
EAI Endorsed Transactions
on Scalable Information System Research Article

1

Design of efficient Programming Language with Lexer
using ’$’-prefixed identifier
Priya Gupta1, L S Yaswanth Kumar2, J V V M S D Santosh2, D Yashwanth Kumar2, Chokkari Dinesh2,
Mukkoti Maruthi Venkata Chalapathi3, *

1 Atal Bihari Vajpayee School of Management and Entrepreneurship, Jawaharlal Nehru University, New Dehli, India
2 School of Engineering, Jawaharlal Nehru University, New Delhi, India
3 School of Computer Science and Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India

Abstract
An identifier which starts with ‘$‘is known as ‘$‘-prefixed identifier and this type of identifiers are used in our research paper
to improve the lexical analysis phase. This paper talks about a new programming language with ‘$‘-prefixed identifier that
features a novel approach for optimizing the lexer for efficient lexical analysis which can be applied to any existing language.
This approach is used to classify identifiers and keywords using ‘$‘-prefixed variables, which significantly reduces
the time taken and number of iterations required during the tokenization process, leading to improved overall performance.
This type of language structure allows for fast lookup and matching of tokens. We conducted a series of experiments to evaluate
the performance of our lexer and compared it with a regular lexer. Our results show that our approach leads to
significant improvements in time complexity and number of iterations for identifying whether the token is an identifier or
a keyword, resulting in faster compilation times and improved overall performance. Our language has reduced the amount of
time taken by 7-10% and 45-50% in terms of iterations. Our language and lexer represent a significant step forward in the
design and implementation of high-performance programming languages by reducing the number of iterations and time taken
to identify whether a token is a keyword or an identifier.

Keywords: Lexer, Tokenization, Time complexity, Iterations, Data structure, Syntax, ‘$‘-prefixed identifiers, Compilation

Received on 24 July 2023, accepted on 08 September 2023, published on 20 September 2023

Copyright © 2023 P. Gupta et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-SA 4.0,
which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original
work is properly cited.

doi: 10.4108/eetsis.3920

*Corresponding author. Email: mmv.chalapthi@vitap.ac.in

1. Introduction

Compilers are essential tools in the field of computer science,
as they allow users to write and execute programs
in high-level programming languages [1]. To translate these
programs into machine code, compilers must be able to
accurately parse and understand the syntax and structure of
the source language [2]. One key aspect of this process is the
use of context-free grammar (CFGs) to define the syntax of
programming languages. CFGs are a formal way of
specifying the syntactic structure of a language, using a set of
rules and symbols to define the allowed sequences of tokens
(such as keywords, variables, and operators) in a program [5].
These grammars can be used to generate parse trees, which
represent the hierarchical structure of a program and can be
used to check its syntax and semantics [8]. In this research

paper, we will delve into the role of CFGs and regular
expressions in compiler design and discuss a novel approach
to improve the performance of Lexer. We will also explore
the challenges and limitations of using this method for a
general-purpose language. We aim to provide a better
understanding of how this approach works and how they can
be used to effectively classify identifiers in any general
programming language. We have introduced a new lexical
analyzer method to reduce the number of iterations while
classifying the identifiers in the source code. Usually a lexical
analyzer takes 25-30% of compilation time to perform lexical
analysis [4]. As the lexical analyzer takes 30% of compilation
time, we need to reduce that in order to decrease the overall
compilation time. We have introduced ‘$‘-prefixed identifiers
in our language so that whenever a ‘$‘is encountered it will
be directly classified as an identifier immediately without
performing a search over the list of keywords.

EAI Endorsed Transactions on
Scalable Information Systems

Volume 11 |Issue 2 |2024

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:mmv.chalapthi@vitap.ac.in

P. Gupta et al.

2

Noam Chomsky [2] made significant contributions to the
field of formal languages and the concept of context-free
grammar (CFGs). His work laid the foundation for the use of
CFGs in compiler design and other areas of computer science.
Chomsky’s work on CFGs has had a significant impact on the
field of compiler design, as they provide a formal way of
specifying the syntactic structure of a language. Many
compiler design techniques and algorithms, such as top-down
and bottom-up parsing, are based on the use of CFGs to
generate parse trees and check the syntax and semantics of
programs [3].

Aho and Ulman in their book have provided a thorough
overview of the use of CFGs in compiler design, including
the various techniques and algorithms that are used to
implement them [2]. The role of CFGs in defining the syntax
of programming languages and the importance of generating
accurate parse trees to check program syntax and semantics.
They have also addressed the challenges and limitations of
using CFGs in compiler design, including issues of ambiguity
and efficiency [8].

Since time and computation power plays a vital role in
construction of compilers for a programming language and
lexical analysis takes almost 30% of the time of the
compilation, we thought of improving the lexical phase of the
compilers using ‘$‘-prefixed compilers.

Organization - Section II talks about Literature Review i.e,
about the previously published works. Section III talks about
Methodology i.e, how the proposed method reduced the
compilation time. Section IV talks about Proposed System i.e,
how the method is supposed to be implemented. Section V
talks about Results i.e, show the significant difference
between the regular lexer and proposed lexer. Section VI talks
about Limitations of the proposed method. Section VII talks
about Advantages of the proposed method. Section VIII talks
about Conclusion of the paper. Section IX talks about Future
Scope i.e, how the proposed work can have significant impact
in certain fields.

2. Literature Review

For improving lexical analysis phase Various tools are used
for automatic generation of tokens and are more suitable
for sequential execution of the process. Recent advances
in multi-core architecture systems have led to the need to
re-engineer the compilation process to integrate the multi-
core architecture through which we obtain parallelization
in the recognition of tokens in multiple cores optimally,
thus reducing compilation time [20], [21]. They have also
improved on handling errors of handling the errors, due to
insertion, deletion, substitution, letter sequencing and typing
in the lexical analysis phase of the compiler [11], [13], [14].

Fuzzy keywords, their fuzzy regular expressions and
minimized fuzzy deterministic automata are constructed.
The issue of membership of fuzzy keywords is successfully

tackled with the help of an algorithm. Full implementation
of fuzzy lexical analyzer is also described. But this just
improves the handling errors for the lexical analysis but
it doesn’t improve the time taken for the lexical analysis
phase of the compiler [12], [15], [16]. Most of the research
done so far deals with the improvement of other phases of
compiler rather than lexical analysis. Very little work is done
on the lexical phase that too on efficient use of multi core
architecture and parallelization of the lexical analysis phase
using the multi-core architecture, but it doesn’t improve the
time complexity for the analysis phase [17], [18],[19].

The construction of compilers for a programming language
requires significant time and computation power. One major
bottleneck is the lexical analysis phase, which typically
accounts for almost 30% of the compilation time. To address
this, $-prefixed identifiers were proposed to improve the
efficiency of lexical analysis. In this paper the authors have
tried working on optimizing the time complexity for lexical
analysis phase and obtained substantial results with a
language having $-prefixed identifiers which will lead to
classification of Identifiers and keywords faster than the
traditional lexer’s.

3. Methodology

Lexical Analyzer accepts the preprocessor’s output, which
is in a pure high-level language and handles file inclusion
and macro expansion, as input. It extracts the text from the
source programme and organizes the characters into lexemes
(groups of characters that “go together”). A token is assigned
to each lexeme. The lexical analyzer can comprehend regular
expressions used to define tokens. It also eliminates
comments, white space, and lexical errors (such as incorrect
letters) [7].

The time complexity of a lexer in general is O(nk),
where n is the length of the input text and k is the number
of keywords in the Language. The regular expression used
to identify the keywords takes O(k) to aim to provide a
better understanding of how these tools work and how
they can be used to effectively parse and understand
programming languages. Lexical Analysis Time to build and
the find all method takes O(n) time to find all the matches in
the input text. Therefore, the overall time complexity is
O(nk).

If we have a language which has ‘$‘-prefixed identifiers
then we can iterate over the input text from the beginning of
a keyword which is ‘$‘to until an arrival of space character or
any character other than {Letter, Digit} and ‘ ‘, Then we can
end the iteration and say that the identifier exists in the buffer.
For example, “VAR $varName = 10” is an input string then
we iterate over the input string and from the arrival of ‘$‘, we
can directly classify the following pattern as Identifier.
Generally, when a pattern matching with can be an identifier
or Keyword. So, when a similar pattern was found then the
lexeme needs to be compared with all the keywords and if not

EAI Endorsed Transactions on
Scalable Information Systems

Online First

Design of efficient Programming Language with Lexer using ‘$’-prefixed identifier

3

found in the keywords list it will be identified as an Identifier
otherwise it will be classified as a Keyword. So, to skip this
additional matching with the keywords we have introduced
‘$‘-prefixed identifiers. When a ‘$‘is encountered then the
following pattern will be classified as an Identifier without
being compared with the keywords. In this way, the
identification of the Identifiers is easily done without using
regular expressions.

Fig:1 explains how a token is classified whether it’s a
keyword or an identifier and Fig:2 explains how our proposed
method decides whether a token is a keyword or an identifier.
This is a significant improvement over a lexer that would
need to iterate over each character of the input text and check
it against a list of keywords, which would have a time
complexity of O(n) and identifying the keywords takes O(k)
time. The use of regular expressions is eliminated by using a
‘$‘-prefix identifiers structure language and following the
above procedure for tokenization.

A. Mathematical Approach

Fig:1 and Algorithm:1 shows us how a lexer of a Normal
Programming language takes decision to classify the
keywords and identifiers which will take NL number of
Iterations.

Algorithm 1 Normal Lexer

Require: Token
if Token in KEYWORDS then

return KeywordToken
else

return IdentifierToken
end if
It takes ’n’ number of iterations to classify identifier and
’n’ Iterations to classify keywords, where ’n’ is number
of keywords in Programming Language.

Algorithm 2 Proposed Lexer

Require: Token
if Token [0] = ’$’ then

return IdentifierToken
else if token in KEYWORDS then

return KeywordToken
end if
It takes 1 iteration to classify identifier and ’n’ iterations
to classify keywords, where ’n’ is number of keywords
in Programming Language

𝑁𝑁𝑁𝑁
= (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐾𝐾𝑁𝑁𝐾𝐾𝐾𝐾𝑜𝑜𝑁𝑁𝐾𝐾𝐾𝐾
+ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜𝑜𝑜𝐾𝐾𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑁𝑁𝑁𝑁𝐾𝐾)
× 𝑇𝑇𝑜𝑜𝑜𝑜𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐾𝐾𝑁𝑁𝐾𝐾𝐾𝐾𝑜𝑜𝑁𝑁𝐾𝐾𝐾𝐾 𝑜𝑜𝑜𝑜𝑇𝑇 𝑃𝑃𝑁𝑁𝑜𝑜𝑃𝑃𝑁𝑁𝑇𝑇𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜𝑃𝑃 𝑁𝑁𝑇𝑇𝑜𝑜𝑃𝑃𝑁𝑁𝑇𝑇𝑃𝑃𝑁𝑁

Whereas Fig:2 and Algorithm:2 us how our concept of lexing
will classify the keywords and identifiers which will take PL
number of Iterations.

𝑃𝑃𝑁𝑁
= (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐾𝐾𝑁𝑁𝐾𝐾𝐾𝐾𝑜𝑜𝑁𝑁𝐾𝐾𝐾𝐾
× 𝑇𝑇𝑜𝑜𝑜𝑜𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜 𝐾𝐾𝑁𝑁𝐾𝐾𝐾𝐾𝑜𝑜𝑁𝑁𝐾𝐾𝐾𝐾 𝑜𝑜𝑜𝑜 𝑇𝑇 𝑃𝑃𝑁𝑁𝑜𝑜𝑃𝑃𝑁𝑁𝑇𝑇𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜𝑃𝑃 𝑁𝑁𝑇𝑇𝑜𝑜𝑃𝑃𝑁𝑁𝑇𝑇𝑃𝑃𝑁𝑁)
+ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑜𝑜𝐾𝐾𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑁𝑁𝑁𝑁𝐾𝐾

Fig. 1. GENERAL LEXICAL ANALYZER

B. Method of Programming

Method of programming is based on how the programming
process is further implemented. Types of methods of
programming used for implementation:

1) Procedural Programming: To improve the modularization
and reusability of code, procedures or blocks of code can be
decomposed into smaller tasks. The entire program is made
up of all the procedures. Each of these operations can be
implemented as a separate process for a calculator program
that performs addition, subtraction, multiplication, division,
square root, and comparison. Each procedure would be called
in the main program based on the user’s selection. This
language would involve defining functions that encapsulate
reusable blocks of code and using them to implement the
desired program logic [9].

EAI Endorsed Transactions on
Scalable Information Systems

Online First

P. Gupta et al.

4

Fig. 2. PROPOSED LEXICAL ANALYZER

2) Functional Programming: Here, the issue or the desired
outcome is divided into workable components. Each unit is
independent and capable of carrying out its own duty. The
entire solution is then created by sewing these sections
together [9].

Fig. 3. FLOWCHART OF A PROGRAMMING
LANGUAGE

4. Proposed System

This Compiler design using a Context-Free Grammar project
helps to create a custom programming language using its own
set of rules and syntax. A Context Free Grammar was
declared, and a compiler was developed to compile a specific
programming language and display the desired output.

Steps in designing the compiler and language:

1) Define the syntax and semantics of the programming
language: This will involve deciding on the structure and
rules of the language, including the types of variables,
operators, and control structures it will support [10].

2) Implement the lexer: To break down the input in a
sequence of tokens by writing code that can match
the various tokens in the language and define functions
to handle the lexing process [6] proposed lexer was
implemented.

3) Implement the parser: The parser is responsible for
generating a parse tree from the input program, using
the rules of the CFG defined in step I. Parsing algorithm,
such as top down or bottom-up parsing, to construct the
parse tree was used [7].

4) Implement the semantic analyzer: The semantic analyzer
is responsible for checking the semantics of the program,
including verifying the types of variables and ensuring that
the program follows the rules of the language [8].

5) Implement the code generator: The code generator is
responsible for translating the parse tree into machine-
code that can be executed by the computer [2].

6) Test and debug your compiler: Once the various
components of the compiler are implemented, it will be
important to thoroughly test it to ensure that it is functioning
correctly and producing the desired output [9].

Fig:3 explains the final step of the compilation process and
Fig:4 shows the grammar used to implement the
programming language which has lexer which accepts normal
identifiers as a general-purpose programming as well as $-
prefixed identifiers.

EAI Endorsed Transactions on
Scalable Information Systems

Online First

Design of efficient Programming Language with Lexer using ‘$’-prefixed identifier

5

Fig. 4. GRAMMAR USED FOR PROPOSED
PROGRAMMING LANGUAGE

Fig:5, Fig:6, Fig:7 shows that there’s improvement in time
consumed by the lexical analyzer in proposed programming
language when the identifiers are prefixed (with ‘$’) and not
prefixed for different number of identifiers in the program
script.

From Fig:8, Fig:9, Fig:10 one can see significant
improvement in Number of iterations taken to identify

whether a given lexeme is a keyword token or an identifier
token.

5. Results and Discussion

Fig. 5. NO OF IDENTIFIERS VS TIME

Fig. 6. NO OF IDENTIFIERS VS TIME

Fig. 7. NO OF IDENTIFIERS VS TIME

EAI Endorsed Transactions on
Scalable Information Systems

Online First

P. Gupta et al.

6

Let’s say that to classify ‘varName’ as a keyword or an
identifier, if it’s in non-prefixed identifier language then it
would take k number of iterations, where k is number of
keywords in the programming language. whereas in the
proposed prefixed language it doesn’t need to be compared
with any keywords if it’s prefixed with ‘$’ so authors take
that as 1 iteration.

Fig. 8. NO OF IDENTIFIERS VS ITERATIONS

Fig. 9. NO OF IDENTIFIERS VS ITERATIONS

So, in this way authors are able to improve time taken and
Iterations taken to classify identifiers and keywords
when identifiers are $-prefixed.

● All concepts of a high-level programming language
such as Classes, Structures, Inheriting,
polymorphism etc. are not implemented in it.

● Ambiguity: Context-free grammar is sometimes
ambiguous, which means that they allow multiple
parse trees to be constructed for the same input
string. This can lead to difficulty in determining the
intended meaning of the input and can make it
harder to generate the correct code.

● Limited readability: The use of $-prefixed
identifiers can make the code less readable and
harder to understand for new developers who are not
familiar with the language.

● Reserved words of the programming language as
identifiers unlike other languages which do not
allow such flexibility can be used.

● Number of iterations to identify an identifier in a
programming language is significantly decreased
which will lead to decreasing the time taken for
lexical analysis when more keywords are there in a
programming language.

● The adaptation of such structured language is
comparatively easier.

● The concept proposed to make lexer efficient can be
adapted to any existing general purpose
programming language.

6. Advantages

● We can use reserved words of the programming
language as an identifier unlike other languages
which do not allow such flexibility.

● Number of iterations to identify an identifier in a
programming language is significantly decreased
which will lead to decreasing the time taken for
lexical analysis when more keywords are there in a
programming language.

● The adaptation of such structured language is
comparatively easier.

● The concept that we used to make lexer efficient can
be adapted to any existing general purpose
programming language.

7. Conclusion

In this research, we understood that there are many
different approaches to compiler design, and context free

EAI Endorsed Transactions on
Scalable Information Systems

Online First

Fig. 10. NO OF IDENTIFIERS VS ITERATIONS

Design of efficient Programming Language with Lexer using ‘$’-prefixed identifier

7

grammars play a vital role in many of them. By using context-
free grammar to define the structure of a programming
language, compilers can parse and analyze the source code to
ensure that it is syntactically correct and semantically
meaningful. This is a critical step in the compilation process,
as it enables the compiler to generate efficient machine code
that can be executed by the computer. We divide the compiler
into different phases such as Lexical Analysis, Syntax
Analysis, Semantic Analysis, Intermediate Code Generation,
Code Optimization, Target Code Generation to optimize the
compiler in each level to obtain a compiler which is ideal in
terms of stability, performance, time-complexity etc.

We can optimize the phase of Lexical Analysis by
adding an extra ‘$’ character for every occurrence of an
Identifier in the source code, which will lead to a significant
improvement in time and Number of iterations taken to
identify keywords and identifiers.

This concept which we used on Lexer of our own
Programming Language can be applied to any existing
programming language.

8. Future Scope

A programming language that uses $prefixed
identifiers to improve lookup time has the potential to be
useful in a variety of contexts where fast and efficient token
lookup is important. Here are a few potential applications:

1) Game development: A language with fast and
efficient variable lookup could be useful in the field of game
development, where performance is critical. For example,
you could use a $-prefixed variable to represent a game object
or character, making it easy to access and modify these values
as needed.

2) Scientific computing: A language with fast and efficient
variable lookup could be useful in the field of scientific
computing, where complex simulations and calculations
require fast and efficient access to variables. For example,
you could use a $-prefixed variable to
represent a physical parameter or simulation variable, making
it easy to access and modify these values as needed [6].

3) Performance-oriented applications: If the language is
designed to be highly performant and efficient, it may find a
niche in applications where speed and resource usage are
critical, such as scientific computing or high frequency
trading.

4) Unique selling point: If the language is able to
differentiate itself from other languages in some way
beyond just its use of $-prefixed identifiers, such as
through its ease of use, unique features, or compatibility
with existing systems, it may find a wider audience and
broader scope.

Overall, the future scope of a language like this would depend
on its specific features and use cases, as well as its adoption
and support by the developer community. However, the

potential for improved performance and efficiency in certain
domains could make it a compelling option for developers
looking for a more streamlined and efficient programming
experience. The potential applications of a programming
language that uses $prefixed identifiers are wide-ranging and
varied. The specific future scope will depend on the features
and capabilities of the language, as well as its adoption and
support by the developer community.

9. References

[1]. Appel, A. W. (2004). Modern compiler implementation in C.
Cambridge university press.

[2]. Aho, A. V., Sethi, R., & Ullman, J. D. (2007). Compilers:
principles, techniques, and tools (Vol. 2). Reading: Addison-
wesley.

[3]. Sanju, V. (2016, March). An exploration on lexical analysis.
In 2016 International Conference on Electrical, Electronics,
and Optimization Techniques (ICEEOT) (pp. 253-258). IEEE.
DOI: 10.1109/ICEEOT.2016.7755127

[4]. Chhabra, J., Chopra, H., & Vats, A. (2014). Research paper on
Compiler Design. International Journal of Innovative
Research in Technology, 1(5), 151-153.

[5]. Haili Luo The Research of Applying Regular Grammar to
Making Model for Lexical Analyzer, Proceedings of IEEE 6th
International Conference on Information Management,
Innovation Management & Industrial Engi-neering, pp 90-92
, 2013. DOI: 10.1109/ICIII.2013.6703245

[6]. Sanju, V. (2016, March). An exploration on lexical analysis.
In 2016 International Conference on Electrical, Electronics,
and Optimization Techniques (ICEEOT) (pp. 253-258). IEEE.
DOI: 10.1109/ICEEOT.2016.7755127

[7]. Wu, X., Mernik, M., Bryant, B. R., & Gray, J. (2009).
Implementation of Programming Languages Syntax and
Semantics. In Encyclopedia of Information Science and
Technology, Second Edition (pp. 1863-1869). IGI Global
DOI: 10.4018/978-1-60566-026-4.ch293

[8]. Aho, A. V., & Ullman, J. D. (1973). The theory of parsing,
translation, and compiling (Vol. 1, p. 309). Englewood Cliffs,
NJ: Prentice-Hall.

[9]. Abubakar, B. S., Ahmad, A., Aliyu, M. M., Ahmad, M. M., &
Uba, H. U. (2021). An Overview of Compiler Construction.
Int. Res. J. Eng. Technol., 8(3), 578-590.

[10]. Chen, H., Ching, W. M., & Hendren, L. (2017, June). An ELI-
to-C compiler: design, implementation, and performance. In
Proceedings of the 4th ACM SIGPLAN International
Workshop on Libraries, Languages, and Compilers for Array
Programming (pp. 9-16).
https://doi.org/10.1145/3091966.3091969

[11]. Pai T, V., & Aithal, P. S. (2020). A Systematic Literature
Review of Lexical Analyzer Implementation Techniques in
Compiler Design. International Journal of Applied
Engineering and Management Letters (IJAEML), 4(2), 285
301.

[12]. Bhosale, V., & Chaudhari, S. R. (2015). Fuzzy Lexical
Analyser: Design and Implementation. International Journal
of Computer Applications, 123(11).
DOI:10.5120/ijca2015905567

[13]. Marowka, A. (2004, July). Analytic comparison of two
advanced c language-based parallel programming models. In
Third International Symposium on Parallel and Distributed

EAI Endorsed Transactions on
Scalable Information Systems

Online First

https://doi.org/10.1109/ICEEOT.2016.7755127
https://doi.org/10.1109/ICIII.2013.6703245
https://doi.org/10.1109/ICEEOT.2016.7755127
https://doi.org/10.1145/3091966.3091969
http://dx.doi.org/10.5120/ijca2015905567

P. Gupta et al.

8

Computing/Third International Workshop on Algorithms,
Models and Tools for Parallel Computing on
Heterogeneous Networks (pp. 284-291). IEEE.
DOI:10.1109/ISPDC.2004.11

[14]. Omori, Y., Joe, K., & Fukuda, A. (1997, August). A
parallelizing compiler by object-oriented design. In
Proceedings Twenty-First Annual International Computer
Software and Applications Conference (COMP- SAC’97) (pp.
232-239). IEEE. Doi:10.1109/CMPSAC.1997.624802

[15]. Barve, A., & Joshi, B. K. (2016). Fast parallel lexical analysis
on multi- core machines. International Journal of High-
Performance Computing and Networking, 9(3), 250-257.
https://doi.org/10.1504/ijhpcn.2016.076270

[16]. Barve, A., & Joshi, B. K. (2015). Improved Parallel Lexical
Analysis using OpenMP on Multi-core Machines. Procedia
Computer Science, 49, 211-219.
https://doi.org/10.1016/j.procs.2015.04.246

[17]. Jena, S. K., Das, S., & Sahoo, S. P. (2018). Design and
Development of a Parallel Lexical Analyzer for C Language.
International Journal of Knowledge-Based Organizations
(IJKBO), 8(1), 68-82.
https://doi.org/10.4018/IJKBO.2018010105

[18]. Barve, A., & Joshi, B. K. (2012, December). Parallel lexical
analysis on multi-core machines using divide and conquer. In
2012 Nirma University International Conference on
Engineering (NUiCONE) (pp. 1-5). IEEE.
DOI: 10.1109/NUICONE.2012.6493218

[19]. Srikanth, G. U. (2010, June). Parallel lexical analyzer on the
cell processor. In 2010 Fourth International Conference on
Secure Software Integration and Reliability Improvement
Companion (pp. 28-29). IEEE. https://doi.org/10.1109/SSIRI-
C.2010.16

[20]. Barve, A., Khomane, S., Kulkarni, B., Ghadage, S., & Katare,
S. (2017, December). Parallelism in C++ programs targeting
objects. In 2017 International Conference on Advances in
Computing, Communication and Control (ICAC3) (pp. 1-6).
IEEE. DOI:
10.1109/ICAC3.2017.8318759

[21]. Marowka, A. (2008, December). Towards high-level parallel
programming models for multicore systems. In 2008
Advanced Software Engineering and Its Applications (pp.
226-229). IEEE. https://doi.org/10.1109/ASEA.2008.9

EAI Endorsed Transactions on
Scalable Information Systems

Online First

http://dx.doi.org/10.1109/ISPDC.2004.11
https://doi.ieeecomputersociety.org/10.1109/CMPSAC.1997.624802
https://doi.org/10.1504/ijhpcn.2016.076270
https://doi.org/10.1016/j.procs.2015.04.246
https://doi.org/10.4018/IJKBO.2018010105
https://doi.org/10.1109/NUICONE.2012.6493218
https://doi.org/10.1109/SSIRI-C.2010.16
https://doi.org/10.1109/SSIRI-C.2010.16
https://doi.org/10.1109/ASEA.2008.9

