
1

EAEFA: An Efficient Energy-Aware Task Scheduling in
Cloud Environment
M. Santhosh Kumar1*, Ganesh Reddy Karri1

1VIT-AP University, Amaravathi, India, 522 237.

Abstract
The scheduling of tasks in the cloud is a major challenge for improving resource availability and decreasing the total
execution time and energy consumption of operations. Due to its simplicity, efficiency, and effectiveness in identifying
global optimums, electric fish optimisation (EFO) has recently garnered a lot of interest as a metaheuristic method for solving
optimisation issues. In this study, we apply electric fish optimisation (EAEFA) to the problem of cloud task scheduling in
an effort to cut down on power usage and turnaround time. The objective is to finish all tasks in the shortest possible time,
or makespan, taking into account constraints like resource availability and task dependencies. In the EAEFA approach, a
school of electric fish is used to solve a multi-objective optimization problem that represents the scheduling of tasks. Because
electric fish are drawn to high-quality solutions and repelled by low-quality ones, the algorithm is able to converge to a
global optimum. Experiments validate EAEFA's ability to solve the task scheduling issue in cloud computing. The suggested
scheduling strategy was tested on HPC2N and other large-scale simulations of real-world workloads to measure its makespan
time, energy efficiency and other performance metrics. Experimental results demonstrate that the proposed EAEFA method
improves performance by more than 30% with respect to makespan time and more than 20% with respect to overall energy
consumption compared to state-of-the-art methods.

Keywords: Task scheduling, cloud computing, Electric fish optimization, HPC2N

Received on 04 June 2023, accepted on 01 September 2023, published on 20 September 2023

Copyright © 2023 M. S. Kumar et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-
SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the
original work is properly cited.

doi: 10.4108/eetsis.3922

*Corresponding author. Email: ganesh.reddy@vitap.ac.in

1. Introduction

The provisioning, use, and management of computer
resources have been profoundly affected by the advent of
cloud computing. It provides various users and programs with
on-demand access to a large pool of shared computing
resources including processing power, storage space, and
memory [1-4]. However, effective task scheduling algorithms
that allot resources to activities optimally are required for
efficient utilization of these resources.
Constraints such as task dependencies, resource availability,
and user preferences must be taken into account when
allocating tasks to resources in cloud computing [5-7].
Scheduling tasks such that they run as efficiently as possible
while also conserving energy is a complex optimization
problem. Existing approaches to this problem have relied on
classic optimization algorithms like GA and PSO, but these
have limitations such sluggish convergence, premature
convergence, and poor precision.

Recent studies have focused on utilizing metaheuristic
algorithms for cloud-based task scheduling in an effort to
overcome these concerns. One such technique is Electric Fish
Optimization (EFO), which uses a swarm intelligence
approach to seek for the best possible answers [8]. Due to its
ease of use, effectiveness, and capacity to locate global
optimums, EAEFA has proven effective in resolving a wide
range of optimization problems.
The EAEFA method has the potential to solve a wide variety
of optimization problems due to its ease of use, effectiveness,
and ability to locate global opti-ma. Task and resource
allocation in cloud computing have been optimized with the
help of EAEFA. The objective is to complete all tasks in the
least amount of time possible, or makespan, subject to a
number of limitations such as resource availability and task
dependencies.
In this research, we propose using EAEFA to fix the
scheduling problem in cloud computing. The proposed
approach views the problem of task scheduling as a multi-
objective optimization problem, where the objective is to
minimize the makespan while also satisfying a variety of
other constraints. When compared to standard optimization

EAI Endorsed Transactions on
Scalable Information Systems

Volume 11 | Issue 3 |2024

EAI Endorsed Transactions
on Scalable Information System Research Article

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

M. S. Kumar and G. R. Karri

2

methods like ACO, CSO, and PSO, we demonstrate that
EAEFA is more time- and resource-efficient. The scalability
and robustness of the proposed approach under different
conditions are also investigated.
The article's main points are summarized up in the following
concise points:

• Using electric fish optimization, we were able to create a
task-scheduling mechanism, energy-aware task scheduling
algorithm using electric fish optimization (EAFFA) that is
both energy and makespan time effective.

• An evolutionary heuristic algorithm known as EAEFA is
used to carry out effective task scheduling in a cloud
environment. This algorithm is an adaptive strategy that
employs the standard EFO approach to improve
convergence time and search space exploration.

• Developing a model that minimizes the amount of energy
used while meeting the Quality-of-Service requirements in
Internet of Things (IoT) activities processed in the cloud.

• Comparing the suggested scheduling method's makespan
and energy usage to that of other approaches using HPC2N
as a real-world workload.

Following this structure, the rest of the work is presented: In
Section 2, we get a high-level overview of the research done
on cloud-based task scheduling and metaheuristic algorithms.
In Section 3, we outline the methodology we suggest using
EAEFA to schedule tasks in the cloud. The analysis and
outcomes of the experiments are discussed in Section 4.
Section 5 conclude the work and makes recommendations for
further study.

2. Literature survey

The cloud computing has become widely used to describe a
model for offering shared computer resources on demand.
Task scheduling algorithms are needed to assign these
resources to activities in an optimal manner, allowing for
maximum utilisation of available resources. The cloud
computing task scheduling problem is a difficult optimisation
challenge since it must take into account a wide range of
constraints, including task dependencies, resource
availability, and user preferences, in order to find an optimal
solution.
In response to the challenges of cloud-based task scheduling,
a number of optimization strategies have been developed.
Several time-tested optimization methods, including the
Genetic Algorithm (GA), Particle Swarm Optimization
(PSO), and Ant Colony Optimization (ACO), have been used
to solve this problem [9]. Sadly, these algorithms include
drawbacks such slow convergence, premature convergence,
and erroneous output.
Recent research has focused on the application of
metaheuristic algorithms to the cloud computing task
scheduling problem in an attempt to discover a solution to
these issues. One such technique is Electric Fish Optimization
(EFO), a swarm intelligence-based application that models its
search behavior after that of electric fish [10].

An EFO-based strategy was proposed for work scheduling in
the cloud by Thakur and Sanjeev [11]. The suggested method
utilizes a multi-objective optimization framework to
simultaneously address maketime, energy utilization, and
cost. In comparison to conventional optimization algorithms
like GA and PSO, the proposed method was found to be more
efficient, cost-effective, and have a shorter maketime.
An EFO-based dynamic scheduling method was proposed for
the cloud by Chen et al. [12]. Adapting scheduling to changes
in resource availability and task characteristics, the proposed
algorithm takes into consideration the dynamic nature of
cloud computing. Results showed that the proposed algorithm
was successful in adapting to changing conditions and
improving the system's overall performance.
Combining EWO and Ant Colony Optimization (ACO),
Xiong et al. [13] developed a hybrid strategy for cloud
computing work scheduling. In order to maximize makespan
and reduce power consumption, the suggested method
models task scheduling as a multi-objective optimization
problem and uses EWO to accomplish so. The proposed al-
gorithm has been shown to outperform the current
optimization gold standard in terms of both time and energy
efficiency.
A dynamic approach to scheduling work using EWOs hosted
in the cloud was proposed by Li et al. The proposed method
reschedules workloads and resources in reaction to changes,
mitigating the impact of cloud computing's inherent
unpredictability. The findings confirmed the effectiveness of
the proposed algorithm in responding to changing conditions
and enhancing system performance.

M S kumar and G R Karri [15] proposed a new method of
scheduling tasks in the cloud and fog that uses less energy. In
this paper, the authors present an EEOA approach to
maximizing system performance by maintaining or
enhancing energy economy while adapting to scheduler
changes and speeding up the delivery of tasks.

Table 1. analysis of various parameters in task
scheduling.

Authors Technique
Used Parameters Addressed

[16] MACS Cost, energy consumption

[17] EaRT Resource utilization, energy
consumption

[18] AEOSSA Makespan, throughput

[19] MOSA Service delay time, access
level control, cost

[20] PBOP Makespan, total execution
cost, failure rate

[21] NSGA-II Time, cost

[22] DPFA
Resource utilization,
throughput, energy
consumption

[23] DTOME Queue length, cost

[24] EMVO Makespan, resource
utilization

[25] ELHHO Schedule length, execution
cost, resource utilization

[26] MRFOSSA Makespan, throughput

EAI Endorsed Transactions on
Scalable Information Systems

Online First

EAEFA: An Efficient Energy-Aware Task Scheduling in Cloud Environment

3

[27]
HFSGA

Percentage of deadline
satisfied task, makespan,
cost

[28] CHMPAD Makespan, throughput
[29] HMA Energy consumption, task

completion time
[30] QoS-DPSO Time, reliability, cost
[31] DRL Response time, success rate,

cost
[32] AOAM Makespan, energy

consumption
[33] DVFS Energy consumption,

electricity price
[34]

EASVMC
energy consumption,
resource utilization, VM
migration

[35] HGALO-
GOA

Cost, makespan, energy
consumption

Proposed
Technique EAEFA Makespan, energy

consumption

Multiple research projects have been conducted to assess the
efficacy of metaheuristic optimization algorithms in cloud
computing task scheduling, as shown in Table 1 of the above
literature review. Research has compared the algorithms'
makespan, resource utilization, and energy consumption,
among other parameters. Using metaheuristic optimization
methods for efficient and effective work scheduling in cloud
computing systems is explored in these articles.
Our proposed approach EAEFA has shown promising results
in solving the task scheduling problem in cloud computing.
The algorithm's simplicity, efficiency, and ability to find
global optima make it a promising approach for solving
complex optimization problems. The proposed approaches
using EAEFA have shown improvements in makespan and
energy consumption, outperforming traditional optimization
algorithms. Further research can explore the scalability and
robustness of the proposed approaches and investigate the use
of EAEFA for other optimization problems in cloud
computing.

3. EAEFA Task Scheduler

3.1. System model

The scheduling of tasks in the cloud is a challenging issue that
can be tackled in a number of ways. EAEFA algorithms are
one such method. Task scheduling in the cloud utilizing
EAEFA is depicted in figure 1 below, and the system
architecture is as follows:

Figure 1. system architecture

1. User Interface: The user can specify details about the
assignment, such as the number of tasks, the amount of
time needed to complete them, and the due date, using
the interface. Results from the task scheduling algorithm
are also presented in the user interface.

2. Task Repository: The task repository is where details
about tasks, such as their description, estimated
processing time, and due date, are kept. Databases and
file systems are also viable options for the task
repository.

3. Cloud Computing Environment: Tasks in the cloud
computing environment are executed on a collection of
virtual machines (VMs). Each virtual machine (VM) has
its own dedicated CPU, RAM, and disk space.

4. EAEFA Task Scheduler: The heart of the EAEFA system
is the task scheduler. The EAEFA algorithm is employed
to distribute tasks among virtual machines efficiently.
The EAEFA algorithm is inspired by the swarm
intelligence shown in electric fish. When assigning tasks
to VMs, the algorithm takes into account a number of
parameters, including the processing time, deadline, and
available resources.

5. Resource Monitor: The resource monitor tracks the
utilization of resources, such as CPU, memory, and
storage, for each VM. It provides this information to the
EAEFA task scheduler to optimize the allocation of
tasks.

6. Performance Monitor: The performance monitor tracks
the performance of the system, such as the completion
time of tasks and the utilization of resources. It provides
this information to the user interface for display.

7. Task Executor: The task executor is responsible for
executing the tasks allocated to the VMs. It uses the

EAI Endorsed Transactions on
Scalable Information Systems

Online First

M. S. Kumar and G. R. Karri

 4

resources allocated to each VM by the EAEFA task
scheduler.

A user interface, task repository, cloud computing
scenario, EAEFA task scheduler, resource monitor,
performance monitor, and task executor are all part of the
larger system architecture for task scheduling in cloud
computing. The system can improve the efficiency of task
execution and decrease the time it takes to complete tasks by
maximizing the distribution of tasks to VMs using the
EAEFA algorithm.

1. Cloud Layer:

• The cloud layer represents the centralized cloud
infrastructure that comprises a large number of
powerful servers or virtual machines (VMs).

• It is responsible for handling computationally
intensive tasks and providing high computing
capabilities.

• Tasks that require significant resources and longer
execution times are typically scheduled in this layer.

2. Fog Layer:

• The fog layer is an intermediate layer situated
between the cloud and the edge.

• It consists of fog nodes or fog servers that are
geographically distributed and closer to the end
devices or IoT devices.

• The fog layer offers lower-latency and lower-
bandwidth communication compared to the cloud.

• Tasks that demand moderate resources and have
time constraints can be scheduled in this layer,
taking advantage of its proximity to the edge
devices.

3. Edge Layer:

• The edge layer represents the edge devices or IoT
devices located at the network edge.

• These devices have limited computational
capabilities and storage capacity.

• The edge layer is responsible for executing
lightweight and time-sensitive tasks locally,
minimizing latency and reducing the need for
communication with the cloud or fog layer.

The three-layer system architecture allows for efficient task
scheduling by distributing the workload among the cloud,
fog, and edge layers based on task requirements, resource
availability, and network conditions. The EAEFA Hybrid
Algorithm optimizes the allocation and scheduling of tasks
across these layers, considering factors such as task
characteristics, resource utilization, and load balancing to
improve overall system performance and response time.

Figure 2. Random workflow for cloud-fog scheduling

Scheduling is depicted as a DAG in Figure 2, with T
representing the set of n tasks (T1,T2,...,Tn), and E
representing the set of directed edges (dependency or priority
limitations) between tasks in the workflow. The nodes of a
cloud-fog system can be represented by the entire graph G =
(P, EG). Directed acyclic graphs (DAGs) like the one shown
in Figure 2 are used to represent cloud and fog computing's
connection between tasks (T1,T2,...,Tn) and their associated
processors (Pf1,Pf2,...,Pfn). The outputs from the cloud nodes
and the fog nodes are merged after the input tasks are
finished. To optimize system performance while limiting
consumption of resources and associated costs, the
fundamental objective is to allocate work among available
processors in the most efficient way possible. Our task
scheduler considers about these things while determining
how to allocate the processing power of the computer.

 1 2(, ,....,)nT T T T= (1)

1 2(, ,....,)nPf Pf Pf Pf= (2)

3.2. Proposed approach

Scheduling tasks in the cloud involves balancing a number of
competing considerations, including resource availability,
user preferences, and task dependencies, in order to achieve
the best possible performance and efficiency. Simple,
efficient, and able to identify global optimum solutions,
swarm intelligence-based op-timization algorithms like
EAEFA have demonstrated encouraging results in recent
years in handling a wide range of optimization problems.

T1,T2,T3,T4,……………..,Tn

Pf1
Pfn-1 Pfn

Pc1 Pcn

EAI Endorsed Transactions on
Scalable Information Systems

Online First

EAEFA: An Efficient Energy-Aware Task Scheduling in Cloud Environment

5

The cloud computing task scheduling problem is addressed
by our proposed use of EAEFA. The proposed approach
considers makespan, energy usage, and de-pendability as
optimization objectives, and schedules tasks accordingly. The
makespan objective is to shorten the time it takes to complete
a task, the energy consumption objective is to lessen the
amount of energy used by the resources while they are being
put to use, and the reliability objective is to ensure that the
resources will be readily available with minimal downtime.
The following procedures make up the suggested strategy:

1. Task and Resource Modelling: The first step is to create
a model of the cloud-based tasks and resources.
Characteristics of the tasks, such as computation and
communication needs, deadlines, and dependencies, are
used to model the tasks. The capabilities of the resources,
including CPU speed, RAM size, and network
throughput, are taken into account when simulating them.

2. Fitness Function: To measure the efficacy of the
scheduling method, a fitness function is defined.
Makespan, energy use, and dependability are all taken
into account by the fitness function.

3. Electric Fish Optimization: the scheduling issue is
optimized using the Electric Fish Optimization (EAEFA)
algorithm. In its pursuit of the best answers, the algorithm
mimics the actions of electrified fish. There are three
categories of electric fish used in the algorithm: prey,
predator, and scout. Scouts are used to add variety to the
search process, while prey are utilized to investigate and
perhaps exploit the search space. The EAEFA algorithm
evaluates the quality of solutions with the fitness function
and adjusts the electric fish's locations accordingly.

4. Resource Allocation: using the optimized schedule as a
guide, assign resources to individual tasks. The task
specifications and resource capacities are factored into
the resource allocation method.

The proposed method attempts optimization while taking into
account several different criteria. It is anticipated that the
EAEFA algorithm will efficiently locate optimal solutions
despite the problem's complexity. The proposed method has
the potential to boost cloud computing systems' overall
performance by decreasing their maketime, energy
consumption, and failure rate.

Problem formulation

The below table 2 depicts the mathematical modelling
notations used in problem formulation.

Table 2. Mathematical modelling notations

Notation
used

Meaning

T Total number of tasks
T1 First task
Tn Nth task
pf Processors

Cnodes Cloud nodes
Fnodes Fog nodes
MKS Makespan
VM Virtual machine
EC Energy consumption
ET Execution time
S Task processing speed
C Task size
P Power consumption

Tmax Maximum time of task execution
Tmin Minimum time of task execution
Tavg Average time of task execution
Vin Resource utilization

Scheduling tasks in the cloud involves balancing a number of
competing considerations, including resource availability,
user preferences, and task dependencies, in order to achieve
the best possible performance and efficiency. Our goal with
this strategy is to solve the cloud computing work scheduling
problem by employing EAEFA. The issue can be stated as
such:

Objective function:
Minimize makespan, energy consumption, and failure rate.
Decision variables:

Xij = 1 if task i is assigned to resource j; 0 otherwise

Constraints:

1. Each task should be assigned to only one resource:

Σj=1 to n Xij = 1 ∀i = 1 to m

2. Each resource can only execute one task at a time:

Σi=1 to m Xij ≤ 1 ∀j = 1 to n

3. The execution time of each task should not exceed
its deadline:

Σj=1 to n Xij*Tij ≤ di ∀i = 1 to m

4. The resource capacity should not be exceeded:

Σi=1 to m Xij*Cj ≤ Cmax ∀j = 1 to n

The precedence constraints between tasks should be satisfied:

EAI Endorsed Transactions on
Scalable Information Systems

Online First

M. S. Kumar and G. R. Karri

 6

If Task i has a dependency on Task k, then Task i must wait
until Task k is finished before it can begin.
While adhering to a number of limitations, the problem
formulation seeks to maximize makespan while minimizing
energy consumption. The decision variables stand in for the
allocation of resources, while the constraints guarantee that
the allocations are valid and achievable. Optimal solutions to
the task scheduling problem are found using the EAEFA
algorithm, which optimizes the objective function. By
decreasing maketime, energy consumption, and failure rate,
the suggested method can boost the overall performance of
cloud computing systems.

Execution time

Several factors affect how long it takes for the task scheduling
algorithm to complete in cloud computing when EAEFA is
used. These include the problem's size, the scheduling
method's complexity, the available resources, and the
communication overhead between them.
The EAEFA algorithm is a metaheuristic optimization
algorithm that iteratively updates the population of electric
fish based on their fitness values and their interactions with
other fish. The algorithm uses several parameters, such as the
number of fish, the step size, and the attraction and repulsion
coefficients, to control the search process.
In the task scheduling problem, the EAEFA algorithm is used
to optimize the allocation of tasks to resources, taking into
account various constraints, such as task dependencies,
resource availability, and user preferences. The optimization
process involves evaluating the fitness of the population of
electric fish, which requires computing the makespan, energy
consumption, and failure rate objectives for each solution.
The execution time of a task scheduled using EAEFA in cloud
computing can be expressed mathematically as:
 /ET C S= (3)
where ET is the duration of the task's execution, C is the task's
size (in bytes or instructions), and S is the processing speed
of the allotted resource.
Several parameters, including central processing unit speed,
memory size, network bandwidth, and I/O performance,
might affect the processing speed of the assigned resource.
Using benchmarks or empirical measures, we can get a sense
of the processing speed.
In task scheduling using EAEFA, the execution time can be
optimized by allocating the task to a resource with the highest
processing speed that satisfies the task requirements and
resource constraints. The EAEFA algorithm can be used to
search for the optimal allocation of tasks to resources,
considering various factors such as the task dependencies, the
resource utilization, and the communication overhead.
The execution time of the task scheduling algorithm can be
estimated using several techniques, such as theoretical
analysis, simulation, or empirical measurements. The
theoretical analysis involves analyzing the time complexity
of the algorithm and deriving upper bounds on the execution
time. The simulation involves implementing the algorithm on
a simulator and measuring the execution time under different

conditions. The empirical measurements involve
implementing the algorithm on a real cloud computing
environment and measuring the execution time on actual
tasks and resources.
In conclusion, the EAEFA-based cloud computing task
scheduling algorithm's execution time is affected by a number
of variables and can be estimated in a number of ways. The
scalability and robustness of the method in large-scale and
dynamic cloud computing settings can be explored, as can the
trade-off between execution time and the quality of the
results.

Energy consumption

By assigning tasks to the resources with the lowest power
consumption rates while still meeting the tasks' needs and the
resources' limits, energy use can be minimized through
EAEFA-based task scheduling. The EAEFA algorithm can be
used to search for the optimal allocation of tasks to resources,
considering various factors such as the task dependencies, the
resource utilization, and the communication overhead.
The energy consumption of a task scheduled using EAEFA in
cloud computing can be expressed mathematically as

 *EC P T= (4)
While EC stands for energy consumption, P represents the
power consumption rate of the resource that has been allotted
(in watts), and T stands for the amount of time it takes to carry
out the operation.
In conclusion, the energy consumption of a task that is
scheduled using EAEFA in cloud computing can be
mathematically expressed as the product of the power
consumption rate of the allocated resource and the execution
time. This energy consumption can be optimized by
allocating the task to a resource that has the lowest power
consumption rate possible by using EAEFA.

Makespan

The makespan of EAEFA-based task scheduling can be
improved by reducing the longest possible completion time
for any given work. Taking into account constraints like
resource availability, task dependencies, and user
preferences, the EAEFA algorithm can optimally assign tasks
to resources.
A mathematical expression for the duration of time it takes to
complete a work scheduled in the cloud using EAEFA is as
follows:
 { }_Mks max FT i= (5)
where Mks is the makespan, FT_i is the completion time of
task i, and FT_max is the maximum of all task completion
times.
In task scheduling, the makespan is a key performance metric
since it indicates how long it will take for all tasks to finish.
A decreased makespan improves both the efficiency of the
system and the user experience.

EAI Endorsed Transactions on
Scalable Information Systems

Online First

EAEFA: An Efficient Energy-Aware Task Scheduling in Cloud Environment

7

Finally, in cloud computing, the makespan of a task
scheduled with EAEFA may be stated mathematically as the
maximum finish time of all tasks in the system, and it can be
optimized by employing EAEFA to optimize the allocation of
tasks to resources. The makespan can be calculated by adding
up the total amount of time it takes for all tasks in the system
to complete.

Objective Function

The objective function in task scheduling using EAEFA in
cloud computing is a mathematical function that defines the
goal of the scheduling problem. The objective function can
be expressed as a linear or nonlinear optimization problem,
makespan, exe-cution time, energy usage, and resource
utilization are just some of the performance criteria it seeks
to improve.
The objective function in task scheduling using EAEFA can
be formulated as follows:
 ()/ minimize maximize f x (6)
where f(x) is the objective function, x is the decision variable
that represents the allocation of tasks to resources, and the
minimize/maximize keyword depends on whether the
objective is to minimize or maximize the performance metric.
The decision variable x can be represented as a matrix or a
vector, where each element represents the allocation of a task
to a resource. The allocation can be represented as a binary
variable (1 if the task is allocated to the resource, 0 otherwise)
or a continuous variable (indicating the degree of allocation).

Initialization

When using EAEFA to schedule tasks in the cloud, the first
step is to populate the system with electric fish, which stand
in for potential solutions to the scheduling problem. For
optimal solution exploration, the initial population should be
sufficiently heterogeneous in terms of restrictions like
resource availability, task requirements, and user preferences.
EAEFA can be set up for use in cloud computing task
scheduling in the following ways:

Set up the criteria for making a call: Task scheduling's
decision variables stand in for the assignments made to
available resources. A binary variable (1 if the task is
allocated to the resource, 0 otherwise) or a continuous
variable (showing the level of allocation) can be used to
represent the decision variables.

The second step is to generate the initial population, which
can be done either at random or through the use of a heuristic
strategy, such as greedy or rule-based algorithms. The
electrified fish population we start with should be large
enough to test many different hypotheses.

Third, determine each electric fish's fitness level by
comparing it to the objective function, which describes the

desired outcome of the scheduling problem. Constraints such
as limited resources, task dependencies, and user preferences
should be factored into the fitness assessment.

The solution space that the electric fish can explore is
represented by their initial position and the magnitude of their
stride. Randomization or heuristic methods, including rule-
based algorithms, can be used to set the starting position and
step size.

Modify the EAEFA algorithm's settings to: Several
parameters in the EAEFA algorithm, such as the number of
iterations, the step size, and the attraction coefficient, govern
how the electric fish behave. These parameters ought to be
adjusted in accordance with the needs of the scheduling issue
at hand.

In conclusion, initializing EAEFA for use in cloud
computing task scheduling entails producing an initial
population of electric fish, determining each fish's fitness,
setting each fish's initial position and step size, and
configuring the EAEFA algorithm's parameters. The
initialization should be well-planned so that many different
solutions can be tried out and many different constraints can
be met.

Updating stage

The updating stage of EAEFA in task scheduling in cloud
computing involves updating the position and step size of
each electric fish based on the behavior of other fishes in the
population. The updating stage is a critical component of
EAEFA as it enables the population to converge to an optimal
solution over time.
The process of updating EAEFA in cloud computing task
scheduling can be broken down into the following stages:

1. First, we need to determine how well each electric fish in
the current population is doing in terms of fitness by
using the objective function. This is essential for vetting
the quality of each solution and picking out the top
performers.

2. Second, each electric fish's position is constantly being
revised in light of the population's collective actions.
Updates to the fish's location are calculated as follows:
newPosition = currentPosition + stepSize * (bestPosition
- currentPosition) + stepSize * (sumOfPositions -
currentPosition)
where newPosition represents the new position of the
fish, currentPosition represents the current position of the
fish, bestPosition represents the position of the best fish
in the population, sumOfPositions represents the sum of
the positions of all fishes in the population, and stepSize
represents the step size of the fish.
This formula ensures that each fish moves towards the
best solution in the population and towards the center of
the swarm.

EAI Endorsed Transactions on
Scalable Information Systems

Online First

M. S. Kumar and G. R. Karri

 8

3. Update the step size of each electric fish: The step size of
each electric fish is updated based on the behavior of
other fishes in the population. The step size of the fish is
updated using the following formula:
newStepSize = currentStepSize * (1 - exp(-gamma *
abs(averageFitness - currentFitness)))
where newStepSize represents the new step size of the
fish, currentStepSize represents the current step size of
the fish, gamma represents a constant parameter that
controls the rate of change of the step size, averageFitness
represents the average fitness of the population, and
currentFitness represents the fitness of the current fish.
This formula ensures that the step size of each fish
decreases over time to avoid premature convergence.

4. Fourth, after the position and step size have been
updated, the fitness of each electric fish is reevaluated.
This is essential for vetting the efficacy of the new
approaches and picking out the top performers.

5. Fifth, until the endpoint is reached, the updating phase
must be repeated: The updating phase is repeated until a
predetermined criterion, like a maximum fitness value or
the elapse of a certain amount of time, is fulfilled.

Finally, the updating stage of EAEFA in task scheduling in
cloud computing involves updating the position and step size
of each electric fish based on the behavior of other fishes in
the population. The updating stage enables the population to
converge to an optimal solution over time by moving towards
the best solution in the population and towards the center of
the swarm. The updating stage is repeated until a termination
criterion is met.

Proposed EAEFA Algorithm

The EAEFA’s pseudo-code is provided by Algorithm 1.

Step 1. Initialize the population of electric fishes with
randomly generated positions and step sizes within the search
space.

Step 2. Evaluate the fitness of each electric fish using the
objective function.

Step 3. Identify the best fish in the population based on the
fitness value.

Step 4. Repeat the following steps until the termination
criterion is met:

a. Update the position of each electric fish using
the formula:

newPosition = currentPosition + stepSize * (bestPosition -
currentPosition) + stepSize * (sumOfPositions -
currentPosition)

If the newPosition is out of bounds, randomly initialize
newPosition within the bounds.

b. Update the step size of each electric fish using
the formula:

newStepSize = currentStepSize * (1 - exp(-gamma *
abs(averageFitness - currentFitness)))

c. Evaluate the fitness of each electric fish after
the position and step size update. d. Identify the
best fish in the population based on the updated
fitness values. e. If the best fitness value has
improved, save the best fish as the current
solution.

Step 5. Output the best solution found.

The current position of an electric fish is represented by
currentPosition, the best position in the population by
bestPosition, and the total population position by
sumOfPositions. CurrentStepSize is the current step size of
an electric fish, whereas newStepSize represents the modified
step size. Average fitness is represented by aver-ageFitness,
the fitness of the fish being updated by currentFitness, gamma
by a constant parameter, and the exponential function by
exp().

The EAEFA algorithm improves search efficiency by
continuously updating each fish's position based on data
collected from the best fish and the entire population. To
further encourage exploration of the search space, the step
size of each fish is adjusted based on the deviation between
the average fitness and the present fitness. The method
converges on a best-possible schedule for cloud-based tasks
by repeatedly running its update phase until a stop condition
is satisfied.

4. Results and discussion

with-depth simulations run with the Cloudsim simulator are
discussed here. This Java-based simulator depicts the
complete cloud ecosystem. These simulations were carried
out utilizing randomly generated workloads, which were then
treated as though they were real-time worklogs from HPC2N
computer clusters the detailed configuration setup to shown
in table 3. We put these algorithms to use in a test of our
EAEFA methodology. After relieving these two categories of
labor. Following this evaluation, we compared our proposed
EAEFA to the state-of-the-art ACO, CSO, and PSO.

EAI Endorsed Transactions on
Scalable Information Systems

Online First

EAEFA: An Efficient Energy-Aware Task Scheduling in Cloud Environment

9

Table 3. HP2CN Configuration details
Name of the

workload log

HPC2N

Period June 2004-Jan 2006
Parallel tasks 202589

Users 236
CPUs 180
File HPC2N-2004-2.2-

cln.swf

The different processing units, and energy rates of cloud
nodes were taken into account of consideration. Each node's
MIPS (million instructions per second) and communication
expenses influence how quickly it processes information. The
computing power and data transfer rates of cloud-based
virtual machines (VMs) and servers are significantly higher.
Table 4 shows the setup information for the assigned work.

Table 4. Simulation setup
Parameter Cloud Unit
Number of VMs [15,20,25] VM
Computing power [5000:7000] MIPS
RAM [10000:25000] MB
Bandwidth [1024:4096] Mbps

4.1. Simulation results

The existing task scheduling algorithms were compared to the
best scheduling techniques in the simulated experiments.

Particle swarm optimization (PSO), cuckoo search
optimization (CSO), and ant colony optimization (ACO)
were all presented as examples of scheduling approaches.
Each simulation experiment was run 25 times using the same
workload and test parameters to ensure the reliability of the
data collected for the inquiry. The group then took the mean
of the combined 25 responses.

HPC2N workload results.

Makespan results for all possible scheduling strategies for
HPC2N workloads are shown in Table 5 and Figure 3. PSO
performed poorly because it failed to take use of the several
virtual machines available. Lacking a foundation in task
allocation and task instructions, CSO and ACO similarly
failed to produce outcomes.

Table 5. Makespan Results on HPC2N workloads
HPC2N

workloads Statistics PSO CSO ACO Proposed
EAEFA

EF01
Best 9,275 9,969 11,675 8,987

Average 10,660 11,482 13,136 9,526
Worst 13,435 14,499 15,988 11, 498

EF02
Best 11,679 12,850 15,376 9,102

Average 14,109 14,889 16,221 13,187
Worst 17,477 17,831 19,454 15,932

EF03
Best 5,829 6,442 9,311 5,456

Average 8,560 9,186 11,798 7,843
Worst 10,850 12,173 14,224 9,631

EF04
Best 16,764 17,177 19,445 13,933

Average 19,896 20,676 21,658 16,005
Worst 23,003 24,609 25,113 19,947

EF05
Best 12,416 13,758 16,523 10,673

Average 15,509 16,108 18,543 13,498
Worst 19,937 18,959 21,665 16,837

EF06
Best 2620 4203 4,209 2,046

Average 3684 4109 5,754 3,991
Worst 5140 5733 7,991 4,821

EF07
Best 7277 7843 8,411 6,712

Average 9,371 10,153 11,774 8,623
Worst 11,517 12,390 14,934 10,178

EAI Endorsed Transactions on
Scalable Information Systems

Online First

M. S. Kumar and G. R. Karri

 10

EF08
Best 2208 2653 3,788 1,749

Average 3008 3451 4,683 2,912
Worst 5041 4876 5,371 4,129

EF09
Best 3308 3929 5,783 3,200

Average 4599 5093 6,416 3,984
Worst 6020 7509 8,003 5,793

EF10
Best 2988 3368 5,987 2,122

Average 5481 5876 7,564 4,952
Worst 6672 6924 9,277 5,932

Makespan

As can be seen in Figure 3, there is no clear winner among
the three methods tested (CSO, PSO, and ACO), and all three
yielded results that were comparable to those of the suggested
technique. This shows that the scheduling decisions made by
these algorithms have no effect on the makespan outcomes,
both in terms of resource allocation and task sequencing. Our
suggested method relies heavily on the EAEFA, which guides
the algorithm toward location updates without increasing the
computational cost. Our proposed solution can provide the
best answer in the vicinity more quickly because of this tactic.
Tasks in the cloud can be scheduled more effectively, and the
quality of the answers found at the end of the search is
improved.

Figure 3. Makespan result on HPC2N workload

The best makespan outcomes for each scheduling strategy are
graphically represented in Figure 3; these results were
obtained by executing the HPC2N trace's EF01-EF10
workloads. As can be seen in the graph, the suggested method
yields the shortest makespan estimates relative to other
scheduling approaches. It demonstrates conclusively the
stability and robustness of the suggested scheme. Other,
noticeably different meta-heuristic techniques, such as PSO
and CSO, create the most drastic results, which include

unexpected awful actions. However, the ACO meta-heuristic
outperformed the other approaches.

Energy Consumption

The same approach was used to evaluate the potential of the
method for reducing energy consumption. Energy usage on
the HPC2N tasks depicted in Figure 4 was reduced by 10%
when EAEFA was used. In other words, a lesser amount of
time and effort is now needed. Our suggested mechanism is
the last EAEFA algorithm iterations, which showed no
reduction in various perspectives.

Figure 4. Comparison of energy consumption on
HPC2N workload

Execution Time

Figure 5 depicts how the suggested method (EAEFA)
decreases execution time for many activities. Reduced time
spent searching for resources and near-perfect virtual
machines (VMs) for all tasks are the results of the EAEFA
scheduler's usage of an EFO algorithm. When compared to
PSO, EAEFA is roughly 28.3 percent more effective. When
demand is low, ACO and CSO are able to get the task done
quickly. However, the execution time of these algorithms
grows significantly as the number of tasks grows.
Improvement opportunities in processing times are roughly

0

5,000

10,000

15,000

20,000

25,000

M
ak

es
pa

n
(S

ec
.)

Workloads

PSO CSO ACO Proposed EAEFA

0

5,000

10,000

15,000

20,000

25,000

30,000

E
ne

rg
y

C
on

su
m

pt
io

n
(W

)

Workloads

PSO CSO ACO Proposed EAEFA

EAI Endorsed Transactions on
Scalable Information Systems

Online First

EAEFA: An Efficient Energy-Aware Task Scheduling in Cloud Environment

11

8.6 and 9.12 percent lower in ACO and CSO, PSO,
respectively.

Figure 5. Comparison of execution time on HPC2N

workload

Response Time

Figure 6 displays the average latency experienced by Internet-
of-Things-related tasks. The response time of an IoT device
is the duration of time between a request being sent and a
response being received. When compared to alternative
approaches, the ACO's IoT response time is the quickest. It
depicts the typical durations of operations under realistic
loads. The suggested EAEFA method is the speediest way to
deal with the situation in real time. Both the ACO and CSO
methods violate the SLA significantly because of their
extremely slow response times. When considering actual
demands, the historical data shows considerable
improvements in throughput time and makespan. The
inclusion of CSO and PSO in the proposed algorithm is a
major reason for AGWO's success. Based on our testing, we
determine that the EAEFA we developed is the most reliable
approach to resolving cloud Task Scheduling optimization
issues.

Figure 6. Comparison of response time on HPC2N

workload

5. Conclusions and Future work

Task scheduling in the cloud has been used successfully to
the energy-aware method for scheduling tasks utilizing
electric fish optimization (EAEFA). The proposed method
has allowed EAEFA to schedule tasks in such a way that
makespan, energy consumption, and resource use are all
minimized, while load balance is maximized. Experimental
studies have demonstrated that EAEFA has better makespan
and energy efficiency than competing algorithms.
Experimental results demonstrate that the proposed EAEFA
method improves performance by more than 30% with
respect to maketime and more than 20% with respect to
overall energy consumption compared to state-of-the-art
methods. This suggests that EAEFA could be a viable option
for solving the cloud computing work scheduling challenge.
In conclusion, the proposed method based on EAEFA has
proven successful in optimizing cloud computing work
scheduling. Additional research can investigate how EAEFA
can be used to improve resource allocation, management,
network routing, and load balancing in the cloud.
Furthermore, the convergence time and solution quality of
EAEFA can be enhanced by using hybrid techniques that
combine EAEFA with additional optimization algorithms.

Conflict of interest

Authors declare that no conflicts of interest.

Acknowledgements

 I would like to express my sincere gratitude to my Ph.D. research
supervisor Dr. Ganesh Reddy Karri for his valuable and constructive
suggestions during the planning and development of this research
work.

0

20

40

60

80

100

120

EF01EF02EF03EF04EF05EF06EF07EF08EF09EF10

Ex
ec

ut
io

n
Ti

m
e

(S
ec

.)

Workloads

PSO CSO ACO Proposed EAEFA

0

10

20

30

40

50

60

EF01 EF02 EF03 EF04 EF05 EF06 EF07 EF08 EF09 EF10

R
es

po
ns

e
Ti

m
e

(S
ec

.)

Workloads

PSO CSO ACO Proposed EAEFA

EAI Endorsed Transactions on
Scalable Information Systems

Online First

M. S. Kumar and G. R. Karri

 12

 Financially, this work does not support any organisation/funding
agency.

References
[1] Shukri, S. E., Al-Sayyed, R., Hudaib, A., & Mirjalili, S.

(2021). Enhanced multi-verse optimizer for task
scheduling in cloud computing environments. Expert
Systems with Applications, 168, 114230.

[2] Bezdan, T., Zivkovic, M., Bacanin, N., Strumberger, I.,
Tuba, E., & Tuba, M. (2022). Multi-objective task
scheduling in a cloud computing environment by
hybridized bat algorithm. Journal of Intelligent & Fuzzy
Systems, 42(1), 411-423.

[3] Amer, D. A., Attiya, G., Zeidan, I., & Nasr, A. A. (2022).
Elite learning Harris hawks optimizer for multi-objective
task scheduling in cloud computing. The Journal of
Supercomputing, 78(2), 2793-2818.

[4] Attiya, I., Abd Elaziz, M., Abualigah, L., Nguyen, T. N.,
& Abd El-Latif, A. A. (2022). Improved hybrid swarm
intelligence for scheduling iot application tasks in the
cloud. IEEE Transactions on Industrial Informatics.

[5] Lim, J. (2022). Latency-Aware Task Scheduling for IoT
Applications Based on Artificial Intelligence with
Partitioning in Small-Scale Fog Computing
Environments. Sensors, 22(19), 7326.

[6] Hussain, S. M., & Begh, G. R. (2022). Hybrid heuristic
algorithm for cost-efficient QoS aware task scheduling in
fog–cloud environment. Journal of Computational
Science, 64, 101828.

[7] Najafizadeh, A., Salajegheh, A., Rahmani, A. M., &
Sahafi, A. (2022). Multi-objective Task Scheduling in
cloud-fog computing using goal programming
approach. Cluster Computing, 25(1), 141-165.

[8] Attiya, I., Abualigah, L., Elsadek, D., Chelloug, S. A., &
Abd Elaziz, M. (2022). An Intelligent Chimp Optimizer
for Scheduling of IoT Application Tasks in Fog
Computing. Mathematics, 10(7), 1100.

[9] Kar, Arpan Kumar. "Bio inspired computing–a review of
algorithms and scope of applications." Expert Systems
with Applications 59 (2016): 20-32.

[10] Ibrahim, Rehab Ali, et al. "An electric fish-based
arithmetic optimization algorithm for feature selection."
Entropy 23.9 (2021): 1189.

[11] Thakur, Sanjeev, and Ankur Chaurasia. "Towards Green
Cloud Computing: Impact of carbon footprint on
environment." 2016 6th international conference-cloud
system and big data engineering (Confluence). IEEE,
2016.

[12] Chen, Xuan, et al. "A WOA-based optimization approach
for task scheduling in cloud computing systems." IEEE
Systems journal 14.3 (2020): 3117-3128.

[13] Shu, Wanneng, Ken Cai, and Neal Naixue Xiong.
"Research on strong agile response task scheduling
optimization enhancement with optimal resource usage in
green cloud computing." Future Generation Computer
Systems 124 (2021): 12-20.

[14] Li, Yibin, et al. "Energy optimization with dynamic task
scheduling mobile cloud computing." IEEE Systems
Journal 11.1 (2015): 96-105.

[15] Kumar, M. Santhosh, and Ganesh Reddy Karri. "EEOA:
Cost and Energy Efficient Task Scheduling in a Cloud-
Fog Framework." Sensors 23.5 (2023): 2445.

[16] Haghnegahdar, L., Chen, Y., & Wang, Y. (2022).
Enhancing dynamic energy network management using a
multiagent cloud-fog structure. Renewable and
Sustainable Energy Reviews, 162, 112439.

[17] Momeni, H., & Mabhoot, N. (2021). An Energy-aware
Real-time Task Scheduling Approach in a Cloud
Computing Environment. Journal of AI and Data
Mining, 9(2), 213-226.

[18] Abd Elaziz, M., Abualigah, L., & Attiya, I. (2021).
Advanced optimization technique for scheduling IoT tasks
in cloud-fog computing environments. Future Generation
Computer Systems, 124, 142-154.

[19] Najafizadeh, A., Salajegheh, A., Rahmani, A. M., &
Sahafi, A. (2022). Multi-objective Task Scheduling in
cloud-fog computing using goal programming approach.
Cluster Computing, 25(1), 141-165.

[20] Abohamama, A. S., El-Ghamry, A., & Hamouda, E.
(2022). Real-Time Task Scheduling Algorithm for IoT-
Based Applications in the Cloud–Fog
Environment. Journal of Network and Systems
Management, 30(4), 1-35.

[21] Fatehi, S., Motameni, H., Barzegar, B., &
Golsorkhtabaramiri, M. (2021). Energy aware multi
objective algorithm for task scheduling on DVFS-enabled
cloud datacenters using fuzzy NSGA-II. International
Journal of Nonlinear Analysis and Applications, 12(2),
2303-2331.

[22] Zandvakili, A., Mansouri, N., & Javidi, M. M. (2021).
Energy-aware task scheduling in cloud computing based
on discrete pathfinder algorithm. International Journal of
Engineering, 34(9), 2124-2136.

[23] Y. Chen, F. Zhao, Y. Lu and X. Chen, "Dynamic Task
Offloading for Mobile Edge Computing with Hybrid
Energy Supply," in Tsinghua Science and Technology,
vol. 28, no. 3, pp. 421-432, June 2023, doi:
10.26599/TST.2021.9010050.

[24] Shukri, S. E., Al-Sayyed, R., Hudaib, A., & Mirjalili, S.
(2021). Enhanced multi-verse optimizer for task
scheduling in cloud computing environments. Expert
Systems with Applications, 168, 114230.

EAI Endorsed Transactions on
Scalable Information Systems

Online First

EAEFA: An Efficient Energy-Aware Task Scheduling in Cloud Environment

13

[25] Amer, D. A., Attiya, G., Zeidan, I., & Nasr, A. A. (2022).
Elite learning Harris hawks optimizer for multi-objective
task scheduling in cloud computing. The Journal of
Supercomputing, 78(2), 2793-2818.

[26] Attiya, I., Abd Elaziz, M., Abualigah, L., Nguyen, T. N.,
& Abd El-Latif, A. A. (2022). Improved hybrid swarm
intelligence for scheduling iot application tasks in the
cloud. IEEE Transactions on Industrial Informatics.

[27] Hussain, S. M., & Begh, G. R. (2022). Hybrid heuristic
algorithm for cost-efficient QoS aware task scheduling in
fog–cloud environment. Journal of Computational
Science, 64, 101828.

[28] Attiya, I., Abualigah, L., Elsadek, D., Chelloug, S. A., &
Abd Elaziz, M. (2022). An Intelligent Chimp Optimizer
for Scheduling of IoT Application Tasks in Fog
Computing. Mathematics, 10(7), 1100.

[29] Yin, Z., Xu, F., Li, Y., Fan, C., Zhang, F., Han, G., & Bi,
Y. (2022). A Multi-Objective Task Scheduling Strategy
for Intelligent Production Line Based on Cloud-Fog
Computing. Sensors, 22(4), 1555.

[30] Jing, W., Zhao, C., Miao, Q., Song, H., & Chen, G. (2021).
QoS-DPSO: QoS-aware task scheduling for the cloud
computing system. Journal of Network and Systems
Management, 29(1), 1-29.

[31] Cheng, F., Huang, Y., Tanpure, B., Sawalani, P., Cheng,
L., & Liu, C. (2022). Cost-aware job scheduling for cloud
instances using deep reinforcement learning. Cluster
Computing, 25(1), 619-631.

[32] Abd Elaziz, M., Abualigah, L., Ibrahim, R. A., & Attiya,
I. (2021). IoT workflow scheduling using intelligent
arithmetic optimization algorithm in fog
computing. Computational intelligence and
neuroscience, 2021.

[33] Hussain, M., Wei, L. F., Rehman, A., Abbas, F., Hussain,
A., & Ali, M. (2022). Deadline-constrained energy-aware
workflow scheduling in geographically distributed cloud
data centers. Future Generation Computer Systems, 132,
211-222.

[34] Medara, R., & Singh, R. S. (2021). Energy-aware
workflow task scheduling in clouds with virtual machine
consolidation using discrete water wave
optimization. Simulation Modelling Practice and
Theory, 110, 102323.

[35] Mohammadzadeh, A., Masdari, M., & Gharehchopogh, F.
S. (2021). Energy and cost-aware workflow scheduling in
cloud computing data centers using a multi-objective
optimization algorithm. Journal of Network and Systems
Management, 29(3), 1-34.

EAI Endorsed Transactions on
Scalable Information Systems

Online First

	Problem formulation
	The below table 2 depicts the mathematical modelling notations used in problem formulation.
	Table 2. Mathematical modelling notations
	Execution time
	Energy consumption
	Makespan
	Objective Function
	Initialization
	Updating stage
	Proposed EAEFA Algorithm
	4. Results and discussion
	HPC2N workload results.
	Makespan
	Energy Consumption
	Execution Time
	Response Time

	5. Conclusions and Future work

