMD
AMA

AMDMA

DBLP

author(A):4057
paper(P):14328
term(T):7723
venue(V):20

A-P:19645
P-T:85810
P-V:14328

APA
APTPA
APVPA

Action, Comedy and Drama. We divide the IMDb
dataset into training, validation, and testing sets with
400, 400 and 3478 nodes, respectively. DBLP dataset
is about computer science bibliography [41] and we
use a subset of the dataset extracted by [17]. The
authors in DBLP have three kinds of labels: Database,
Data Mining, Artificial Intelligence and Information
Retrieval. We divide the DBLP dataset into training,
validation, and testing sets with 400, 400 and 3257
nodes, respectively. We use one-hot id vectors as input
features for nodes with no features in these datasets. We
conduct node classification and node clustering tasks on
these two datasets to evaluate the performance of our
model.
Baselines and Hyperparameters. We compare MIED

with various types of graph embedding models includ-
ing MAGNN. These models include homogeneous mod-
els such as node2vec, GCN and GAT, as well as hetero-
geneous models such as ESim, metapath2vec, HERec
and HAN. For MIED, we use the same settings and
metapaths with MAGNN, if applicable. We set dropout
rate to 0.5 and learning rate to 0.005. The number
of attention heads is set to 8 and the dimension of
attention vectors is set to 128. We set the dimension of
the aligned features to 64 for MAGNN and MIED. For
exponential decay encoder, we conduct a grid search on
the weight decay parameter, using both original and Z-
score normalized inputs to find the optimal model.

5.2. Node Clustering
We use the same split method of training, validation
and testing sets and use K-Means [42] algorithm
to cluster embeddings of labeled nodes into the
number of classes for each dataset. Normalized mutual
information (NMI) [43] and adjusted rand index (ARI)
[44] are used as the evaluation metrics. MIED is tested
over 10 runs, and we report the average results in Table
3. We can see that MIED outperforms MAGNN and
other baselines in all metrics. When compared with
the base model, MIED has improved by a maximum of

7.23% and a minimum of 1.27%. For the IMDb dataset,
the best result is attained when using a decay value of
2/3 on original input. For the DBLP dataset, the best
result is attained when using a decay value of 2/3 on
Z-score normalized input.

5.3. Node Classification
To evaluate the embeddings of labeled nodes generated
by each model, we use a linear support vector machine
(SVM) [45] to classify them with varying training
proportions. We test MIED over 10 runs and report the
averaged Macro-F1 and Micro-F1, as shown in Table 4.
We can see that MIED performs best across all metrics.
When compared with base model, MIED has improved
by 1.97% at most when the dataset is IMDb and the
training proportion is 20%. For the IMDb dataset, the
best result is attained when using a decay value of 1/2
on original input. For the DBLP dataset, the best result
is attained when using a decay value of 1/3 on original
input.

5.4. Module Analysis
To further explore the effect of two modules, we train
a model that only applies the GCN module to MAGNN
on the same data in 5.2 and 5.3, and collect results for
comparison and analysis. We average the scores of node
classification in different training proportions and show
them in Table 5.

As shown in the table, after incorporating GCN
method in MAGNN, the model performs better across
all metrics. This shows that replacing the dense layer
with GCN is effective. After implementing the EDE, the
performance of the model is further improved. Among
the 8 sets of comparative data, 7 sets of data have
shown further improvement, which shows EDE is also
effective. This table shows that our methods enhance
metapath based heterogeneous graph embedding.

5.5. Parameter Analysis
We also try to inspect the influence of hyperparameters
in the two modules. For GCN, we use one layer in our
best result. We also experiment with using two layers of
GCN, but the performance of the model get worse. We
think the reason is when using two (or more) layers of
GCN, the model will consider neighbors that are two (or
more) hops away in the homogeneous graphs derived
from metapaths, which are actually much far away in
the original heterogeneous graph.

For the exponential decay encoder, an important
parameter is α, and data normalization is also an
important factor. So more experiments are done to
inspect the influence of these two factors. We search
best α in a set of {1/3, 1/2, 2/3, 1} on both
original input and Z-score normalized input when
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Table 3. Experimental results (%) on the datasets for the node clustering task (n2vec is short for node2vec and m2vec is short for
metapath2vec in the table).

Dataset Metrics
Unsupervised Semi-supervised

n2vec ESsim m2vec HERec GCN GAT HAN MAGNN MIED

IMDb
NMI 5.22 1.07 0.89 0.39 7.46 7.84 10.79 15.58 15.84
ARI 6.02 1.01 0.22 0.11 7.69 8.87 11.11 16.74 17.95

DBLP
NMI 77.01 68.33 74.18 69.03 73.45 70.73 77.49 80.81 81.84
ARI 81.37 72.22 78.11 72.45 77.50 76.04 82.95 85.54 86.66

Figure 3. NMI and mean Macro-F1 of IMDb and DBLP with different settings.

implementing exponential decay encoder. We utilize
NMI of node clustering and mean Macro-F1 of node
classification as metrics to analyze the influence of
different hyperparameters on the model. The result is
shown in Figure 3.

It can be seen from the figure that the results
vary greatly with different settings. Original input
outperforms normalized input in most cases except in

the node clustering task of DBLP. When α changes,
the trends of the two lines in the (a) and (d) subgraph
are similar, but in the other two images, one line
shows a downward trend and the other line shows
an upward trend. So we can not identify an α that
performs best in all cases because different datasets
exhibit distinct distributions and vary significantly in
terms of magnitudes. However, we can still figure out
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Table 4. Experimental results (%) on the datasets for the node classification task (n2vec is short for node2vec and m2vec is short for
metapath2vec in the table).

Dataset Metrics Train
Unsupervised Semi-supervised

n2vec ESsim m2vec HERec GCN GAT HAN MAGNN MIED

IMDb

Macro-F1

20% 49.00 48.37 46.05 45.61 52.73 53.64 56.19 59.35 60.52
40% 50.63 50.09 47.57 46.80 53.67 55.5 56.15 60.27 61.08
60% 51.65 51.45 48.17 46.84 54.24 56.46 57.29 60.66 61.20
80% 51.49 51.37 49.99 47.73 54.77 57.43 58.51 61.44 61.86

Micro-F1

20% 49.94 49.32 47.22 46.23 52.80 53.64 56.32 59.60 60.68
40% 51.77 51.21 48.17 47.89 53.76 55.56 57.32 60.50 61.30
60% 52.79 52.53 49.87 48.19 54.23 56.47 58.42 60.88 61.42
80% 52.72 52.54 50.50 49.11 54.63 57.40 59.24 61.53 62.13

DBLP

Macro-F1

20% 86.70 90.68 88.47 90.82 88.00 91.05 91.69 93.13 93.95
40% 88.07 91.61 89.91 91.44 89.00 91.24 91.96 93.23 94.18
60% 88.69 91.84 90.50 92.08 89.43 91.42 92.14 93.57 94.22
80% 88.93 92.27 90.86 92.25 89.98 91.73 92.50 94.10 94.43

Micro-F1

20% 87.21 91.21 89.02 91.49 88.51 91.61 92.33 93.61 94.38
40% 88.51 92.05 90.36 92.05 89.22 91.77 92.57 93.68 94.59
60% 89.09 92.28 90.94 92.66 89.57 91.97 92.72 93.99 94.64
80% 89.37 92.68 91.31 92.78 90.33 92.24 93.23 94.47 94.80

Table 5. The effect of the two modules on the model.

model
IMDb DBLP

Macro-F1 Micro-F1 NMI ARI Macro-F1 Micro-F1 NMI ARI
MAGNN 60.43 60.63 15.58 16.74 93.51 93.94 80.81 85.54

only applies GCN 60.85 61.05 16.14 17.81 93.59 94.06 80.86 86.16
MIED 61.17 61.38 15.84 17.95 94.20 94.60 81.84 86.66

that the model works relatively well in the middle
part of the curves. Therefore, when selecting α we
recommend selecting an α in [1/2, 2/3] or performing
a grid search on (0, 1).

6. Conclusions and future work
In this paper, we propose MIED which contains
two modules to enhance the node embeddings of
heterogeneous graph. These two modules are: (1)
using metapath-based GCN in the feature alignment
to include graph information; (2) proposing EDE to
distinguish the importance of different nodes when
aggregating features on the metapath. Our comparative
experiments demonstrate the effectiveness of our
methods.

We also analyze the computational complexity of
two proposed methods. They increase in computational
complexity, but are controllable compared to their
effects. Meta-path based methods have some scalability
challenges when applied to large-scale graphs. But
this can be effectively controlled by controlling the
number and length of metapaths. After all, the value

of information along very long metapaths is rapidly
diminishing.

As heterogeneous graphs play an important role
in fields such as multi-mode heterogeneous graph
recommendation, we will apply our methods to graphs
in these fields in the future, with the aim of further
improving the performance of these models.
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