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Abstract 
Bearing elements are widely used in rotating machines and their failure results in a considerable amount of downtime of the 
machines. The aim of this work is to classify defects in a bearing. Three types of classification have been done: (i) Binary 
classification: classification as non-defective or defective bearing, (ii) 3-class classification such as non-defective, defective 
with inner ring defect and defective with roller defect and finally (iii) 7-class classification corresponding to no defect 
condition, three ring defect conditions pertaining to indentations of three different sizes on the inner ring and three roller 
defect conditions corresponding to indentations of three different sizes on the roller. The open-access data generated using a 
rolling bearing test rig from the Politecnico Di Torino, Italy, has been used for this work. The data had been obtained using 2 
accelerometers on two bearing housings for multiple load and speed combinations. For classification, in the present work, 
classical ML algorithms such as logistic regression (LR), K-Nearest Neighbour (K-NN) classification algorithm, random 
forest (RF), support vector classifier (SVC) and kernel support vector machine (KSVM) have been used. All these techniques 
gave very promising results, the classification accuracy varying from 0.7969 to 0.9996 for all speed-load conditions. Such 
classification work across multiple operational conditions, with multiple fault conditions and multiple signatures with faulty 
components, has not been reported. 
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1. Introduction

In the last few decades, considerable progress has been 
made in the field of bearing fault diagnosis using vibration 
signals [1-5]. The use of sophisticated signal processing 
techniques like neural networks, discrete wavelet transform, 
spectral kurtosis, statistical methods, spectral methods, etc. 
was tried out by many researchers [6-9]. A good tutorial on 
rolling element bearing diagnostics has been presented by 
Randall et al. [10]. Singh et al. [11] have given a 
comprehensive review of the vibration modelling of 
rolling element bearings with defects. References [12-
15] describe fault diagnosis of rolling bearings using
specialized techniques like the K-NN algorithm,
enhanced kurtogram, empirical mode decomposition,

principal component analysis and spectrogram. A good 
review of signal processing techniques used for 
bearing fault diagnostics including fast Fourier 
transform [FFT] algorithms has been presented in 
references [16] and [17]. Li et al. have presented the 
application of ensemble empirical mode decomposition 
(EEMD) and improved frequency band entropy in bearing 
fault feature extraction [18]. ML-based fault diagnosis has 
been discussed in references [19-20]. Early researchers 
looked at defect frequencies in the spectrum such as inner 
race defect frequency, outer race defect frequency, cage 
rotational frequency and ball or roller spin frequency. Later 
on, descriptors used in literature were based on statistical 
values like root mean square value, crest factor, kurtosis, 
probability density function, auto-correlation and cross-
correlation functions, auto-spectral and cross-spectral 
density functions, transfer and coherence functions. Besides, 
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researchers have tried to obtain descriptors from time 
synchronous averaging, cyclic spectral analysis, cepstrum 
analysis, envelope analysis, spectral kurtosis, higher order 
spectral analysis, time-frequency analysis, spectrograms, 
spectral entropy, energy indicators, etc. They have also tried 
out feature extraction based on wavelet transforms, wavelet 
packet decomposition, neural networks and hidden Markov 
methods to name a few. Though these procedures are 
effective, they generally have to be custom-made for each 
machine, relying on human effort for the interpretation of 
the results. Also, they tend to be computationally expensive 
and difficult for real-time implementation. Hence in the 
present paper, five different ML algorithms have been tried 
out for rolling element and inner ring defects and the 
classification proves to be very promising.  

2. Test Rig and Procedure

The present work makes use of the open access data [21] 
generated using a rolling bearing test rig by Politecnico Di 
Torino, Italy. The test rig had been set up at the Dynamic 
and Identification Research Group (DIRG) Laboratory in the 
Department of Mechanical and Aerospace Engineering for 
studying faults in high-speed aeronautical bearings. 

2.1. Test rig 

The test rig (Fig. 1) basically consisted of a high-speed 
spindle driving a shaft which had three appropriately 
lubricated roller bearings, specifically fabricated for this test 
[21]. The spindle speed was controlled through the control 
panel of an inverter. The body of the spindle was fixed to an 
extremely rigid support resting on a highly massive steel 
base plate which had a couple of supports for the outer rings 
of two identical roller bearings. The inner rings of these 
bearings were connected to a very short and thick hollow 
shaft, which was designed to run at speeds up to 35000 
revolutions per minute (RPM). Provision had been made for 
the application of a load through a third and larger roller 
bearing at the centre of the shaft and the load was measured 
using a load cell. Triaxial accelerometers were fixed on the 
supports of the bearings and the electric spindle to measure 
accelerations. They were fixed at the two most significant 
locations on the structure, A1 and A2 (Fig. 1), located on the 
support of the damaged bearing under test, B1, and the 
support of the larger bearing used for the application of the 
external load, B2, respectively. The tests were done at 
variable rotational speeds, radial loads and different levels 
of bearing damage, along with temperature measurements. 
Table 1 gives the geometry of the roller bearings. 

Data acquisition had been done [21] using an OR38 
signal analyser and with analogue-to-digital converter 
having a 24-bit delta-sigma converter with synchronous 
acquisition (without multiplexing) from all channels. Every 
channel was set to a maximum of +/- 40 V. Six channels 
were recorded corresponding to the outputs of the two 
triaxial accelerometers placed on the two test bearings in the 
axial (X), radial (X) and radial (Y) directions as shown in 

Table 2. The accelerations were measured for different 
stages of defect, at different speeds and under different 
loads. The time histories of the six channels mentioned in 
Table 2 were acquired with a sampling frequency of 51.2 
kHz for a duration of 10 s for each test condition.  

Figure 1. Test rig [21] 

Table 1. Geometry of the roller bearings [21] 

Bearing Pitch 
diameter 
D (mm) 

Roller 
diameter 
d (mm) 

Contact 
angle φ 
(°) 

No. of 
rolling 
elements 
(N) 

B1 & B3 40.5 9.0 0 10 
B2 54.0 8.0 0 16 

Table 2. Direction of the measured accelerations 
(Refer Fig. 1) [21] 

Channel 
1 

Channel 
2 

Channel 
3 

Channel 
4 

Channel 
5 

Channel 
6 

Location A1 Location A2 
Axial, 
X 

Radial, 
Y 

Radial, 
Z 

Axial, 
X 

Radial, 
Y 

Radial, 
Z 

2.2. Test procedure 

Every bearing was subjected to the same testing procedure 
for the different defect conditions [21]. The entire test took 
about 30 minutes. Due to the limited power of the inverter, 
the higher speeds could not be reached at the higher loading 
conditions. Localised conical indentations were created on 
the inner ring or on a single roller using a Rockwell tool, 
resulting in circular areas of sizes shown in Table 3 (defect 
conditions 0A to 6A). Table 4 gives the list of the speed-
load combinations. There was a total of 4 load and 6 speed 
combinations. Data were not obtained for 3 load-speed 
combinations due to limitations in the inverter. Also, data 
were obtained from 2 accelerometers for 7 defect conditions. 
The test procedure was as follows. 

(i) A short run at the minimum speed of 6000 RPM (100
Hz) at no load, to check the mounting arrangements.

(ii) Application of the static load in stages: 1000 N, then
1400 N and finally 1800 N.
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(iii) Increase in the speed of the shaft from 0 RPM to 30000
RPM in steps of 6000 RPM.

(iv) Measurement of the accelerations at steady speeds of
the shaft.

Table 3. Defect conditions [21] 

Defect label Defect location Defect diameter 
0A No defect 
1A Inner ring 450 µm 
2A Inner ring 250 µm 
3A Inner ring 150 µm 
4A Roller 450 µm 
5A Roller 250 µm 
6A Roller 150 µm 

 Table 4. Load and speed conditions for test [21] 

Nominal load (N) Nominal speed (RPM) 
0 6000 12000 18000 24000 30000 
1000 6000 12000 18000 24000 30000 
1400 6000 12000 18000 24000 -------- 
1800 6000 12000 18000 -------- -------- 

The datasets had been used to assess and compare the 
performance of different diagnostic algorithms [21]. 
Statistical tools like analysis of variance (ANOVA) had 
been applied to statistical features and linear discriminant 
analysis (LDA) had been carried out to see if the data were 
classifiable in a multi-dimensional space. Besides, an outlier 
analysis based on Mahalanobis distance had been 
formulated to distinguish between defective and non-
defective states for various temperatures, speeds and loads.  

3. Bearing Fault Classification

A faulty roller hits the outer race while rolling and produces 
a series of impulses, whose repetitive rate can be found 
solely from the geometry of the bearing if the rotational 
speed is constant. However, often, the faulty bearing 
frequencies are obscured in the spectra due to vibrations 
from other rotating parts. Many studies are reported on 
signal processing techniques for diagnostics and 
prognostics. The most commonly used methods are those 
based on statistical, spectral and probabilistic descriptors. In 
the present work, ML techniques have been used for defect 
classification. Each individual time series record of 10 s is 
broken down into 200 equally sized, contiguous sub-records, 
so as to artificially increase the number of sub-records 
available for analysis. The data points in each sub-record are 
further subsampled to select every third data point. Both 
these operations help reduce the computational effort and 
enable understanding of the volume of data needed to 
actually make the decisions for the defective and non-
defective bearings. The features for these datasets are 
obtained using Time Series FeatuRe Extraction on basis of 

Scalable Hypothesis tests (tsfresh) [23] with the relevant 
labels (binary or 3-class or 7-class) as the target. Tsfresh 
is an open-source Python package used for systematic 
feature extraction and feature selection. The number of 
features generated is ranked using an RF estimator [24] so 
as to select the most important features. Finally, five 
statistical models are trained using the datasets, the models 
being (i) LR, (ii) K-NN, (iii) RF, (iv) SVC and (v) KSVM. 
All five algorithms use the most important features extracted 
from the data using tsfresh and the RF estimator. 

3.1. LR algorithm 

LR is a supervised ML algorithm used for binary (can be 
extended to more) classification problems. LR, in spite of its 
name, is used more for classification. LR does not require a 
linear relationship between input and output variables 
because it takes a linear combination of input features and 
applies to them a nonlinear sigmoidal function. This method 
is used to map the input data to an output which has a 
probability between 0 and 1. The output represents the 
probability that the classification of the input data is 0 or 1 
for binary classification. This algorithm has been extended 
for 3-class and 7-class classifications in the present work. 

3.2. K-NN algorithm 

This is one of the simplest and best-known classification 
algorithms. It is non-parametric in the sense that no 
assumptions are made regarding the underlying data. Known 
data are arranged in a space defined by the selected features. 
During the training process, this algorithm does not learn 
from the training set immediately but stores it instead. When 
a new dataset is presented, the algorithm transforms the data 
points into feature vectors or their mathematical values. The 
algorithm then compares it with the classes of the K closest 
classified data to assess the category of the new data. For 
this, it finds the Euclidean distance between the mathematical 
values of the new and the known data points. It then 
computes the probability of these new points being similar to 
the known data. Classification is done based on which points 
share the highest probabilities. The major advantage of the 
K-NN classifier is its simplicity and efficiency. However, it
has the drawback that computation times can be long with
large databases. Besides, finding the number of neighbours
(K) to be used requires trial and error.

3.3. RF algorithm 

RF, like LR, is a supervised ML algorithm used for 
classification, with labels for and mappings between inputs 
and outputs. The RF has multiple decision trees, each of 
which splits the data into smaller data sets based on the 
features of the data. When performing a classification task, 
each tree does a classification. The decision trees keep 
splitting the data into smaller data sets iteratively until a 
small set of data under a single classification is arrived at. 
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Once all the trees have done their classifications, the RF 
finds out which class has the largest number of votes and 
outputs it as a prediction. Because the RF utilizes the results 
of multiple decision trees, it is considered to be an ensemble 
ML algorithm. Many of the RF algorithms use 
bootstrapping, meaning that instead of training with the 
complete data set, each tree of the RF is trained with a 
subset of the complete data set, often called the bag. 
Multiple trees are trained using different bags, and later the 
results from all the trees are combined. So, it is quite 
possible that there are repetitions in the data that make it to a 
bag. Thus, the addition of a small number of extra training 
data can dramatically improve the prediction performance of 
a learned tree, though the training data do not change to any 
great extent. Such algorithms reduce the variance and the 
chance of overfitting. For classification, the decision is made 
based on “information gain”, a measure of how much 
information is gained from a data set. 

3.4. SVC Principle 

A support vector machine (SVM) is again a supervised ML 
algorithm which can be used for both regression and 
classification. When used for classification, it is called an 
SVC and when used for regression, it is called a support 
vector regression (SVR) machine. The aim of an SVC is to 
find a hyperplane that maximally separates the two sets of 
data points present in the data set, the points being linearly 
separable, meaning the two classes can be separated by a 
straight line. In SVC, this line is determined by 
the margins and the support vectors. The margin denotes 
the area separating the two lines. The larger the margin, 
the better the classification. By support vectors are meant 
the data points through which each of the lines passes. 
These support vectors are nothing but the data points lying 
closest to the border of any one of the classes. Given 
labelled training data, the SVC outputs an optimal 
hyperplane which classifies new data into different classes. 
This hyperplane is then used to make predictions on new 
data points. The SVC is also called a maximum margin 
classifier since it finds the hyperplane with the largest 
distance to the nearest training data points of any class. 

3.5. KSVM algorithm 

KSVM allows the classification of data points which are not 
linearly separable. For such data, SVM supports the kernel 
method which allows one to implicitly map the input 
points into a high-dimensional feature space and then 
perform a non-linear classification. For this, one uses a 
complex mathematical mapping function that maps the 
lower-dimensional data points into a higher-dimensional 
space where they become linearly separable. This is a very 
powerful transformation. Then one finds a hyperplane that 
classifies the data points into two distinctive classes. 
Subsequently, the data points will be projected back to the 

initial lower-dimensional space using another function. In 
SVM, this is called the kernel method. The kernel 
function gives the similarity between the points in the 
original lower-dimensional feature space and the points in 
the newly transformed feature space. Many kernel 
functions like the Gaussian radial basis function (RBF), 
polynomial kernel, sigmoid kernel, etc. are used. A very 
interesting fact is that an SVM does not actually perform 
this transformation on the data points to the new high-
dimensional feature space; rather the KSVM internally 
computes these complex transformations just in terms of 
similarity calculations between pairs of points in the 
original lower-dimensional feature space and the 
transformed feature space. This similarity function, which 
is a kind of complex dot product is actually the kernel of a 
KSVM. Though KSVM performs very well on a wide 
range of datasets, efficiency in terms of computer 
processor time and memory usage decreases as the size of 
the training set increases. Besides, it does not provide a 
direct probability estimator and it is difficult to interpret 
why a prediction was made. 

3.6. Performance metrics for ML classifiers 

The most commonly used performance metrics for ML 
classifiers are: (i) accuracy, (ii) precision, (iii) recall, (iv) F1 
score and (v) receiving operator characteristic-area under the 
curve (ROC-AUC) metric. These performance metrics are 
defined as follows. 

 Accuracy is the simplest metric and is defined as 
the number of correct predictions divided by the total 
number of predictions. Accuracy lies between 0 and 1, with a 
value of 1 indicating a perfect model. 

Here TP = true positive, TN = true negative, FP = false 
positive and FN = false negative. 
 Precision is a measure of how good a model is at correctly 
identifying the positive class. In other words, out of all 
predictions for the positive class, it identifies how many were 
actually correct and lies between 0 and 1. A precision score 
close to 1 signifies that the model did not miss any true 
positives and is able to classify well between correct and 
incorrect labelling of say, a fraud. Using this metric alone for 
optimising a model would lead to minimising the false 
positives. This might be desirable for say a fraud detection 
case, but would be less useful for say, diagnosing cancer, as 
one would have little understanding of the positive 
observations that are missed. 
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    Recall gives an indication of how good the model is at 
correctly predicting all the positive observations in the 
dataset. However, it does not give any information about the 
false positives. A recall value close to 1 implies that the 
model did not miss any true positives and is able to classify 
well between correctly and incorrectly labelling cancer 
patients, say. The recall is also a number less than 1. 
Usually, precision and recall are observed together by 
constructing a precision-recall curve. This can help to 
visualise the trade-offs between the two metrics at different 
thresholds. 

 F1 score is defined as the harmonic mean of precision and 
recall and gives a number between 0 and 1. If the F1 score is 
1, it indicates perfect precision and recall; if, however, the F1 
score is 0, it means that either the precision or the recall is 0. 

    ROC-AUC is an evaluation metric for a binary 
classification problem at various threshold settings. An ROC 
curve is a graph showing two parameters: true positive rate 
(TPR) or recall and false positive rate (FPR) defined as 
FP/(TN+FP). AUC is a measure of separability. It is the area 
under the ROC curve with TPR on the Y-axis and FPR on 
the X-axis at various threshold values and 
essentially separates the ‘signal’ from the ‘noise’. 
The AUC is a measure of the ability of a classifier to 
distinguish between classes. The larger the AUC, the better 
the performance of the model is in separating the positive 
and negative classes. 

4. Results and Discussion

The classification was done using the five ML techniques 
namely LR, K-NN, RF, SVC and KSVM described in 
Sections 3.1. to 3.5. The input features for these were 
extracted using tsfresh as described in Section 3. The 
training was done across the complete acceleration data sets 
from both the accelerometers in X, Y and Z directions, 
details of which are given in Table 2, for all defect 
conditions given in Table 3 and for all combinations of 
loads and speeds given in Table 4. 70% of the data was used 
for training and 30% for testing, without any overlap 
between training and testing data. Results are shown in 
terms of distribution plots for binary, 3-class and 7-class 
classifiers. The distributions of the top 8 most important 
features are plotted. In the case of multi-defect 
classification, classification metrics and confusion matrices 
are obtained for the different classification techniques. 

 To visualise the results, a simple multi-layer perceptron 
(MLP) as shown in Fig. 2 is trained to predict the class, 
given a time series. An MLP is a type of artificial neural 

network that has multiple layers of interconnected nodes 
between input and output layers. The input layer receives 
the input data, the hidden layers process the data using 
activation functions, and the output layer produces the 
model's prediction. An MLP can model complex non-linear 
relationships between inputs and outputs and can be used for 
various tasks such as regression, classification and 
dimensionality reduction. The test portion of the dataset is 
encoded, and the results are visualized in 2 dimensions (to 
understand how the results can be classified). In Fig. 2(a) 
and 2(b), both f1 and f2 in Hidden layer 3 are nonlinear 
combinations of the top 128 most important features. 

4.1 Results from binary classification 

Figure 3(a) shows the scatter in the 2 most important 
features with binary classification. In Fig. 3(b) f1 and f2 are 
obtained from Hidden layer 3 of the MLP; each one is a 
nonlinear combination of the top 128 most important 
features. It can be seen that there is a clear demarcation 
between the two groups. Table 5 shows the performance of 
the 5 ML techniques in binary classification. Both KSVM 
and K-NN were able to achieve near-perfect classification 
with F1 scores of 0.9997 (P = 1.000, R=0.9994) and 0.9986 
(P = 0.9987, R = 0.9985) respectively. Given the class 
imbalance, the F1 score, and ROC-AUC are leveraged over 
accuracy.  

(a) Binary classification

(b) Multi-class classification

Figure 2. MLP configurations 
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(a) 2 most important features

(b) Samples in the plane of f1 and f2

Figure 3. Scatter plot for binary classification (Note: 
0-Non-defective; 1-defective)

Table 5. Binary classification performance 

ML 
classifier Accuracy Precision Recall F1 

ROC-
AUC 

LR 0.9628 0.9975 0.9592 0.9779 0.9722 
K-NN 0.9976 0.9987 0.9985 0.9986 0.9953 
RF 0.9277 1 0.9157 0.9560 0.9578 
SVC 0.9671 0.9971 0.9644 0.9805 0.9739 
KSVM 0.9994 1 0.9994 0.9997 0.9997 

Figure 4 shows the histograms for the top 8 descriptors 
with binary classification. They are seen to overlap for 0-
non-defective and 1-defective cases. They are essentially 
statistical quantities like mean, sum, autoregression and 
continuous wavelet transform coefficients, kurtosis, 
autocorrelation lag, etc. which researchers in literature 
have earlier intuitively tried to capture without using ML 
techniques.  

Figure 4. Histograms of top 8 descriptors: binary 
classification 

Note: 0-Non-defective; 1-defective 

4.2 Results from 3-class classification 

Figure 5(a) shows the scatter in the two most important 
features with 3-class classification. Figure 5(b) shows the 
samples in the f1 - f2  plane. Table 6 shows the 
performance of the 5 ML techniques in 3-class 
classification. KSVM and K-NN were able to achieve 
near-perfect results with accuracy scores of 0.9993 and 
0.9926 respectively. Figures 6 (a-c) show the confusion 
matrices for LR, RF and KSVM classifications 
respectively. It can be seen that the values of the diagonal 
elements of the matrices are large, showing good 
classification. Figure 7 shows the histograms with 3-class 
classification. It is seen that the histograms for the 3 
classes overlap as before. Most of the top 8 features for 3-
class classification are the same as for binary 
classification. They are essentially statistical quantities 
like mean, sum, autoregression, continuous wavelet 
transform coefficients, kurtosis, autocorrelation lag, etc. 
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(a) 2 most important features

(b) Samples in the plane of  f1 and f2

Figure 5. Scatter plot for 3-class classification 

Table 6. Performance of 3-class classifiers 

Name of ML classifier Accuracy 
LR 0.7969 
K-NN 0.9926 
RF 0.9162 
SVC 0.8195 
KSVM 0.9993 

(a) LR

(b) RF

(c) KSVM
Figure 6. Confusion matrices for 3-class classifiers 

Figure 7. Histograms of top 8 descriptors: 3-class 
classification 
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4.3 Results from 7-class classification 

Figure 8(a) shows the scatter in the classes with 7-class 
classification as defined in Table 3. In Fig. 8(b), the 
scatter in f1 and f2 are depicted in the plane of f1 and f2. 
Table 7 shows the performance of the 5 ML techniques in 
7-class classification. KSVM and K-NN showed very 
good classification with accuracy scores of 0.9995 and 
0.9955 respectively. Figures 9 (a-c) show the confusion 
matrices for LR, RF and KSVM respectively. It can be 
seen that the values of the diagonal elements of all 
confusion matrices are very large, showing extremely 
good classification, even better than for 3-class 
classification. Figure 10 shows the histograms with 7-
class classification. It can be seen that most of the top 8 
features for 7-class, binary and 3-class classifications are 
the same.

(a) 2 most important features

(b) Samples in the plane of f1 and f2

Fig. 8. Scatter plot for 7-class classification 

Table 7. Performance of 7-class classifier 

Name of ML classifier Accuracy 
LR 0.9616 
K-NN 0.9955 
RF 0.9258 
SVC 0.9807 
KSVM 0.9996 

(a) LR

(b) RF

(c) KSVM

Figure 9. Confusion matrices for 7-class classifier 
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4.4 Comparison with Results from 
Polytecnico di Torino classification 

Using the data generated using the rolling bearing test rig, 
researchers from the Politecnico Di Torino had also 
arrived at confusion matrices as shown in Fig. 11. For 
this, they had used Fisher’s linear discriminant analysis 
(LDA), a simple multivariate classification tool to find 
linear combinations of features that characterize or 
separate two or more classes of objects. LDA is also used 
for dimensionality reduction; it is often used for feature 
extraction in pattern classification problems. LDA 
projects data from a D-dimensional feature space down to 
a D’ (D>D’) dimensional space in such a way as to 
maximize the variability between the classes and reduce 
the variability within the classes. As seen from Fig. 11, 
their LDA classification was not as good as the 
classification obtained in the present study shown in Figs. 
6 and 9, proving that the ML algorithms used in the 
present study give very good classification. 

Figure 10. Histograms of top 8 descriptors: 7-class 
classification 

Figure 11. LDA confusion matrices (%) [21] 

5. Conclusions and Future Scope

This work has studied the classification of bearing defects 
for three classes of defects: 2, 3 and 7 over different load 
and speed conditions. The conclusions are as follows. 

(a) Promising classification results were obtained
regardless of whether the problem was considered as one 
of (i) binary classification with defective and non-
defective bearings or (ii) 3-class classification considering 
a non-defective bearing, one with inner ring defect and 
one with roller defect or (iii) 7-class classification 
considering non-defective bearing, defective bearing with 
inner ring defects with indentations of 3 different 
diameters and roller defects with indentations of 3 
different diameters. 

(b) Considering binary classification, both KSVM and
K-NN were able to achieve near-perfect classification
results with F1 scores of 0.9997 (P = 1.000, R=0.9994)
and 0.9986 (P = 0.9987, R = 0.9985) respectively.

(c) Considering 3-class classification with no defect,
defective ring and defective roller, again KSVM and K-
NN were able to achieve near-perfect classification with 
accuracy scores of 0.9993 and 0.9925 respectively. 
(d) With 7-class classification, KSVM and K-NN were

able to deliver accuracy scores of 0.9995 and 0.9955
respectively.
(e) In all cases, the most important descriptors of fault

are essentially statistical quantities like mean, sum,
autoregression and continuous wavelet transform
coefficients, kurtosis, autocorrelation lag, etc.

 The current work can be extended to detect faults that 
evolve in bearings naturally as they degenerate. 
Acceleration values could be sensed during various stages 
of their operational life and the data could be fed to the 
ML algorithms. These faults could also be obtained 
through accelerated tests. It is to be seen how the ML-
based techniques described in this paper for man-made 
indentations work for naturally evolving degradation. 
Unsupervised ML techniques could also be tried.   
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	Accuracy is the simplest metric and is defined as the number of correct predictions divided by the total number of predictions. Accuracy lies between 0 and 1, with a value of 1 indicating a perfect model.
	Here TP = true positive, TN = true negative, FP = false positive and FN = false negative.
	Precision is a measure of how good a model is at correctly identifying the positive class. In other words, out of all predictions for the positive class, it identifies how many were actually correct and lies between 0 and 1. A precision score close ...



