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Abstract 

In today's digital landscape, the widespread sharing and utilization of raw data are integral in social, medical, 
agricultural, and academic domains. The surge of open platforms has led to exponential growth in data, 
transforming it into what we now call Big Data (BD). However, the traditional BD model lacks a specific 
mechanism for capturing the sensitivity of data, leaving it vulnerable to potential breaches. To address this, a 
privacy and security layer is crucial. This paper propose a novel solution called the Fortified Secured Map Reduce 
(FSMR) Layer, which serves as an intermediary between the HDFS (Hadoop Distributed File System) and MR 
(Map Reduce) Layer. The FSMR model is designed to foster data sharing for knowledge mining while ensuring 
robust privacy and security guarantees. It effectively resolves scalability issues concerning privacy and strikes a 
balance between privacy and utility for data miners. By implementing the FSMR model, we achieve remarkable 
improvements in running time and information loss compared to existing approaches. Furthermore, storage and 
CPU utilization are minimized, enhancing the overall efficiency and effectiveness of the data processing pipeline. 
The outcome of our work lies in promoting data sharing while safeguarding sensitive information, making it a 
significant step towards secure and privacy-conscious BD processing. 
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1. Introduction

Data security, as commonly defined, encompasses three main 
aspects: confidentiality, integrity, and availability of data. Its 
primary objective is to ensure that information remains 
protected from unauthorized access, guaranteeing its 
reliability, accuracy, and accessibility whenever needed. A 
robust information security design includes gathering 
necessary data, safeguarding it from threats, and securely 
disposing of data that is no longer used [1]. Another point is 

that privacy pertains to the suitable and responsible 
exploitation of information. It necessitates that organizations 
utilize the data they receive solely for future purposes. For 
instance, when a customer provides individual information, 
the company is bound not to sell this information to third 
parties. To uphold data privacy for their consumers, 
companies must implement stringent data security policies. 
Safeguarding this information is vital as it constitutes an 
invaluable asset to the company. Nevertheless, even with 
well-established data security policies, there remains a risk of 
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a data breach if an organization is willing to sell or solicit 
consumer data entrusted to them [1, 2]. In the realm of big 
data processing, security, and privacy have become 
paramount concerns. As organizations harness the power of 
vast datasets, ensuring the confidentiality and integrity of 
sensitive information becomes increasingly challenging. In 
response to these pressing issues, the concept of a "Fortified 
MapReduce Layer" emerges as a promising solution. This 
paper aims to present a comprehensive exploration of the 
Fortified MapReduce Layer, an innovative approach designed 
to elevate S & P in the big data processing. By enhancing the 
traditional MapReduce paradigm with robust security 
measures, this framework aims to mitigate potential risks and 
vulnerabilities, thereby enabling safer and more confidential 
data processing. Through in-depth analysis and examination 
of the Fortified MapReduce Layer, this study seeks to shed 
light on its potential benefits, limitations, and implications for 
the future of secure big data analytics.  

1.1  Motivation Addressing Privacy and 
Security Challenges in Big Data 

The term BD refers to vast amounts of digital data unruffled 
by various companies and organizations [3–8]. Each day, an 
immense quantity of data is generated, with a staggering 90% 
of the world's data produced in just the last 2 years. However, 
the scale and complexity of BD, including factors like the 
speed of data generation, the sheer volume of data, diverse 
data sources and formats, continuous data streaming, and 
extensive inter-cloud migration, magnify security and privacy 
(S & P) concerns [9–15].  

In recent years, the proliferation of big data has 
revolutionized various industries, including healthcare, 
finance, and e-commerce. However, this data-driven 
transformation comes with its share of challenges, 
particularly concerning security and privacy. As data 
volumes soar, the risk of unauthorized access, data breaches, 
and privacy violations becomes a critical concern for 
organizations and individuals alike. Traditional data 
processing frameworks, like MapReduce, have been 
instrumental in handling massive datasets efficiently. 
However, they often lack robust security features, making 
them susceptible to potential attacks and data leaks. In 
response to these vulnerabilities, researchers and developers 
have been exploring innovative ways to bolster the security 
and privacy aspects of big data processing. The "Fortified 
MapReduce Layer" proposes a strategic enhancement to the 
MapReduce paradigm by integrating advanced security 

mechanisms. This fortified layer aims to provide end-to-end 
protection for sensitive data throughout the entire processing 
pipeline. By incorporating encryption, access control, and 
data anonymization techniques, the Fortified MapReduce 
Layer ensures that data remains secure, even during 
computation and storage. 

Table 1: Abbreviation used 

Abbreviation Full Form Abbreviation Full Form 
EA Encryption 

Algorithms 
KE Key 

Encryption 
HWEA Heavy 

Weighted 
Encryption 
Algorithms 

FSMR Fortified 
Secured 
Map 
Reduced 

LWEA Light 
Weighted 
Encryption 
Algorithms 

IF Input File 

EF Encrypt File DF Decrypt 
File 

OF Output File MT Mapper 
Task 

RT Reducer 
Task 

Dk Decrypted 
Key 

Ek Encrypted 
Key 

S & P Security & 
Privacy 

MN Master 
Node 

NN Name 
Node 

1.2  Advantages of Lightweight Encryption for 
Secure Communication 

In the realm of secure communication, both HWEA and 
LWEA find their applications. However, there is a growing 
preference for LWEA in low-power designs and devices due 
to their compact resource needs. These LWEA not only offer 
enhanced security but also ensure faster encryption compared 
to traditional HWEA [19]. The proposed solution introduces 
a multi-level LWEA coupled with KE, effectively reducing 
the potential risks posed by attackers. This combination 
enhances the overall security of the system. By adopting 
LWEA, organizations can strike a balance between security 
and resource efficiency, making it a practical and effective 
choice for safeguarding sensitive data in today's 
interconnected world. 

1.3  Contribution 
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The main contribution of this paper is the introduction of 
FSMR layer for BD. The key aspects of the FSMR approach 
are: 

a. Enhanced Data Utility: The proposed FSMR Layer
achieves high data utility while maintaining privacy.
b. Reduced Information Loss: The FSMR model
significantly reduces information loss during data processing.
c. Optimization of Execution Time: Leveraging lightweight
encryption techniques, the FSMR model ensures optimized
execution time.
d. Scalability Resolution: The FSMR algorithm effectively
addresses scalability issues related to privacy in BD.

1.4 Organization structure 

The remaining sections of the paper are structured into four 
main parts. Section 2 provides a comprehensive overview of 
related works, discussing prior research and studies in the 
field to contextualize the proposed model. Section 3 delves 
into the detailed exposition of the proposed model, presenting 
its architecture, algorithms, methodologies, and key 
components. Moving forward, Section 4 is dedicated to 
presenting the results obtained from the application and 
evaluation of the proposed model. Additionally, it includes a 
thorough discussion of these results, interpreting their 
implications and significance in the context of the study. 
Finally, in Section 5, the paper concludes by summarizing the 
key findings and their implications. Additionally, it outlines 
avenues for future work, suggesting potential directions for 
further research and improvement of the proposed model. 

2. Related works

Mohammadian et al. (2014) focus on preserving privacy 
while processing large data streams in real-time scenarios. 
The paper contributes to the field of BD privacy and 
addresses the challenges of handling continuous data streams 
securely. Evfmievski et al. (2002) explore how randomization 
can be used to obfuscate sensitive data while mining 
association rules, thereby protecting individual privacy. This 
work is crucial in the context of data mining and privacy 
preservation. Tripathy and Mitra et al. (2012) propose a 
technique to protect the identity of individuals in social 
networks while ensuring diversity in the released data. The 
method is relevant in the context of privacy concerns in 
social media platforms. Jain et al. (2019) address privacy 

concerns related to election data and present an enhanced 
technique for anonymizing sensitive information. Kadampur 
et al. (2008 explore how data perturbation techniques can be 
applied to protect sensitive information while maintaining the 
utility of the data. The method contributes to the field of 
privacy-preserving data publishing. LeFevre et al. (2006) 
propose the Mondrian multidimensional k-anonymity 
approach. The paper focuses on preserving privacy in 
multidimensional data by achieving k-anonymity. The 
method is valuable for securing datasets with multiple 
sensitive attributes. Zakerzadeh et al. (2015) discuss privacy-
preserving BD publishing. The paper addresses the 
challenges of publishing large-scale datasets while protecting 
individual privacy. It presents techniques to anonymize and 
publish data securely. Roy et al. (2010) present Airavat, a 
system designed to provide S & P for MapReduce 
computations. The paper introduces techniques to protect 
data privacy during large-scale data processing using 
MapReduce. The work contributes to the security aspects of 
distributed data processing. Derbeko et al. (2016) highlight 
the vulnerabilities and challenges in cloud-based data 
processing and present an overview of privacy-preserving 
techniques. Pathak et al. (2012) address privacy concerns in 
data mining tasks involving association rule discovery. It 
introduces a novel technique to hide sensitive information in 
the association rules. Yadav and Ojha et al. (2018) provide an 
overview of the current challenges and solutions related to 
the S & Pof BD systems. Kacha and Zitouni et al. (2017) 
discuss various security aspects related to cloud computing, 
including data protection, access control, and privacy 
preservation. Ilavarasi and Sathiyabhama et al. (2017) present 
a method to anonymize datasets while preserving their 
classification utility, contributing to the field of privacy-
preserving data mining. In their study, Algaradi et al. [51] 
proposed an approach that involves a centralized 
authentication server responsible for handling user 
credentials and issuing secure communication tickets. Tsu 
Yang et al. [52] ensure secure communication among SIoV 
nodes and fog nodes by establishing an authenticated key 
agreement through mutual authentication and key generation. 
Hena et al. [53] propose a distributed authentication 
framework for securing Hadoop-based BD environments. 
The framework uses Kerberos-based authentication and 
access control policies to manage user authentication and 
authorization. The proposed framework is evaluated using a 
set of experiments and shows improved security and 
performance compared to existing authentication 
mechanisms. Honor et al. [54] propose a scheme that 
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addresses the problem of data trustworthiness and provenance 
in IoT systems by providing an immutable and tamper-proof 
record of data transactions. Marco et al. [55] use a set of 
metrics and quality attributes to assess the level of 
trustworthiness of BD. Tall et al. [56] proposed a framework 
that allows for fine-grained control over data access based on 
a set of attributes associated with the data. X. Sun et al. [57] 
addresses data anonymization by emphasizing purpose and 
trust injection. The paper explores methods to enhance 
privacy and utility in data sharing through thoughtful 
anonymization strategies.Y.-F. Ge et al. [58] propose an 
Evolutionary Dynamic Database Partitioning Optimization 
for Privacy and Utility focuses on optimizing database 
partitioning to balance privacy concerns while maintaining 
system efficiency and utility.Y.-F. Ge et al. [59] introduce a 
Distributed Cooperative Coevolution approach for privacy 
and transparency in data publishing. The paper presents 
collaborative evolutionary methods to enhance data privacy 
while ensuring transparency in data sharing. 

2.1  Problem Discussion: 

1. The "Related Work" section of this paper discusses
existing approaches, which are categorized into
three distinct categories: Input privacy, output
privacy, and data security. FSMR represents a
unique solution through the combination of these
three categories. The proposed model not only
ensures input privacy for raw data, specifically the
Twitter Dataset, but it also implements query
auditing to maintain output privacy.

2. The conventional methods rely on partial
encryption, leading to significant information loss.
On the other hand, data security is often based on
time-consuming data encryption, applied to the
entire dataset. In contrast, our proposed model
employs LWEA, providing full encryption
efficiently while minimizing information loss.
Leveraging the power of BD, the use of LWEA
allows for optimal execution time, reducing the
impact of data size on scalability issues commonly
encountered in privacy preservation methods.

Table 2.  Features and Challenges of existing work 

Refere
nce 

Method Used Advantages Disadvantages Future Scope 

21 FAST algorithm Fast anonymization 
of BD streams 

May sacrifice data utility Improving data utility 
while preserving speed 

22 Randomization 
techniques 

Easy implementation, 
privacy-preserving 

Reduced accuracy in 
mining association rules 

Enhancing accuracy 
without compromising 
privacy 

23 k-anonymity and l-
diversity

Protection of social 
network privacy 

Potential information 
loss during 
anonymization 

Extending to handle 
evolving social networks 

24 Improved k-
Anonymity algorithm 

Enhanced privacy in 
election data 

Increased computational 
complexity 

Scaling to handle larger 
election datasets 

25 Data perturbation 
method 

High utility 
preservation 

Vulnerable to re-
identification attacks 

Research on advanced data 
perturbation methods 

26 Mondrian 
multidimensional k-
anonymity 

Privacy preservation 
in multidimensional 
data 

May lead to data 
distortion 

Exploring privacy in 
higher-dimensional data 

27 Privacy-preserving 
BD publishing 

Anonymization of 
large-scale datasets 

Impact on data quality 
and utility 

Developing techniques for 
utility improvement 

28 Airavat system S & Pin MapReduce Overhead processing 
time 

Integrating with new 
distributed computing tech 

29 S & P aspects in Comprehensive Lack of specific Investigating emerging 
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MapReduce on 
clouds 

survey implementation details cloud security concerns 

30 Privacy-preserving 
association rule 
mining using impact 
factor 

Privacy in Data 
Mining 

Impact factor selection 
may affect the utility 

Refining impact factor 
selection for better privacy 

31 Survey on S & 
Pissues in BD 

Overview of 
challenges 

Limited depth in specific 
solutions 

Focusing on new privacy 
threats and solutions 

33 Data security in cloud 
computing 

Understanding cloud 
security 

Limited coverage of 
emerging threats 

Addressing advanced 
cloud-specific attacks 

34 Evolutionary feature 
set decomposition-
based anonymization 

Privacy in Data 
Mining 

Effective classification 
preservation 

Handling complex data 
structures and formats 

51 Static Knowledge-
Based 

Enhances Hadoop 
cluster security with 
Kerberos 

Potential performance 
overhead due to static 
knowledge 

Explore dynamic 
knowledge-based 
approaches, integration 
with other authentication 
mechanisms 

52 Authenticated Key Secure 
communication 
between vehicles in 
Social Internet of 
Vehicles 

A lightweight and 
efficient protocol 

Limited to Fog Nodes in 
SIoV, further scalability 
and integration with 
different vehicular 
networks 

54 IoT Big Data 
Provenance 

Ensures data integrity 
and traceability using 
blockchain 

Blockchain overhead, 
increased storage 
requirements 

Explore optimizations for 
blockchain, integration 
with other big data 
processing frameworks 

56 Attribute-Based 
Access 

Fine-grained access 
control in processing 
big data 

Complexity in defining 
access policies, the 
potential performance 
impact 

Improve policy 
management, scalability 
for larger data sets and 
multiple sensitivities 

57 Data anonymization Enhances privacy and 
utility in data sharing 

Limited to a specific 
conference presentation, 
may lack in-depth 
analysis 

Explore application of the 
method in various contexts 
and conduct further 
research on optimizing 
trust-based anonymization 

58 Evolutionary 
Dynamic Database 
Partitioning 
Optimization 

Optimizes database 
partitioning for 
balancing privacy and 
system efficiency 

Focuses on a specific 
optimization aspect, may 
need further integration 
with broader privacy 
measures 

Extend the approach to 
consider multiple 
dimensions of privacy and 
utility, integrate with 
comprehensive privacy 
frameworks 

59 Distributed 
Cooperative 
Coevolution 

Collaborative 
evolutionary methods 
for enhancing data 
privacy and 
transparency 

Offers a collaborative 
approach to privacy 
enhancement 

The scope of applicability 
in diverse data publishing 
scenarios needs 
exploration 
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3. Proposed Methodology

Organizations are currently grappling with challenges related 
to the BD. Although HADOOP is still under development, 
they do not fully meet the robust privacy and security 
requirements. Despite its challenges, Hadoop's distributed 
processing approach for large data sets. To address the P & S 
gaps in the existing framework, a proposed FSMR Model 
offers a viable pathway to secure distributed computing 
environments in enterprises. The traditional BD model lacks 
a specific framework for capturing the sensitivity of the data. 
It requires consolidation of P & S concepts to minimize the 
risk of exposing individual data. Due to the high volume and 
diverse nature of data, new models for BD are essential to 
enhance P & S [35-39]. 

The FSMR introduces a new privacy layer during the map-
reduce phase. This new FSMR layer implements LWEA on 
data individually as it traverses the map-reduce phase. The 
use of LWEA ensures that the overhead of the proposed 
model does not impact BD processing. As a result, the data is 
protected and secured while being processed through the 
FSMR layer. The data collection process starts with log files, 
Social Media Data, and real-time data/ Streamed data, which 
are then sent to HDFS. In the proposed model, the Secured 
MR Layer introduced between the Map Reduce layer and 
HDFS layer, as shown in Figure 1, effectively increasing the 
S & P of the data. Perturbation and randomized techniques 
are utilized to further enhance the S & P aspects of the data 
processing in this context. 

Figure 1: Proposed model of Big Data with Fortified Secured MapReduce Layer 

The FSMR layer incorporates a proposed LWEA, which 
effectively fulfills the S & P requirements of BD while 
maintaining optimal processing time [40]. The encryption 
process occurs in the MR Layer after the original data is 
passed to HDFS.  In the lightweight encryption process, the 
data is first transformed into numerical form in two levels. At 
the first level, the text data is divided into tokens, and a key-
value pairs (KVP) model is used to represent each unique 

word along with its frequency in the given data. This process 
allows for lightweight encryption and ensures high privacy of 
the data. The randomization process involves the second level 
[41-45], which is applied to the converted numerical data, 
further enhancing the privacy level. This combination of  
lightweight encryption and randomization contributes to a 
robust privacy-preserving mechanism for the data. 

The HybrEx model's vertical partitioning [46] is implemented 
within the FSMR layer. Figure 2 illustrates this vertical 
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partitioning, where the data is first processed in a private 
cloud during encryption and then transferred to the public 
cloud for decryption. This hybrid approach ensures secure 
data processing and privacy preservation throughout the 
entire data lifecycle. By leveraging lightweight encryption 
and randomization techniques along with vertical 
partitioning, the FSMR layer addresses the critical aspects of 
S & P for BD in a time-efficient manner. This novel approach 

holds promising potential for securing sensitive information 
in enterprise computing and data processing environments. 

Figure 2: HyberEX Model Architecture 

Decryption is the process of reversing encryption to retrieve 
the original data. After encryption, the data is sent to HDFS 
in the form of Key –Value pair format. The output from 
HDFS is then transferred back to the MR layer, where 
decryption takes place during the reconstruction phase. The 
decryption process involves two levels. The first level is 
reverse randomization, where randomization techniques are 
used to partially decrypt the encrypted message. This step 
helps to recover the original data to some extent. The second 
level involves converting the numerical data back to text 
data. Each word acts as a key, and the number of occurrences 
represents the value. However, as the original order of the 
data may not be preserved during encryption and 
randomization, the decryption process retrieves the original 
order from a separate file where it was stored. This ensures 
the successful conversion of numerical data back to its 
original text form. 

By combining reverse randomization and the Key-Value 
pairs model, the decryption process effectively reconstructs 

the original data from the encrypted form, maintaining the 
order of the data to successfully retrieve the complete and 
accurate text data. 

Algorithm 1: FSMR Encryption 

Input: IF. 
Output: EF 

Step 1: Partitioning the File 
The IF is partitioned into n blocks, each with a size 

of 128 MB, HDFS, or a similar approach. 

Step 2: Mapper Phase 
1. Each mapper reads its assigned block line by line

using the read() function.
2. The lines are tokenized into separate words using

the tokenize() function.
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3. Each word is converted into a different one-way
privacy-preserving representation.

4. Further, each word is converted into another random
number through the randomization process using the
Rand() function.

5. The random number pairs associated with the
original numbers are compiled into a shared file
referred to as the FSMR EF. This file also includes
the sequential arrangement of the initial data, a
critical aspect for the subsequent reversal of the
randomization procedure.

6. Every mapper keeps track of the frequency of each
number for future processing.

Step 3: Reducer Phase 
1. The results from all mappers are combined.
2. The reducer maintains the frequency of words.
3. The frequency of each word is encrypted, ensuring

both the word and its frequency are secured.

Step 4: FSMR EF 
1. The generated FSMR EF contains pairs of noisy

numbers and their corresponding original numbers.
2. The file preserves the order of the original numbered

data, along with the mapper IDs.
3. Additionally, the mapper task writes the mapper ID

at the end of each sentence to maintain the regular
order of sentences. This information is used during
the reverse randomization process to successfully
retrieve the original numbered data while
maintaining sentence order.

Step 5: Reverse Randomization Process 
1. During the reverse randomization process, the

FSMR EF is used to retrieve the original numbered 
data. 

2. The mapper IDs and order of sentences are utilized
to reconstruct the original data accurately.

Algorithm 2: FSMR Decryption Algorithm 

Input: EF of words FSMR. 
Output: DF  

Step 1: Receiving EF 

The EF is transmitted from the client to the server 
via a network connection. 

Step 2: Partitioning and Distribution 
1. HDFS on the server side partitions the EF data into l

blocks.
2. The l blocks are distributed to multiple nodes in the

server cluster (Partition (FSMR)).

Step 3: Mapper Phase 
1. Each mapper reads one line at a time from its

assigned partition, extracting the mapper ID first.
2. A hashmap is created to group the decrypted strings.
3. The line is then tokenized, and reverse

randomization is applied to decrypt the numbers
back into their corresponding words.

4. The entire decrypted string is added to the hashmap
under the matching mapper ID.

5. This process is repeated for all the mappers, and
they add their decrypted strings to the same
hashmap.

6. The decrypted file containing words and frequencies
is also decrypted and sent to the reducer.

Step 4: Reducer Phase 
1. The reducer performs two tasks simultaneously:
a. Reads the hashmap and generates a DF that contains

the entire data in order, preserving the original
sequence of the data.

b. Combines the results obtained from all the mappers
to generate an OF containing words and their
respective frequencies.

Step 5: Final Output 

The final DF of words and frequencies are obtained, 
ensuring the P & S of the data while maintaining the 
original data order. 

3.1 Dataset used 

Researchers and individuals who want to obtain Twitter 
datasets [49] typically access them through Twitter's API. 
Twitter provides a vast dataset through its API, which 
researchers can download for their analysis and studies. The 
RESTful API is useful for obtaining information like lists of 
followers and users who interact with a specific account. This 
is the most commonly used API by Twitter customers. 
However, this work focuses on the Streaming API. The 
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Streaming API functions by requesting specific types of data 
filtered by keywords, users, geographic range, or a random 
sample. Once the request is made, the connection remains 
open as long as there are no errors in the connection. This 
allows real-time data streaming and continuous access to 
Twitter data. To access the Streaming API, the tweeps 
package is commonly used. The tweepy package provides a 
convenient way to interact with the Twitter API, making it 
easier for researchers to collect streaming data based on their 
specific criteria. By leveraging the Streaming API and the 
tweepy package, researchers can efficiently gather large and 
real-time Twitter datasets that are relevant to their research 
interests and analytical requirements. This data can be 
utilized for various purposes, including sentiment analysis, 
social network analysis, and trend identification, among 
others. 

3.2 Collecting data 

To use tweepy [49] for accessing the Streaming API and 
gathering Twitter data, follow these steps: 

1. Install tweepy: You can obtain tweepy either by
downloading it from the store or by simply
downloading it from the internet. Make sure to have
tweepy installed in your Python environment.

2. Import tweepy and other required libraries: In
your Python script, import tweepy along with other
necessary libraries.

3. Create a Stream Listener: Create an instance of a
tweepy Stream Listener, which will handle the
incoming Twitter data. You can customize this
listener to perform specific actions based on the data
received.

4. Create a data collection script: Develop a script
called 'streaming.py', which will handle the actual
data collection process. In this script, you can define
the criteria for data collection, such as collecting
tweets from specific users, keywords, or geographic
locations defined by bounding boxes. The API
documentation provides more information on how to
define these criteria.

5. Collecting Twitter data: Run the 'streaming.py'
script to start collecting Twitter data based on your
specified criteria. For the proposed model, you can
use popular keywords like "Delhi" and "India" to
collect tweets related to those topics (note that
keywords are case-insensitive).

By following these steps, you can utilize tweepy and the 
Streaming API to efficiently collect and process Twitter data 
for various research or analysis purposes. The collected data 
can be used for sentiment analysis, trend detection, social 
network analysis, and more, based on the criteria defined in 
the 'streaming.py' script. 

4. Performance Evaluation

The proposed FSMR layer is deployed on an HP Z840 
workstation.  In the setup, 80 cores are utilized for the NN, 
which is responsible for managing the HDFS and 
orchestrating the overall data processing. Additionally, 160 
cores are allocated for the DN, which handle the actual data 
processing and computation tasks across the Hadoop cluster. 
This multi-node Hadoop environment enables efficient and 
distributed processing of large datasets, ensuring parallel and 
scalable execution of the FSMR layer. The distribution of 
cores among the NN and DN allows for optimal utilization of 
resources, maximizing the performance and processing 
capabilities of the entire system. 

With this setup, the FSMR layer can handle BD streams, 
providing P & S while performing encryption and decryption 

operations. The utilization of multiple workstations and cores 
enables faster data processing and enhances the overall 
performance of the proposed system. Researchers can 
perform experiments, data analysis, and data mining tasks 
effectively on this platform, gaining insights and knowledge 
from large datasets with improved efficiency and security. 

In the proposed FSMR model, the process begins with the 
input. During the encryption process, the HybrEx model 
implements vertical partitioning. Hadoop mechanism is used 
to divide the entire file into small chunks, which are then 
distributed to multiple mapper phases. In every mapper, each 
word undergoes encryption using specific randomization 
logic. After encryption, the encrypted results are stored in a 
file, alongside the mapper ID corresponding to the respective 
MT on the slave node. The RT plays a critical role in 
aggregating the outcome from all mapper. It generates the 
final EF as the output, which is subsequently transmitted to 
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the cloud. When accessing this data from the cloud will only 
receive encrypted answers when querying the data. Only 
individuals possessing the Dk will be able to access the 
original data and obtain the required outputs. 

During the decryption process, when the Dk is provided, the 
EF is sent to the MN. The Hadoop mechanism once again 
partitions the entire file into smaller chunks, which are 
distributed to multiple MT. Within each mapper, every word 
is decrypted using the specified logic of randomization. 
Additionally, a hash map is created according to the mapper 
ID, effectively grouping all the sentences belonging to that 
specific mapper. The reducer task plays its final role, writing 
the entire hash map in order to a file, effectively generating 
the decrypted file, which is identical to the original file. This 
decryption process ensures that the P & S of the data are 
maintained throughout the MapReduce process. 

It's essential to note that the security of the FSMR model 
heavily relies on the effectiveness of the encryption and 
decryption mechanisms, along with the randomness 
employed during the encryption and decryption processes. 
The proposed model provides a secure way to handle 
sensitive data in distributed environments while preserving 
the privacy of the data and only allowing authorized users 
with the decryption key to access the original data. However, 
the implementation of the encryption and randomization logic 
must be robust to ensure the overall security of the system. 

Following are some measuring metrics for the FSMR 
1. Running time: The running time is measured in

terms of the wall-clock time (milliseconds). This
provides an understanding of the overall scalability
and efficiency of the proposed method.

2. CPU utilization: The proposed architecture aims to
boost CPU utilization.

3. Memory usage: The proposed method efficiently
utilizes memory space when handling extensive data
sets, employing suitable data structures to occupy
minimal memory

4. Information loss: Privacy-preserving techniques
can result in the degradation of data quality.
Information loss, also known as the functionality
loss metric, is used to measure the amount of
information lost due to encryption. The proposed
method aims to minimize information loss by
carefully selecting encryption techniques and data
structures.

The performance measures help evaluate the efficiency and 
effectiveness of the proposed FSMR model in providing 
privacy and security while processing large data sets in a 
distributed environment. 

Figure 3 demonstrates that the parallel execution of FSMR 
layer tasks significantly reduces the overall execution time as 
the number of cores increases from 40 to 160. This 
improvement in execution time occurs because multiple 
nodes are simultaneously processing the data, leading to 
better parallelism and faster data processing. The FSMR layer 
approach is designed to handle large-scale data efficiently. As 
the data size increases, the time difference in execution gets 
minimized, thanks to the lightweight encryption techniques 
utilized in the FSMR layer. This allows the system to 
leverage the benefits of BD, where the execution time does 
not proportionally increase with the increase in data size. By 
employing lightweight encryption and taking advantage of 
the distributed architecture, the FSMR layer effectively 
resolves scalability issues related to privacy and security in 
handling large volumes of data. The graph provides valuable 
insights into the performance improvements achieved by the 
proposed approach, highlighting its potential in processing 
BD securely and efficiently. 

Table 3: FSMR Running Time with respect to Number of Cores and Records 

S. N. Number of Cores Number of Records Running Time (ms * 106) 

1. 80 1000000 0.75 

2. 80 10000000 3.32 

3. 80 100000000 13.98 

4. 100 1000000 0.71 

5. 100 10000000 3.11 
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6. 100 100000000 13.19 

7. 120 1000000 0.68 

8. 120 10000000 2.57 

9. 120 100000000 12.86 

10. 140 1000000 0.63 

11. 140 10000000 2.26 

12. 140 100000000 12.41 

13. 160 1000000 0.61 

14. 160 10000000 2.08 

15. 160 100000000 12.17 

Figure 3: FSMR Running Time with respect to Number of Cores and Records 
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Table 4: Running time comparison of [26], [27], and FSMR 

Data Size  
(Number of Records) 

Time in ms with respect to data size 
[26] [27] FSMR 

1000000 0.53 0.86 0.62 
10000000 -- 5 2.09 

100000000 -- 56 12.19 

Table 5: presents a comparison of the running times. 

Algorithm Data Size Running Time (in seconds) 
[26] < 10 M Longer than FSMR 
[27] < 10 M Longer than FSMR 

FSMR < 10 M Shorter than [26] and [27] 
FSMR > 10 M Optimized time compared to [26] and [27] 

From Tables 4 & 5, it can be observed that both [26] and [27] 
algorithms take much more time than the proposed FSMR  

layer for data sets with a size of less than 10 million records. 
The FSMR algorithm outperforms both [26] and [27] in terms 
of running time for smaller data sets, providing faster 
execution. The gap between the running times of the FSMR 
algorithm and the existing algorithms ([26] and [27]) 
becomes less significant as the data set size increases (> 10 
million records). However, the FSMR algorithm still 
maintains an optimized time compared to [26] and [27] for 
larger data sets. 

One of the major drawbacks of [26] is its lack of support for 
parallel processing across multiple machines, which limits its 
scalability. On the other hand, the proposed FSMR layer 
utilizes the Hadoop framework for parallel and distributed 
processing, enabling efficient scalability for large data sets. 
In summary, the proposed FSMR algorithm offers improved 
running times compared to [26] and [27], especially for large 
data sets, and addresses the scalability issues faced by 
Mondrian due to its lack of parallel processing capabilities. 
The FSMR algorithm demonstrates its effectiveness in 
implementing security algorithms and providing faster 
execution for anonymization tasks. 
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Figure 4: CPU and Memory usage in FSMR 

Figure 4 illustrates the CPU utilization of the FSMR 
algorithm in a multi-cluster environment, where four HP 
Z840 workstations with 64-bit i3 processors are used. The 
range of CPU utilization observed during the execution of 
FSMR is between 2% and 57.9%. Additionally, the memory 
usage during the running of the FSMR algorithm is found to 
be 28.4%. Moreover, the swap usage is reported to be 0%, 
indicating that the system did not need to use virtual memory.  

These results demonstrate that the FSMR layer approach is 
highly suitable for BD processing. The low CPU utilization 
indicates that the algorithm efficiently utilizes the available 
processing power, leading to optimal performance.  

Furthermore, the moderate memory usage shows that the 
algorithm effectively manages memory resources, allowing it 
to handle large data sets without significant overhead. 
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Figure 5: Comparative Analysis of Information Loss 

The concept of k-anonymity is essential for ensuring data 
privacy in released datasets 

Fig. 5 illustrates the information loss in traditional 
methods and the FSMR. In the case of MRA, the information 
loss is around 40%. This means that a significant amount of 
data is lost during the anonymization process, impacting the 
utility of the dataset. However, the new proposed FSMR 
layer demonstrates a significant improvement in terms of 
information loss, reducing it to only 5% when using a dataset 
size of 100 million records. This drastic reduction in 
information loss indicates that the FSMR layer approach 
preserves more of the original data, maintaining a higher 
level of utility in the released dataset. By achieving a lower 
information loss, the FSMR layer approach strikes a better 
privacy-utility tradeoff. It enhances privacy by reducing the 
risk of individual identification in the released dataset while 
maintaining the data's usefulness for data mining and analysis 
purposes. 

5. Conclusion and Future Work

This paper presents a comprehensive approach to address the 
P & S challenges of BD. The FSMR model is introduced as a 
methodology to safeguard sensitive information in BD while 
also ensuring privacy. The key strength of the FSMR model 

lies in its LWEA, which leverages randomization and 
perturbation techniques to maintain security and data 
integrity. The experimental results demonstrate that the 
proposed FSMR model outperforms existing anonymization 
methods in terms of implementation time for security 
algorithms. It is a clear advantage for BD applications as it 
provides enhanced privacy and security. An interesting 
finding from the experimental results is that the running time 
difference in the FSMR model significantly reduces with 
increasing data size. This indicates that the FSMR model 
effectively resolves scalability issues associated with privacy 
in BD processing. The analysis of CPU utilization, Storage 
usage, and Information loss further confirms the optimized 
performance of the FSMR layers. Additionally, the FSMR 
model successfully maintains the privacy-utility tradeoff for 
data miners, ensuring that the released data remains valuable 
for analytical purposes while still protecting individual 
privacy. In the future, further research can be directed 
towards real-time privacy and security solutions for the 
growing volume of real-time generated BD. Addressing real-
time privacy challenges will be crucial in meeting the 
demands of modern data-intensive applications and ensuring 
the safe and responsible use of BD in various domains. 
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