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Abstract 
The scheduling of tasks in the cloud is a major challenge for improving resource availability and decreasing the total 
execution time and energy consumption of operations. Due to its simplicity, efficiency, and effectiveness in identifying 
global optimums, electric fish optimisation (EFO) has recently garnered a lot of interest as a metaheuristic method for solving 
optimisation issues. In this study, we apply electric fish optimisation (EAEFA) to the problem of cloud task scheduling in 
an effort to cut down on power usage and turnaround time. The objective is to finish all tasks in the shortest possible time, 
or makespan, taking into account constraints like resource availability and task dependencies. In the EAEFA approach, a 
school of electric fish is used to solve a multi-objective optimization problem that represents the scheduling of tasks. Because 
electric fish are drawn to high-quality solutions and repelled by low-quality ones, the algorithm is able to converge to a 
global optimum. Experiments validate EAEFA's ability to solve the task scheduling issue in cloud computing. The suggested 
scheduling strategy was tested on HPC2N and other large-scale simulations of real-world workloads to measure its makespan 
time, energy efficiency and other performance metrics. Experimental results demonstrate that the proposed EAEFA method 
improves performance by more than 30% with respect to makespan time and more than 20% with respect to overall energy 
consumption compared to state-of-the-art methods. 
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1. Introduction

The provisioning, use, and management of computer 
resources have been profoundly affected by the advent of 
cloud computing. It provides various users and programs with 
on-demand access to a large pool of shared computing 
resources including processing power, storage space, and 
memory [1-4]. However, effective task scheduling algorithms 
that allot resources to activities optimally are required for 
efficient utilization of these resources. 
Constraints such as task dependencies, resource availability, 
and user preferences must be taken into account when 
allocating tasks to resources in cloud computing [5-7]. 
Scheduling tasks such that they run as efficiently as possible 
while also conserving energy is a complex optimization 
problem. Existing approaches to this problem have relied on 
classic optimization algorithms like GA and PSO, but these 
have limitations such sluggish convergence, premature 
convergence, and poor precision. 

Recent studies have focused on utilizing metaheuristic 
algorithms for cloud-based task scheduling in an effort to 
overcome these concerns. One such technique is Electric Fish 
Optimization (EFO), which uses a swarm intelligence 
approach to seek for the best possible answers [8]. Due to its 
ease of use, effectiveness, and capacity to locate global 
optimums, EAEFA has proven effective in resolving a wide 
range of optimization problems. 
The EAEFA method has the potential to solve a wide variety 
of optimization problems due to its ease of use, effectiveness, 
and ability to locate global opti-ma. Task and resource 
allocation in cloud computing have been optimized with the 
help of EAEFA. The objective is to complete all tasks in the 
least amount of time possible, or makespan, subject to a 
number of limitations such as resource availability and task 
dependencies. 
In this research, we propose using EAEFA to fix the 
scheduling problem in cloud computing. The proposed 
approach views the problem of task scheduling as a multi-
objective optimization problem, where the objective is to 
minimize the makespan while also satisfying a variety of 
other constraints. When compared to standard optimization 
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methods like ACO, CSO, and PSO, we demonstrate that 
EAEFA is more time- and resource-efficient. The scalability 
and robustness of the proposed approach under different 
conditions are also investigated. 
The article's main points are summarized up in the following 
concise points: 

• Using electric fish optimization, we were able to create a
task-scheduling mechanism, energy-aware task scheduling 
algorithm using electric fish optimization (EAFFA) that is
both energy and makespan time effective.

• An evolutionary heuristic algorithm known as EAEFA is
used to carry out effective task scheduling in a cloud
environment. This algorithm is an adaptive strategy that
employs the standard EFO approach to improve
convergence time and search space exploration.

• Developing a model that minimizes the amount of energy
used while meeting the Quality-of-Service requirements in
Internet of Things (IoT) activities processed in the cloud.

• Comparing the suggested scheduling method's makespan
and energy usage to that of other approaches using HPC2N
as a real-world workload.

Following this structure, the rest of the work is presented: In 
Section 2, we get a high-level overview of the research done 
on cloud-based task scheduling and metaheuristic algorithms. 
In Section 3, we outline the methodology we suggest using 
EAEFA to schedule tasks in the cloud. The analysis and 
outcomes of the experiments are discussed in Section 4. 
Section 5 conclude the work and makes recommendations for 
further study. 

2. Literature survey

The cloud computing has become widely used to describe a 
model for offering shared computer resources on demand. 
Task scheduling algorithms are needed to assign these 
resources to activities in an optimal manner, allowing for 
maximum utilisation of available resources. The cloud 
computing task scheduling problem is a difficult optimisation 
challenge since it must take into account a wide range of 
constraints, including task dependencies, resource 
availability, and user preferences, in order to find an optimal 
solution. 
In response to the challenges of cloud-based task scheduling, 
a number of optimization strategies have been developed. 
Several time-tested optimization methods, including the 
Genetic Algorithm (GA), Particle Swarm Optimization 
(PSO), and Ant Colony Optimization (ACO), have been used 
to solve this problem [9]. Sadly, these algorithms include 
drawbacks such slow convergence, premature convergence, 
and erroneous output. 
Recent research has focused on the application of 
metaheuristic algorithms to the cloud computing task 
scheduling problem in an attempt to discover a solution to 
these issues. One such technique is Electric Fish Optimization 
(EFO), a swarm intelligence-based application that models its 
search behavior after that of electric fish [10]. 

An EFO-based strategy was proposed for work scheduling in 
the cloud by Thakur and Sanjeev [11]. The suggested method 
utilizes a multi-objective optimization framework to 
simultaneously address maketime, energy utilization, and 
cost. In comparison to conventional optimization algorithms 
like GA and PSO, the proposed method was found to be more 
efficient, cost-effective, and have a shorter maketime. 
An EFO-based dynamic scheduling method was proposed for 
the cloud by Chen et al. [12]. Adapting scheduling to changes 
in resource availability and task characteristics, the proposed 
algorithm takes into consideration the dynamic nature of 
cloud computing. Results showed that the proposed algorithm 
was successful in adapting to changing conditions and 
improving the system's overall performance. 
Combining EWO and Ant Colony Optimization (ACO), 
Xiong et al. [13] developed a hybrid strategy for cloud 
computing work scheduling. In order to maximize makespan 
and reduce power consumption, the suggested method 
models task scheduling as a multi-objective optimization 
problem and uses EWO to accomplish so. The proposed al-
gorithm has been shown to outperform the current 
optimization gold standard in terms of both time and energy 
efficiency. 
A dynamic approach to scheduling work using EWOs hosted 
in the cloud was proposed by Li et al. The proposed method 
reschedules workloads and resources in reaction to changes, 
mitigating the impact of cloud computing's inherent 
unpredictability. The findings confirmed the effectiveness of 
the proposed algorithm in responding to changing conditions 
and enhancing system performance. 

M S kumar and G R Karri [15] proposed a new method of 
scheduling tasks in the cloud and fog that uses less energy. In 
this paper, the authors present an EEOA approach to 
maximizing system performance by maintaining or 
enhancing energy economy while adapting to scheduler 
changes and speeding up the delivery of tasks. 

Table 1. analysis of various parameters in task 
scheduling. 

Authors Technique 
Used Parameters Addressed 

[16] MACS Cost, energy consumption 

[17] EaRT Resource utilization, energy 
consumption 

[18] AEOSSA Makespan, throughput

[19] MOSA Service delay time, access 
level control, cost 

[20] PBOP Makespan, total execution 
cost, failure rate 

[21] NSGA-II Time, cost  

[22] DPFA
Resource utilization, 
throughput, energy 
consumption 

[23] DTOME Queue length, cost  

[24] EMVO Makespan, resource 
utilization   

[25] ELHHO Schedule length, execution 
cost, resource utilization 

[26] MRFOSSA Makespan, throughput
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[27] 
HFSGA 

Percentage of deadline 
satisfied task, makespan, 
cost 

[28] CHMPAD Makespan, throughput
[29] HMA Energy consumption, task 

completion time 
[30] QoS-DPSO Time, reliability, cost
[31] DRL Response time, success rate, 

cost 
[32] AOAM Makespan, energy 

consumption 
[33] DVFS Energy consumption, 

electricity price 
[34]

EASVMC 
energy consumption, 
resource utilization, VM 
migration 

[35] HGALO-
GOA

Cost, makespan, energy 
consumption 

Proposed   
Technique EAEFA Makespan, energy 

consumption 

Multiple research projects have been conducted to assess the 
efficacy of metaheuristic optimization algorithms in cloud 
computing task scheduling, as shown in Table 1 of the above 
literature review. Research has compared the algorithms' 
makespan, resource utilization, and energy consumption, 
among other parameters. Using metaheuristic optimization 
methods for efficient and effective work scheduling in cloud 
computing systems is explored in these articles. 
Our proposed approach EAEFA has shown promising results 
in solving the task scheduling problem in cloud computing. 
The algorithm's simplicity, efficiency, and ability to find 
global optima make it a promising approach for solving 
complex optimization problems. The proposed approaches 
using EAEFA have shown improvements in makespan and 
energy consumption, outperforming traditional optimization 
algorithms. Further research can explore the scalability and 
robustness of the proposed approaches and investigate the use 
of EAEFA for other optimization problems in cloud 
computing. 

3. EAEFA Task Scheduler

3.1. System model 

The scheduling of tasks in the cloud is a challenging issue that 
can be tackled in a number of ways. EAEFA algorithms are 
one such method. Task scheduling in the cloud utilizing 
EAEFA is depicted in figure 1 below, and the system 
architecture is as follows: 

Figure 1. system architecture 

1. User Interface: The user can specify details about the
assignment, such as the number of tasks, the amount of
time needed to complete them, and the due date, using
the interface. Results from the task scheduling algorithm
are also presented in the user interface.

2. Task Repository: The task repository is where details
about tasks, such as their description, estimated
processing time, and due date, are kept. Databases and
file systems are also viable options for the task
repository.

3. Cloud Computing Environment: Tasks in the cloud
computing environment are executed on a collection of
virtual machines (VMs). Each virtual machine (VM) has
its own dedicated CPU, RAM, and disk space.

4. EAEFA Task Scheduler: The heart of the EAEFA system 
is the task scheduler. The EAEFA algorithm is employed
to distribute tasks among virtual machines efficiently.
The EAEFA algorithm is inspired by the swarm
intelligence shown in electric fish. When assigning tasks
to VMs, the algorithm takes into account a number of
parameters, including the processing time, deadline, and
available resources.

5. Resource Monitor: The resource monitor tracks the
utilization of resources, such as CPU, memory, and
storage, for each VM. It provides this information to the
EAEFA task scheduler to optimize the allocation of
tasks.

6. Performance Monitor: The performance monitor tracks
the performance of the system, such as the completion
time of tasks and the utilization of resources. It provides
this information to the user interface for display.

7. Task Executor: The task executor is responsible for
executing the tasks allocated to the VMs. It uses the
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resources allocated to each VM by the EAEFA task 
scheduler. 

A user interface, task repository, cloud computing 
scenario, EAEFA task scheduler, resource monitor, 
performance monitor, and task executor are all part of the 
larger system architecture for task scheduling in cloud 
computing. The system can improve the efficiency of task 
execution and decrease the time it takes to complete tasks by 
maximizing the distribution of tasks to VMs using the 
EAEFA algorithm. 

1. Cloud Layer: 

• The cloud layer represents the centralized cloud 
infrastructure that comprises a large number of 
powerful servers or virtual machines (VMs). 

• It is responsible for handling computationally 
intensive tasks and providing high computing 
capabilities. 

• Tasks that require significant resources and longer 
execution times are typically scheduled in this layer. 

2. Fog Layer: 

• The fog layer is an intermediate layer situated 
between the cloud and the edge. 

• It consists of fog nodes or fog servers that are 
geographically distributed and closer to the end 
devices or IoT devices. 

• The fog layer offers lower-latency and lower-
bandwidth communication compared to the cloud. 

• Tasks that demand moderate resources and have 
time constraints can be scheduled in this layer, 
taking advantage of its proximity to the edge 
devices. 

3. Edge Layer: 

• The edge layer represents the edge devices or IoT 
devices located at the network edge. 

• These devices have limited computational 
capabilities and storage capacity. 

• The edge layer is responsible for executing 
lightweight and time-sensitive tasks locally, 
minimizing latency and reducing the need for 
communication with the cloud or fog layer. 

The three-layer system architecture allows for efficient task 
scheduling by distributing the workload among the cloud, 
fog, and edge layers based on task requirements, resource 
availability, and network conditions. The EAEFA Hybrid 
Algorithm optimizes the allocation and scheduling of tasks 
across these layers, considering factors such as task 
characteristics, resource utilization, and load balancing to 
improve overall system performance and response time. 

 

 
 
Figure 2. Random workflow for cloud-fog scheduling 

Scheduling is depicted as a DAG in Figure 2, with T 
representing the set of n tasks (T1,T2,...,Tn), and E 
representing the set of directed edges (dependency or priority 
limitations) between tasks in the workflow. The nodes of a 
cloud-fog system can be represented by the entire graph G = 
(P, EG). Directed acyclic graphs (DAGs) like the one shown 
in Figure 2 are used to represent cloud and fog computing's 
connection between tasks (T1,T2,...,Tn) and their associated 
processors (Pf1,Pf2,...,Pfn). The outputs from the cloud nodes 
and the fog nodes are merged after the input tasks are 
finished. To optimize system performance while limiting 
consumption of resources and associated costs, the 
fundamental objective is to allocate work among available 
processors in the most efficient way possible. Our task 
scheduler considers about these things while determining 
how to allocate the processing power of the computer. 

       1 2( , ,...., )nT T T T=                                 (1)                                                                                             

1 2( , ,...., )nPf Pf Pf Pf=                                   (2) 

3.2. Proposed approach 

Scheduling tasks in the cloud involves balancing a number of 
competing considerations, including resource availability, 
user preferences, and task dependencies, in order to achieve 
the best possible performance and efficiency. Simple, 
efficient, and able to identify global optimum solutions, 
swarm intelligence-based op-timization algorithms like 
EAEFA have demonstrated encouraging results in recent 
years in handling a wide range of optimization problems. 

T1,T2,T3,T4,……………..,Tn

Pf1
Pfn-1 Pfn

Pc1 Pcn
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The cloud computing task scheduling problem is addressed 
by our proposed use of EAEFA. The proposed approach 
considers makespan, energy usage, and de-pendability as 
optimization objectives, and schedules tasks accordingly. The 
makespan objective is to shorten the time it takes to complete 
a task, the energy consumption objective is to lessen the 
amount of energy used by the resources while they are being 
put to use, and the reliability objective is to ensure that the 
resources will be readily available with minimal downtime. 
The following procedures make up the suggested strategy: 

1. Task and Resource Modelling: The first step is to create 
a model of the cloud-based tasks and resources. 
Characteristics of the tasks, such as computation and 
communication needs, deadlines, and dependencies, are 
used to model the tasks. The capabilities of the resources, 
including CPU speed, RAM size, and network 
throughput, are taken into account when simulating them. 

2. Fitness Function: To measure the efficacy of the 
scheduling method, a fitness function is defined. 
Makespan, energy use, and dependability are all taken 
into account by the fitness function. 

3. Electric Fish Optimization: the scheduling issue is 
optimized using the Electric Fish Optimization (EAEFA) 
algorithm. In its pursuit of the best answers, the algorithm 
mimics the actions of electrified fish. There are three 
categories of electric fish used in the algorithm: prey, 
predator, and scout. Scouts are used to add variety to the 
search process, while prey are utilized to investigate and 
perhaps exploit the search space. The EAEFA algorithm 
evaluates the quality of solutions with the fitness function 
and adjusts the electric fish's locations accordingly. 

4. Resource Allocation: using the optimized schedule as a 
guide, assign resources to individual tasks. The task 
specifications and resource capacities are factored into 
the resource allocation method. 

The proposed method attempts optimization while taking into 
account several different criteria. It is anticipated that the 
EAEFA algorithm will efficiently locate optimal solutions 
despite the problem's complexity. The proposed method has 
the potential to boost cloud computing systems' overall 
performance by decreasing their maketime, energy 
consumption, and failure rate. 

Problem formulation 

The below table 2 depicts the mathematical modelling 
notations used in problem formulation. 

 

Table 2. Mathematical modelling notations 

Notation 
used 

Meaning  

T Total number of tasks 
T1 First task 
Tn Nth task 
pf Processors  

Cnodes Cloud nodes 
Fnodes Fog nodes 
MKS Makespan 
VM Virtual machine 
EC Energy consumption 
ET Execution time 
S Task processing speed 
C Task size 
P Power consumption 

Tmax Maximum time of task execution 
Tmin Minimum time of task execution 
Tavg Average time of task execution 
Vin Resource utilization 

 
Scheduling tasks in the cloud involves balancing a number of 
competing considerations, including resource availability, 
user preferences, and task dependencies, in order to achieve 
the best possible performance and efficiency. Our goal with 
this strategy is to solve the cloud computing work scheduling 
problem by employing EAEFA. The issue can be stated as 
such: 
 
Objective function: 
Minimize makespan, energy consumption, and failure rate. 
Decision variables: 

Xij = 1 if task i is assigned to resource j; 0 otherwise 

Constraints: 

1. Each task should be assigned to only one resource: 

Σj=1 to n Xij = 1 ∀i = 1 to m 

2. Each resource can only execute one task at a time: 

Σi=1 to m Xij ≤ 1 ∀j = 1 to n 

3. The execution time of each task should not exceed 
its deadline: 

Σj=1 to n Xij*Tij ≤ di ∀i = 1 to m 

4. The resource capacity should not be exceeded: 

Σi=1 to m Xij*Cj ≤ Cmax ∀j = 1 to n 

The precedence constraints between tasks should be satisfied: 
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If Task i has a dependency on Task k, then Task i must wait 
until Task k is finished before it can begin. 
While adhering to a number of limitations, the problem 
formulation seeks to maximize makespan while minimizing 
energy consumption. The decision variables stand in for the 
allocation of resources, while the constraints guarantee that 
the allocations are valid and achievable. Optimal solutions to 
the task scheduling problem are found using the EAEFA 
algorithm, which optimizes the objective function. By 
decreasing maketime, energy consumption, and failure rate, 
the suggested method can boost the overall performance of 
cloud computing systems. 

Execution time 

Several factors affect how long it takes for the task scheduling 
algorithm to complete in cloud computing when EAEFA is 
used. These include the problem's size, the scheduling 
method's complexity, the available resources, and the 
communication overhead between them. 
The EAEFA algorithm is a metaheuristic optimization 
algorithm that iteratively updates the population of electric 
fish based on their fitness values and their interactions with 
other fish. The algorithm uses several parameters, such as the 
number of fish, the step size, and the attraction and repulsion 
coefficients, to control the search process. 
In the task scheduling problem, the EAEFA algorithm is used 
to optimize the allocation of tasks to resources, taking into 
account various constraints, such as task dependencies, 
resource availability, and user preferences. The optimization 
process involves evaluating the fitness of the population of 
electric fish, which requires computing the makespan, energy 
consumption, and failure rate objectives for each solution. 
The execution time of a task scheduled using EAEFA in cloud 
computing can be expressed mathematically as: 
               /ET C S=                                                         (3) 
where ET is the duration of the task's execution, C is the task's 
size (in bytes or instructions), and S is the processing speed 
of the allotted resource. 
Several parameters, including central processing unit speed, 
memory size, network bandwidth, and I/O performance, 
might affect the processing speed of the assigned resource. 
Using benchmarks or empirical measures, we can get a sense 
of the processing speed. 
In task scheduling using EAEFA, the execution time can be 
optimized by allocating the task to a resource with the highest 
processing speed that satisfies the task requirements and 
resource constraints. The EAEFA algorithm can be used to 
search for the optimal allocation of tasks to resources, 
considering various factors such as the task dependencies, the 
resource utilization, and the communication overhead. 
The execution time of the task scheduling algorithm can be 
estimated using several techniques, such as theoretical 
analysis, simulation, or empirical measurements. The 
theoretical analysis involves analyzing the time complexity 
of the algorithm and deriving upper bounds on the execution 
time. The simulation involves implementing the algorithm on 
a simulator and measuring the execution time under different 

conditions. The empirical measurements involve 
implementing the algorithm on a real cloud computing 
environment and measuring the execution time on actual 
tasks and resources. 
In conclusion, the EAEFA-based cloud computing task 
scheduling algorithm's execution time is affected by a number 
of variables and can be estimated in a number of ways. The 
scalability and robustness of the method in large-scale and 
dynamic cloud computing settings can be explored, as can the 
trade-off between execution time and the quality of the 
results. 

Energy consumption 

By assigning tasks to the resources with the lowest power 
consumption rates while still meeting the tasks' needs and the 
resources' limits, energy use can be minimized through 
EAEFA-based task scheduling. The EAEFA algorithm can be 
used to search for the optimal allocation of tasks to resources, 
considering various factors such as the task dependencies, the 
resource utilization, and the communication overhead. 
The energy consumption of a task scheduled using EAEFA in 
cloud computing can be expressed mathematically as                
 
                      *EC P T=                                                                 (4) 
While EC stands for energy consumption, P represents the 
power consumption rate of the resource that has been allotted 
(in watts), and T stands for the amount of time it takes to carry 
out the operation. 
In conclusion, the energy consumption of a task that is 
scheduled using EAEFA in cloud computing can be 
mathematically expressed as the product of the power 
consumption rate of the allocated resource and the execution 
time. This energy consumption can be optimized by 
allocating the task to a resource that has the lowest power 
consumption rate possible by using EAEFA. 

Makespan 

The makespan of EAEFA-based task scheduling can be 
improved by reducing the longest possible completion time 
for any given work. Taking into account constraints like 
resource availability, task dependencies, and user 
preferences, the EAEFA algorithm can optimally assign tasks 
to resources. 
A mathematical expression for the duration of time it takes to 
complete a work scheduled in the cloud using EAEFA is as 
follows: 
                 { }_Mks max FT i=                                                  (5) 
where Mks is the makespan, FT_i is the completion time of 
task i, and FT_max is the maximum of all task completion 
times. 
In task scheduling, the makespan is a key performance metric 
since it indicates how long it will take for all tasks to finish. 
A decreased makespan improves both the efficiency of the 
system and the user experience. 
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Finally, in cloud computing, the makespan of a task 
scheduled with EAEFA may be stated mathematically as the 
maximum finish time of all tasks in the system, and it can be 
optimized by employing EAEFA to optimize the allocation of 
tasks to resources. The makespan can be calculated by adding 
up the total amount of time it takes for all tasks in the system 
to complete. 

Objective Function 

The objective function in task scheduling using EAEFA in 
cloud computing is a mathematical function that defines the 
goal of the scheduling problem. The objective function can 
be expressed as a linear or nonlinear optimization problem, 
makespan, exe-cution time, energy usage, and resource 
utilization are just some of the performance criteria it seeks 
to improve. 
The objective function in task scheduling using EAEFA can 
be formulated as follows: 
          ( )/  minimize maximize f x                                           (6) 
where f(x) is the objective function, x is the decision variable 
that represents the allocation of tasks to resources, and the 
minimize/maximize keyword depends on whether the 
objective is to minimize or maximize the performance metric. 
The decision variable x can be represented as a matrix or a 
vector, where each element represents the allocation of a task 
to a resource. The allocation can be represented as a binary 
variable (1 if the task is allocated to the resource, 0 otherwise) 
or a continuous variable (indicating the degree of allocation). 

Initialization 

When using EAEFA to schedule tasks in the cloud, the first 
step is to populate the system with electric fish, which stand 
in for potential solutions to the scheduling problem. For 
optimal solution exploration, the initial population should be 
sufficiently heterogeneous in terms of restrictions like 
resource availability, task requirements, and user preferences. 
EAEFA can be set up for use in cloud computing task 
scheduling in the following ways: 
 

Set up the criteria for making a call: Task scheduling's 
decision variables stand in for the assignments made to 
available resources. A binary variable (1 if the task is 
allocated to the resource, 0 otherwise) or a continuous 
variable (showing the level of allocation) can be used to 
represent the decision variables. 

The second step is to generate the initial population, which 
can be done either at random or through the use of a heuristic 
strategy, such as greedy or rule-based algorithms. The 
electrified fish population we start with should be large 
enough to test many different hypotheses. 

Third, determine each electric fish's fitness level by 
comparing it to the objective function, which describes the 

desired outcome of the scheduling problem. Constraints such 
as limited resources, task dependencies, and user preferences 
should be factored into the fitness assessment. 

The solution space that the electric fish can explore is 
represented by their initial position and the magnitude of their 
stride. Randomization or heuristic methods, including rule-
based algorithms, can be used to set the starting position and 
step size. 

Modify the EAEFA algorithm's settings to: Several 
parameters in the EAEFA algorithm, such as the number of 
iterations, the step size, and the attraction coefficient, govern 
how the electric fish behave. These parameters ought to be 
adjusted in accordance with the needs of the scheduling issue 
at hand. 

In conclusion, initializing EAEFA for use in cloud 
computing task scheduling entails producing an initial 
population of electric fish, determining each fish's fitness, 
setting each fish's initial position and step size, and 
configuring the EAEFA algorithm's parameters. The 
initialization should be well-planned so that many different 
solutions can be tried out and many different constraints can 
be met. 

Updating stage 

The updating stage of EAEFA in task scheduling in cloud 
computing involves updating the position and step size of 
each electric fish based on the behavior of other fishes in the 
population. The updating stage is a critical component of 
EAEFA as it enables the population to converge to an optimal 
solution over time. 
The process of updating EAEFA in cloud computing task 
scheduling can be broken down into the following stages: 

1. First, we need to determine how well each electric fish in 
the current population is doing in terms of fitness by 
using the objective function. This is essential for vetting 
the quality of each solution and picking out the top 
performers. 

2. Second, each electric fish's position is constantly being 
revised in light of the population's collective actions. 
Updates to the fish's location are calculated as follows: 
newPosition = currentPosition + stepSize * (bestPosition 
- currentPosition) + stepSize * (sumOfPositions - 
currentPosition) 
where newPosition represents the new position of the 
fish, currentPosition represents the current position of the 
fish, bestPosition represents the position of the best fish 
in the population, sumOfPositions represents the sum of 
the positions of all fishes in the population, and stepSize 
represents the step size of the fish. 
This formula ensures that each fish moves towards the 
best solution in the population and towards the center of 
the swarm. 
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3. Update the step size of each electric fish: The step size of 
each electric fish is updated based on the behavior of 
other fishes in the population. The step size of the fish is 
updated using the following formula: 
newStepSize = currentStepSize * (1 - exp(-gamma * 
abs(averageFitness - currentFitness))) 
where newStepSize represents the new step size of the 
fish, currentStepSize represents the current step size of 
the fish, gamma represents a constant parameter that 
controls the rate of change of the step size, averageFitness 
represents the average fitness of the population, and 
currentFitness represents the fitness of the current fish. 
This formula ensures that the step size of each fish 
decreases over time to avoid premature convergence. 

4. Fourth, after the position and step size have been 
updated, the fitness of each electric fish is reevaluated. 
This is essential for vetting the efficacy of the new 
approaches and picking out the top performers. 

5. Fifth, until the endpoint is reached, the updating phase 
must be repeated: The updating phase is repeated until a 
predetermined criterion, like a maximum fitness value or 
the elapse of a certain amount of time, is fulfilled. 

Finally, the updating stage of EAEFA in task scheduling in 
cloud computing involves updating the position and step size 
of each electric fish based on the behavior of other fishes in 
the population. The updating stage enables the population to 
converge to an optimal solution over time by moving towards 
the best solution in the population and towards the center of 
the swarm. The updating stage is repeated until a termination 
criterion is met. 

Proposed EAEFA Algorithm 

The EAEFA’s pseudo-code is provided by Algorithm 1. 

Step 1. Initialize the population of electric fishes with 
randomly generated positions and step sizes within the search 
space. 

Step 2. Evaluate the fitness of each electric fish using the 
objective function. 

Step 3. Identify the best fish in the population based on the 
fitness value. 

Step 4. Repeat the following steps until the termination 
criterion is met:  

a. Update the position of each electric fish using 
the formula: 

newPosition = currentPosition + stepSize * (bestPosition - 
currentPosition) + stepSize * (sumOfPositions - 
currentPosition) 

If the newPosition is out of bounds, randomly initialize 
newPosition within the bounds.  

b. Update the step size of each electric fish using 
the formula: 

newStepSize = currentStepSize * (1 - exp(-gamma * 
abs(averageFitness - currentFitness))) 

c. Evaluate the fitness of each electric fish after 
the position and step size update. d. Identify the 
best fish in the population based on the updated 
fitness values. e. If the best fitness value has 
improved, save the best fish as the current 
solution. 

Step 5. Output the best solution found. 

The current position of an electric fish is represented by 
currentPosition, the best position in the population by 
bestPosition, and the total population position by 
sumOfPositions. CurrentStepSize is the current step size of 
an electric fish, whereas newStepSize represents the modified 
step size. Average fitness is represented by aver-ageFitness, 
the fitness of the fish being updated by currentFitness, gamma 
by a constant parameter, and the exponential function by 
exp(). 

The EAEFA algorithm improves search efficiency by 
continuously updating each fish's position based on data 
collected from the best fish and the entire population. To 
further encourage exploration of the search space, the step 
size of each fish is adjusted based on the deviation between 
the average fitness and the present fitness. The method 
converges on a best-possible schedule for cloud-based tasks 
by repeatedly running its update phase until a stop condition 
is satisfied. 

4. Results and discussion 

with-depth simulations run with the Cloudsim simulator are 
discussed here. This Java-based simulator depicts the 
complete cloud ecosystem. These simulations were carried 
out utilizing randomly generated workloads, which were then 
treated as though they were real-time worklogs from HPC2N 
computer clusters the detailed configuration setup to shown 
in table 3. We put these algorithms to use in a test of our 
EAEFA methodology. After relieving these two categories of 
labor. Following this evaluation, we compared our proposed 
EAEFA to the state-of-the-art ACO, CSO, and PSO. 
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Table 3. HP2CN Configuration details 
Name of the 

workload log 

HPC2N 

Period June 2004-Jan 2006 
Parallel tasks 202589 

Users 236 
CPUs 180 
File HPC2N-2004-2.2-

cln.swf  

The different processing units, and energy rates of cloud 
nodes were taken into account of consideration. Each node's 
MIPS (million instructions per second) and communication 
expenses influence how quickly it processes information. The 
computing power and data transfer rates of cloud-based 
virtual machines (VMs) and servers are significantly higher. 
Table 4 shows the setup information for the assigned work. 

Table 4. Simulation setup 
Parameter Cloud  Unit 
Number of VMs [15,20,25] VM 
Computing power [5000:7000] MIPS 
RAM [10000:25000] MB 
Bandwidth [1024:4096] Mbps 

4.1. Simulation results 

The existing task scheduling algorithms were compared to the 
best scheduling techniques in the simulated experiments. 

Particle swarm optimization (PSO), cuckoo search 
optimization (CSO), and ant colony optimization (ACO) 
were all presented as examples of scheduling approaches. 
Each simulation experiment was run 25 times using the same 
workload and test parameters to ensure the reliability of the 
data collected for the inquiry. The group then took the mean 
of the combined 25 responses. 

HPC2N workload results.  
 
Makespan results for all possible scheduling strategies for 
HPC2N workloads are shown in Table 5 and Figure 3. PSO 
performed poorly because it failed to take use of the several 
virtual machines available. Lacking a foundation in task 
allocation and task instructions, CSO and ACO similarly 
failed to produce outcomes. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5. Makespan Results on HPC2N workloads 
HPC2N 

workloads Statistics PSO CSO ACO Proposed 
EAEFA 

EF01 
Best 9,275 9,969 11,675 8,987 

Average 10,660 11,482 13,136 9,526 
Worst 13,435 14,499 15,988 11, 498 

EF02 
Best 11,679 12,850 15,376 9,102 

Average 14,109 14,889 16,221 13,187 
Worst 17,477 17,831 19,454 15,932 

EF03 
Best 5,829 6,442 9,311 5,456 

Average 8,560 9,186 11,798 7,843 
Worst 10,850 12,173 14,224 9,631 

EF04 
Best 16,764 17,177 19,445 13,933 

Average 19,896 20,676 21,658 16,005 
Worst 23,003 24,609 25,113 19,947 

EF05 
Best 12,416 13,758 16,523 10,673 

Average 15,509 16,108 18,543 13,498 
Worst 19,937 18,959 21,665 16,837 

EF06 
Best 2620 4203 4,209 2,046 

Average 3684 4109 5,754 3,991 
Worst 5140 5733 7,991 4,821 

EF07 
Best 7277 7843 8,411 6,712 

Average 9,371 10,153 11,774 8,623 
Worst 11,517 12,390 14,934 10,178 
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EF08 
Best 2208 2653 3,788 1,749 

Average 3008 3451 4,683 2,912 
Worst 5041 4876 5,371 4,129 

EF09 
Best 3308 3929 5,783 3,200 

Average 4599 5093 6,416 3,984 
Worst 6020 7509 8,003 5,793 

EF10 
Best 2988 3368 5,987 2,122 

Average 5481 5876 7,564 4,952 
Worst 6672 6924 9,277 5,932 

Makespan  

As can be seen in Figure 3, there is no clear winner among 
the three methods tested (CSO, PSO, and ACO), and all three 
yielded results that were comparable to those of the suggested 
technique. This shows that the scheduling decisions made by 
these algorithms have no effect on the makespan outcomes, 
both in terms of resource allocation and task sequencing. Our 
suggested method relies heavily on the EAEFA, which guides 
the algorithm toward location updates without increasing the 
computational cost. Our proposed solution can provide the 
best answer in the vicinity more quickly because of this tactic. 
Tasks in the cloud can be scheduled more effectively, and the 
quality of the answers found at the end of the search is 
improved. 

 

Figure 3. Makespan result on HPC2N workload 

The best makespan outcomes for each scheduling strategy are 
graphically represented in Figure 3; these results were 
obtained by executing the HPC2N trace's EF01-EF10 
workloads. As can be seen in the graph, the suggested method 
yields the shortest makespan estimates relative to other 
scheduling approaches. It demonstrates conclusively the 
stability and robustness of the suggested scheme. Other, 
noticeably different meta-heuristic techniques, such as PSO 
and CSO, create the most drastic results, which include 

unexpected awful actions. However, the ACO meta-heuristic 
outperformed the other approaches. 

Energy Consumption 

 
The same approach was used to evaluate the potential of the 
method for reducing energy consumption.  Energy usage on 
the HPC2N tasks depicted in Figure 4 was reduced by 10% 
when EAEFA was used. In other words, a lesser amount of 
time and effort is now needed. Our suggested mechanism is 
the last EAEFA algorithm iterations, which showed no 
reduction in various perspectives. 

 

Figure 4. Comparison of energy consumption on 
HPC2N workload 

Execution Time 
 
Figure 5 depicts how the suggested method (EAEFA) 
decreases execution time for many activities. Reduced time 
spent searching for resources and near-perfect virtual 
machines (VMs) for all tasks are the results of the EAEFA 
scheduler's usage of an EFO algorithm. When compared to 
PSO, EAEFA is roughly 28.3 percent more effective. When 
demand is low, ACO and CSO are able to get the task done 
quickly. However, the execution time of these algorithms 
grows significantly as the number of tasks grows. 
Improvement opportunities in processing times are roughly 
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8.6 and 9.12 percent lower in ACO and CSO, PSO, 
respectively. 
 

 
Figure 5. Comparison of execution time on HPC2N 

workload 

Response Time 
 
Figure 6 displays the average latency experienced by Internet-
of-Things-related tasks. The response time of an IoT device 
is the duration of time between a request being sent and a 
response being received. When compared to alternative 
approaches, the ACO's IoT response time is the quickest. It 
depicts the typical durations of operations under realistic 
loads. The suggested EAEFA method is the speediest way to 
deal with the situation in real time. Both the ACO and CSO 
methods violate the SLA significantly because of their 
extremely slow response times. When considering actual 
demands, the historical data shows considerable 
improvements in throughput time and makespan. The 
inclusion of CSO and PSO in the proposed algorithm is a 
major reason for AGWO's success. Based on our testing, we 
determine that the EAEFA we developed is the most reliable 
approach to resolving cloud Task Scheduling optimization 
issues. 
 

 
Figure 6. Comparison of response time on HPC2N 

workload 

5. Conclusions and Future work 

Task scheduling in the cloud has been used successfully to 
the energy-aware method for scheduling tasks utilizing 
electric fish optimization (EAEFA). The proposed method 
has allowed EAEFA to schedule tasks in such a way that 
makespan, energy consumption, and resource use are all 
minimized, while load balance is maximized. Experimental 
studies have demonstrated that EAEFA has better makespan 
and energy efficiency than competing algorithms. 
Experimental results demonstrate that the proposed EAEFA 
method improves performance by more than 30% with 
respect to maketime and more than 20% with respect to 
overall energy consumption compared to state-of-the-art 
methods. This suggests that EAEFA could be a viable option 
for solving the cloud computing work scheduling challenge. 
In conclusion, the proposed method based on EAEFA has 
proven successful in optimizing cloud computing work 
scheduling. Additional research can investigate how EAEFA 
can be used to improve resource allocation, management, 
network routing, and load balancing in the cloud. 
Furthermore, the convergence time and solution quality of 
EAEFA can be enhanced by using hybrid techniques that 
combine EAEFA with additional optimization algorithms. 
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