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Abstract 
Potato crops are vital to global food security and economy, yet they are vulnerable to a wide range of leaf diseases that can 
significantly impact yield and quality. Rapid diagnosis and accurate identification of these disorders are critical for 
effective disease control and prevention. In this research, we offer an extensive evaluation and contrast of three state -of-
art CNN models- VGG19, DenseNet121 and ResNet50-in order to identify and forecast potato leaf diseases. Our study 
employed a sizable dataset of potato leaf images, containing diverse healthy and afflicted specimens, to train and assess the 
performance of the chosen CNN models. Extensive data augmentation techniques were employed to enhance the dataset’s 
diversity and generalization capabilities. We evaluated the models considering their accuracy, precision, recall, F1-score 
and computational efficiency to determine the most fitting model for real-life applications. The results demonstrate that all 
three CNN models achieved high performance in identifying and predicting potato leaf diseases, with VGG19 emerging as 
the top performer followed closely by DenseNet121 and ResNet50.Our findings provide valuable insights into the efficacy 
of DL approaches for potato leaf ailment identification and offer a foundation for future research and deployment of these 
models in precision agriculture systems. Ultimately, this work aims to support the development of more robust and 
efficient tools for timely disease diagnosis, enabling farmers and agronomists to make better-informed decisions and 
safeguard the health and productivity of potato crops worldwide. 
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1. Introduction

Potato (Solanum tuberosum) is a significant staple crop 
worldwide, playing a crucial role in meeting the dietary 
needs of millions of people and contributing substantially to 
the global economy. Despite its importance, potato 
cultivation faces several challenges, primarily due to various 
leaf diseases that can cause considerable reductions in yield 
and quality. Early and accurate identification of these 
diseases is vital for implementing effective management 
strategies and ensuring the sustainable production of this 
essential crop. Traditional methods for diagnosing potato 
leaf diseases, such as visual inspection and laboratory-based 

testing, are labor-intensive, taking time, and often at risk of 
errors. The rapid advancements in computer vision and DL 
technologies have paved the way for overcoming these 
constraints, with CNNs emerging as a promising solution for 
accurate and efficient disease recognition and prediction in 
plants. Food scarcity has become an increasingly critical 
concern in developing nations, where potatoes serve as a 
primary staple food throughout the year. The decline in 
potato production is primarily due to the impact of various 
diseases, such as Early Blight and Late Blight, which lead to 
substantial losses in crop yield and have significant economic 
consequences [1]. Potato diseases have far-reaching effects 
on the agricultural industry, as they not only reduce the 
productivity and quality of potato crops but also negatively 
impact farmers' livelihoods [2]. The rapid growth of 
agricultural technology and artificial intelligence has drawn 
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attention to the significance of relevant research in 
facilitating sustainable agricultural development [3]. 
Traditional methods of detecting potato leaf diseases, which 
typically involve manual inspection and laboratory analysis, 
are labor-intensive, time-consuming, and demand a high 
level of expertise. By contrast, efficient and automated early-
stage detection methods can dramatically enhance potato 
crop production [4]. Recent studies have highlighted the 
potential of image processing techniques in agriculture, 
particularly in diagnosing crop diseases [5]. Prompt 
identification of plant and fruit ailments is crucial for 
implementing preventive actions and minimizing crop 
damage [6]. Computer vision and processing of images 
provide a non-destructive and effective method for analysing 
surface defects in agricultural goods such as potatoes [7]. 
Potatoes are a strategic crop worldwide, ranking third in 
importance as a staple food after wheat and rice [8]. Quality 
classification is crucial for countries that rely on potato 
exports, as it helps attract target markets and generate 
revenue [9]. Image processing techniques, combined with 
ML algorithms like SVM and DL, can be employed to 
classify potatoes based on their surface characteristics [10]. 
This research introduces a groundbreaking DL-based 
technique to distinguish and categorize five distinct kinds of 
potato ailments: Healthy, Black Scurf, Common Scab, Black 
Leg, and Pink Rot. Earlier studies on potato disease 
identification mainly utilized conventional methods and 
centered on detecting one or two disease types [11]. Our 
approach, which uses DL to diagnose five types of diseases, 
is innovative and has demonstrated high accuracy, 
outperforming traditional methods [12]. 

2. Related Works

Rizqi Amaliatus [13] suggested a method based on leaf 
conditions that employs DL with the VGG16 and VGG19 
CNN architectures being used to categorize four different 
forms of illnesses in potato plants. The experiment had a 91% 
average accuracy, proving the utility of a deep neural 
network technique for disease classification in potato plants. 
Weirong Chen [14] developed a DL-based technique for 
identifying potato diseases that achieved a superior 
performance compared to other methods, with an average 
recognition accuracy of 97.73% across several potato disease 
categories. The experimental results demonstrate the 
competitiveness and validity of the proposed procedure in 
potato disease identification. Trong-Yen Lee [15] developed 
a highly efficient CNN framework specifically suited for 
potato disease identification. Image processing was used to 
build the training set, and the model was optimised using 
Adam and cross-entropy for analysis. SoftMax acted as the 
final decision-making function. While preserving high 
accuracy, the suggested framework minimised convolution 
layers and resources. According to the experimental results, 
the model detected plant diseases with 99.53% accuracy and 
reduced parameter usage by 99.39% on average. 

Rashid, J. (2023) [16] devised a potato leaf disease 
identification model using DL techniques, which underwent 
training and testing on a dataset comprising 4,062 images of 
potato leaf diseases gathered from Central Punjab. The 
suggested method attained a remarkable accuracy of 99.75% 
on the dataset for potato leaf diseases. Additionally, the 
model's performance was assessed on the Plant Village 
dataset, where it exhibited considerable enhancements in 
both accuracy and computational efficiency in comparison to 
leading-edge models. Saeed, Z., and Khan, M. U. [17] put 
forward a method for categorizing potato diseases that 
integrates computer vision and DL  concepts. By employing 
sophisticated CNN like ResNet-152 and InceptionV3, the 
approach utilized the Kaggle potato dataset for training and 
accomplished 98.34% and 95.24% accuracies, respectively, 
at a 0.0005 learning rate. This established system proficiently 
differentiates potato leaves into three classifications: 
unblemished, early blight, and late blight. Kumar [18] 
presented a high-efficacy DL-based CNN strategy for the 
reliable recognition of potato diseases, which was examined 
and executed through the Matlab Simulink platform. The 
recommended technique outshined other established 
methods, such as VGG-INCEP, Deep CNN, RF, and multiple 
SNN models. While specificity, sensitivity, and PSNR of the 
advanced method were 4.5%, 1%, and 2% higher, 
respectively, than those of alternative techniques, accuracy, 
precision, recall, and F-score were roughly 4%, 6%, 3%, and 
3.5% higher. By adopting the proposed HDL CNN, the 
strategy's performance was elevated, enabling earlier disease 
detection and prevention, ultimately improving potato crop 
yield on a global scale. Hassan, S. M. et al. [19] demonstrated 
that their shallow VGG combined with the Xgboost model 
outperformed numerous DL models in terms of precision, 
recall, accuracy, f1-score, and specificity. The shallow VGG 
in combination with Xgboost achieved maximum accuracy 
scores of 94.47% for maize, 98.74% for potato, and 93.91% 
for tomato. On-site photos of potato, maize and tomato plants 
were used to further test the models. Even when evaluating 
field images, the shallow VGG paired with Xgboost yielded 
average accuracy levels of 94.22%, 97.36%, and 93.14%, 
respectively. 

Agarwal, M. et al. [20] introduced a Convolution Neural 
Network Architecture (CNN) for identifying potato diseases, 
which exhibited strong performance even amid challenging 
circumstances, especially various backdrops, variable image 
sizes, spatial differentiation, high-frequency shifts in 
illumination levels, and authentic scene images. The 
suggested CNN is made up of four convolution layers, each 
of which has 32, 16, and 8 filters. The advanced model's 
training success rate was assessed to be 99.47%, while its 
testing accuracy was 99.8%. Iqbal, M. A. et al. [21] carried 
out image segmentation on 450 snapshots of healthy and 
affected potato leaves, obtained from the free Plant dataset. 
Seven algorithms for classifiers were used to identify and 
categorise ill and healthy leaf samples. Of these classifiers, 
the RF classifier attained an accuracy of 97%. This 
investigation underscores the potential of automatic plant 
leaf disease diagnosis through image manipulation and ML 
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methodologies. To establish a powerful visualisation of 
features, DL-based tactics can be harnessed DL [22] has 
exhibited exceptional results in a variety of visual perception 
purposes, including text discovery [23,24], victim 
discernment [25,26], target surveillance [27,28], and object 
detection [29,30]. A more profound network can boost 
accuracy. Intriguingly, it has been demonstrated both 
conceptually and empirically that deep network final layers 
can seize a higher level of semantic data or abstraction, 
making them more impervious to alterations in orientation, 
shade, dimensions, and deformable objects [25]. Thus, these 
methods may be well-fitted for resilient leaf disease 
classification, culminating in more accurate and efficient 
plant disease detection systems. U. Barman in 2020 [31], a 
custom-built Convolutional Neural Network (SBCNN) was 
developed for detecting potato diseases. The SBCNN was 
utilized individually on both enhanced and non-enhanced 
potato leaf image datasets. The algorithm was utilized for 
training and testing the potato leaf images, achieving a high 
validation accuracy of 96.98% and 96.75% in the non-
augmented and augmented datasets, respectively. Moreover, 
the training accuracies reached 99.71% and 98.75% for the 
non- enhanced and enhanced datasets, respectively, 
emphasizing the efficiency of the SBCNN method in 
identifying potato diseases. 

3. Proposed Methodology

The approach suggested in this research comprises four 
primary steps: data collection, data preprocessing, data 
enhancement, and image categorization, particularly 
concentrating on the utilization of CNN algorithms VGG19, 
DenseNet121, and ResNet50. 

Figure 1. Proposed Methodology 

3.1 Data Acquisition 

In our research, we utilized a dual-pronged approach 
encompassing visual examination and expert assessment to 
systematically classify the leaf samples gathered from the 
field into distinct categories: Late Blight and Early Blight. 
This classification process was rooted in the careful analysis 

of several critical parameters, comprising characteristics 
such as lesion presentation, patterns of discoloration, along 
with other visual cues. This multifaceted strategy of data 
acquisition provided a robust foundation for our subsequent 
analytical stages, ensuring an accurate categorization that 
was both comprehensive and rigorous. 

3.2 Data Pre-processing 

After collecting the dataset, the images undergo pre-
processing to prepare them for analysis. Pre-processing steps 
may involve resizing images for uniformity, converting them 
to grayscale or enhancing color channels, normalizing pixel 
values, and applying noise reduction techniques to improve 
image quality. These steps ensure a consistent dataset 
suitable for effective feature extraction and classification. 

 Image Preprocessing: In the context of the potato leaf
dataset, the image preprocessing stage is tailored
specifically to address the unique features and
challenges associated with potato leaf images. The
primary goal is to optimize the images for the
classification models, ensuring accurate and efficient
disease detection. The following steps are undertaken
during the image preprocessing phase for potato leaves.

 Resizing: To maintain consistency across the dataset,
all potato leaf images are resized to a standard
dimension, such as 224x224 pixels. This uniformity
ensures that the CNN models, such as VGG19,
DenseNet121, and ResNet50, can efficiently process
and analyze the images.

 Color Space Conversion: Since potato leaf diseases
often manifest as discoloration, it is essential to retain
color information in the images. The images are
converted to a suitable color space, like the HSV (Hue,
Saturation, Value) color space, which can better capture 
disease-related color variations.

 Normalization: Pixel values in the potato leaf images
are normalized to a range between 0 and 1. This step
ensures uniformity in the input data, making it easier for 
the classification models to identify patterns and
generalize across the dataset.

 Noise Reduction: Potato leaf images may contain
noise from various sources, such as camera artifacts or
environmental factors. Noise reduction techniques, like
Gaussian blur or median filtering, are applied to
minimize the impact of noise on the classification
models' performance.

 Contrast Enhancement: Potato leaf diseases can
sometimes manifest as subtle changes in color or
texture. To emphasize these differences and improve
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the classification models' ability to detect diseases, 
contrast enhancement techniques, such as histogram 
equalization or adaptive contrast enhancement, are 
applied to the images. 

 Thresholding: In the context of the potato leaf dataset,
thresholding is a crucial image processing step that
helps separate the leaf regions from the background and
accentuate disease-related features. This technique
involves setting a specific pixel intensity value (the
threshold) and converting the image into a binary
format, where pixels above the threshold are assigned
one value, and those below it are assigned another. The
following steps outline the thresholding process for
potato leaf images:

 Conversion to Grayscale: To simplify the
thresholding process, potato leaf images are first
converted from their color format (e.g., RGB or HSV)
to grayscale. This conversion reduces the complexity of
the images while retaining the essential intensity
information necessary for thresholding.

 Selection of Threshold Value: Determining an
appropriate threshold value is crucial for effective
segmentation of the leaf from the background. A global
threshold value can be selected using techniques such
as Otsu's technique, which determines the best
threshold by minimizing intra-class variance.
Alternatively, adaptive thresholding methods can be
employed, which compute local threshold values based
on the pixel intensities in a specific neighborhood.
Adaptive thresholding can provide better results in
cases where the illumination varies across the image.

3.3 Data Augmentation 

To increase the diversity of the data set and boost the model's 
generalization skills, data augmentation techniques are 
applied. These techniques generate new images from the 
existing dataset through transformations like rotation, 
flipping, scaling, and cropping. Augmenting the data helps 
the model become more robust and less prone to overfitting, 
ultimately improving its performance on unseen data. 

3.4 Image Classification 

With the pre-processed and enhanced dataset, the selected 
CNN algorithms - VGG19, DenseNet121, and ResNet50 - 
are employed to classify the potato leaf images into their 
respective categories. These DL models are trained and 
optimized on the dataset, leveraging their unique 
architectural strengths for effective classification. By 

implementing this proposed methodology with a focus on 
VGG19, DenseNet121, and ResNet50 CNN algorithms, an 
efficient and accurate system for detecting and classifying 
potato leaf diseases can be developed. This system can 
contribute to better crop management practices and increased 
potato yields. 

4. Experimental Analysis

We compare the effectiveness of three DL models. VGG19, 
DenseNet121, and ResNet50, for predicting potato leaf 
diseases. The primary aim is to determine the efficacy of 
these models in identifying and classifying the diseases 
accurately and their ability to adapt to previously 
unencountered data. To gain a comprehensive understanding 
of each model's capabilities, it is crucial to evaluate their 
performance on both the training and validation datasets. 
Using the VGG19 model, the experiment analysis reveals 
that for the prediction of Potato Late Blight, Leaf 1 and Leaf 
4 demonstrate the highest accuracy, with 99.94% and 
99.79% respectively. Leaf 2 has a moderate accuracy of 
88.42%, while Leaf 5 performs relatively poorly at 68.34% 
accuracy, even misclassifying the leaf as Early Blight. In 
contrast, both Leaf 1 and Leaf 2 excel at predicting Potato 
Early Blight, achieving 100% accuracy. Overall, when 
employing the VGG19 model, Leaf 1 and Leaf 4 appear to 
be the most reliable for predicting Potato Late Blight, while 
Leaf 1 and Leaf 2 perform exceptionally well for Potato 
Early Blight. [Fig.2]Using the DenseNet121 model, the 
experiment analysis reveals varying accuracies for the 
prediction of early and late blight. For early blight, two 
instances achieve 100% accuracy in prediction: one with 
100% confidence and the other with 100% accuracy. For late 
blight predictions, the accuracies differ significantly. In two 
instances, the predictions have a 100% accuracy, while one 
instance has a 99.36% accuracy. However, in other cases, the 
accuracies drop to 74.06%, 84.54%, and 88.76%. Notably, 
two cases of late blight are mislabeled as early blight. with 
88.76% and 98.25% accuracies. This suggests that, when 
using the DenseNet121 model, there is room for 
improvement in predicting late blight, while early blight 
predictions appear to be highly accurate. [Fig.3]. 

EAI Endorsed Transactions on 
Scalable Information Systems 

Online First



Potato Leaf Disease Recognition and Prediction using Convolutional Neural Networks 

5 

 Figure 2.  Result of VGG19 Model 

 Figure 3. Result of DenseNet121 Model 

4.1 Performance of the Three Models 

The performance of the three models sheds light on their 
respective advantages and limitations in identifying potato 
leaf diseases, as well as their ability to adapt to previously 
unencountered data. To gain a comprehensive understanding 
of each model's capabilities, it is crucial to evaluate their 
performance on both the training and validation datasets. The 
comparative analysis of these models illustrates their 
effectiveness in classifying potato leaf diseases and provides 
a deeper understanding of how successfully they can manage 
new data samples. Examining their performance on the 
training and validation datasets is a vital step in assessing 
each model's proficiency and reliability in this classification 
task. 

 VGG19: The VGG19 model demonstrated a strong
performance on the training dataset, with a loss of
0.0280 and an accuracy of 98.77%. However, its
performance on the validation dataset was slightly
lower, with a loss of 0.3402 and an accuracy of 92.71%.
This may suggest that the VGG19 model is overfitting
the training data and not generalizing well to the
validation data. [Fig.4]

 DenseNet121: DenseNet121 exhibited a good
performance on both the training and validation
datasets. Its training loss was 0.0675, with an accuracy
of 97.51%. On the validation dataset, DenseNet121
achieved a loss of 0.0797 and an impressive accuracy
of 97.92%. This indicates that the DenseNet121 model
generalizes well to the validation data and is a strong
candidate for this classification task. [Fig.5]

 ResNet50: The ResNet50 model also performed well
on the training dataset, with a loss of 0.0642 and an
accuracy of 97.78%. However, its performance on the
validation dataset was not as strong as DenseNet121, as
it had a loss of 0.1726 and an accuracy of 92.67%. This
suggests that the ResNet50 model might not generalize
as well as the DenseNet121 model.

The DenseNet121 model outperforms both VGG19 and 
ResNet50 in terms of validation loss and accuracy. While 
VGG19 and ResNet50 show good performance on the 
training data, they may be overfitting to some extent, as their 
validation losses and accuracies are lower compared to 
DenseNet121. Therefore, DenseNet121 appears to be the 
most effective model for classifying potato leaf diseases in 
this experiment. 

  Figure 4. The Plot of Training and Validation 
Accuracy,Training and Validation  Loss using VGG19 
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Figure 5. The Plot of Training and Validation Accuracy, 
Training and Validation Loss using DenseNet121 

5. Results

The results demonstrate that all three CNN models achieved 
high performance in identifying and predicting potato leaf 
diseases, with VGG19 emerging as the top performer, closely 
followed by DenseNet121 and ResNet50. We evaluated the 
models' performance on both the training and validation 
datasets to gain a comprehensive understanding of their 
capabilities. The comparative analysis of these models 
illustrates their effectiveness in classifying potato leaf 
diseases and provides insights into how they can manage new 
data samples.The VGG19 model showed strong performance 
on the training dataset, with an accuracy of 98.77% and a loss 
of 0.0280. However, its performance on the validation 
dataset was slightly lower, with an accuracy of 92.71% and 
a loss of 0.3402, Indicating potential overfitting, 
DenseNet121 displayed remarkable results on both the 
training and validation data sets. It accomplished an accuracy 
of 97.51% and a loss of 0.0675 on the training data set, and 
an accuracy of 97.92% and a loss of 0.0797 on the validation 
data set.The ResNet50 model also displayed commendable 
results on the training dataset, with an accuracy of 97.78% 
and a loss of 0.0642. However, it showed weaker 
performance on the validation dataset, with an accuracy of 
92.67% and a loss of 0.1726. Based on the results, 
DenseNet121 outperformed both VGG19 and ResNet50 in 
terms of validation loss and accuracy and is the most 
effective model. Our findings provide valuable insights into 
the efficacy of deep learning approaches for potato leaf 
disease detection and offer a foundation for future research 
and deployment of these models in precision agriculture 
systems. Ultimately, this work aims to support the 
development of more robust and efficient tools for timely 
disease diagnosis, enabling farmers and agronomists to make 
better-informed decisions and safeguard the health and 
productivity of potato crops worldwide. 

6. Conclusion

Potatoes are a crucial crop worldwide and play an important 
function in meeting the dietary needs of millions of people. 
However, they are susceptible to various leaf diseases that 
can significantly impact their yield and quality. Early and 
precise identification of diseases is required for effective 
disease management and prevention. In this study, we 
present a detailed analysis and comparison of three state-of-
the-art CNN models, namely VGG19, DenseNet121, and 
ResNet50, for recognizing and Potato leaf disease prediction. 
To evaluate the performance of the selected CNN models, we 
used a large dataset of potato leaf images, comprising various 
healthy and diseased samples. We applied extensive data 
augmentation techniques to enhance the dataset's diversity 
and generalization capabilities. To find the best model for 
real-world applications, we analysed the models' reliability, 
precision, recall, F1-score, and computing efficiency. This 
study explored the use of three cutting-edge CNN models- 
VGG19, DenseNet121, and ResNet50 - for the classification 
of potato leaf diseases. Our findings demonstrated 
that all three models can effectively classify the various 
potato leaf diseases with high accuracy. However, 
DenseNet121 emerged as the most suited model for this task 
after a thorough review of its efficacy on both the validation 
and training datasets, with an excellent accuracy of 97.92% 
on the validation dataset. The results of this study suggest 
that deep learning techniques can be leveraged to enhance the 
accuracy and efficiency of disease detection in crops, 
potentially leading to more effective disease management 
and improved crop productivity. The findings of this research 
provide a foundation for future studies and the deployment 
of these models in precision agriculture systems. Ultimately, 
this work aims to support the development of more robust 
and efficient tools for timely disease diagnosis, enabling 
farmers and agronomists to make better-informed decisions 
and safeguard the health and productivity of potato crops 
worldwide. 
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