
EAI Endorsed Transactions  
on Scalable Information System Research Article 

1 

Deep Learning Approaches for English-Marathi Code-
Switched Detection 
Shreyash Bhimanwar1, Onkar Viralekar2, Koustubh Anturkar3, Ashwini Kulkarni4

1, 2, 3, 4 Department of Electronics and Telecommunication Engineering, COEP Technological University, Pune, India 

Abstract 

During a conversation, speakers in multilingual societies frequently switch between two or more spoken languages. A 
linguistic action known as "code-switching" particularly alters or merges two or more languages. The development of 
software or tools for detecting code-switching has received very little attention. This paper proposes a Deep Learning 
based methods for detecting code-switched English-Marathi data. These suggested methods can be applied to various 
applications, including phone call merging, Intelligent AI assistants, Intelligent travelling systems to assist travellers in 
navigation and reservations, call centres to handle customer service issues, etc. To create a system for code switch 
detection, our study demonstrates a detailed analysis of extracting several audio features such as the Mel-Spectrogram, 
Mel-frequency Cepstral Coefficient (MFCC), and Perceptual Linear Predictive coefficients (PLP). Our team's English-
Marathi code-switched dataset served as the testing ground for our methodologies. Our model's accuracy was 92.99%, 
with 40 MFCC coefficients having energy coefficient serving as the zeroth coefficient. 
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1. Introduction

In Code-Switching (CS), multilingual speakers switch 
between languages during communication. Therefore, 
speaking in two or more languages facilitates interaction 
with individuals from different geographical areas and 
cultural backgrounds. The main reason for code-switching 
is because the people belong to bilingual communities and 
because of the non-availability of some words in the 
vocabulary of the native language. According to a survey, 
70.34% of Maharashtrians speak Marathi regularly and 
employ the code-switch action. 
    There are two types of code-switching. Type-1: Inter 
sentential CS occurs when the switch of the language is 
done at sentence boundaries, e.g. She is the CEO आिण ती 
इथे दोन िदवसासाठी आली आहे. Type-2: Intra-sentential CS, 
the words, and the phrases of one language are embedded 
into other, e.g., मला माझा current account balance check 

करायचा आहे. However, Due to a dearth of high-quality 
training data, little progress has been made in creating 
Deep-Learning based techniques to identify the code 
switch. 
    Code-switching is mainly found in motivational 
speeches, social media, navigation instructions, 
instructions to AI assistants, and phone calls. In many 
commercial contexts, such as advertising, healthcare, 
education, and entertainment, processing code-switched 
communication would improve user experience [21]. It 
helps educators to analyse code-switching patterns to 
learn more about language use and the difficulties that 
bilingual learners experience. Code-switching detection 
can be extremely important in call centres or customer 
service settings when bilingual agents answer calls in both 
English and Marathi. Call centre systems can route calls 
to the most qualified agents, offer language-specific 
instructions or resources, and enable successful 
communication between consumers and agents who are 
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knowledgeable in both languages by spotting code-
switched utterances. Code-switched detection also helps 
navigation systems and AI assistants dynamically adapt 
their instructions to match the user's language preferences. 
This helps in improving their navigation experience. 
    Automatic Speech Recognition (ASR) systems mainly 
focus on converting spoken language into written text or 
symbolic representations, i.e., transcribing speech to text. 
Automatic Speech Recognition (ASR) systems can 
identify a few words of a constant language but cannot 
handle considerable code-switching in data [20]. Also, it is 
quite challenging due to the pronunciation changes from 
region to region. Hence in this paper, we are primarily 
focusing on developing a language identification system 
that can handle code-switching as well and classify them. 
Our research has noticed that there is no such kind of 
code-switch dataset for English and Marathi to carry out 
the research. To get around this restriction, we developed 
a code-switch dataset with enough variance in accent, age, 
gender, and other characteristics.  
    In this paper, we proposed a methodology for the task 
of language identification for code-switched English-
Marathi data. For data preparation, we used YouTube and 
self-recorded data. To tackle the problem of low resources 
of data, we used speed perturbation-based data 
augmentation. It acts as a regularization technique by 
introducing variations in the data and reducing data bias. 
To increase the robustness of the data, we also included 
Room impulse responses in the utterances. By applying 
RIR augmentation, we simulate the effect of different 
acoustic environments on the speech signal. Also, the 
models can learn to extract meaningful speech features 
even in the presence of reverberation, echoes. We 
proposed different approaches for our task by converting 
this pre-processed audio into a) Log Mel spectrogram and 
applying CNN based model, b) MFCC coefficients and 
PLP coefficients and applying LSTM-based models. This 
methodology is important because it deals with low-
resource data and improves its robustness. We further 
provide insights into the proposed deep learning-based 
approaches and compare them in the results section. 

2. Related Works

A few code-switching ASRs and Spoken language 
identification (LID) reports cover different Native and 
non-native language combinations in the literature below. 
We Briefly reviewed the code-switching reports and 
summarized their silent attributes used by them as 
follows.A study was conducted on building automatic 
speech recognition of Frisian speech containing code-
switches to Dutch using multilingual DNN [1]. Audio 
data can be converted into Mel-Spectrograms, and CNN 
and LSTM architectures can be applied for the 
classification. The spectrogram was discretised using a 
Hann window along with 129 frequency bins. This also 
proposes CNN-LSTM architecture to train grayscale 
images of the spectrogram[3]. 

Recurrent Neural networks are found to be effective in 
learning the relevant features for the language 
classification[2][3][19]. The feature extraction techniques 
like Log-Mel-Spectrogram, Mel-Frequency cepstral 
coefficients (MFCC), Perceptual Linear Prediction (PLP), 
Relative spectral transform Perceptual Linear Prediction 
(RASTA-PLP) and Linear Predictive coding (LPC) 
coefficients can be used for Automatic Speech 
Recognition (ASR)[4].  The ideal overlapping window 
length for converting audio to spectrogram is between 10-
30 ms, with left /right Neighbours to be –20 and +5 ms. 
Data augmentation techniques include Noise Addition, 
Time Sifting, Frequency and Time masking, Pitch 
changing and Speed perturbation [2]. Suitable speed 
factors for varying speeds of audio signals are 0.9x, 1.0x, 
1.1x[6]. Traditional Language identification systems use i-
vector and DNN systems for language recognition. Still, 
in recent years, it has been found that Neural Networks 
are best suited for Language Identification (LID) tasks as 
they are more straightforward in design and provide high 
accuracy of about 90% [3]. Another study investigates the 
performance of acoustic feature methods, which includes 
MFCC, Linear Predictive cepstral coefficient (LPCC) and 
PLP using Hidden Markov's model (HMM) classifier [4]. 
The state-of-the-art LSTM architecture outperforms the 
traditional DNN architectures for speech recognition 
[9][10][11][12][13]. LSTM RNNs are well-suited for modelling 
sequence data due to their hidden layer with recurrent 
connections and memory blocks and gates for regulating 
information flow within the network. As a result, they are 
effective for modelling speech signals. Furthermore, 
research has indicated that utilizing MFCC features with 
energy coefficient can lead to improved outcomes [16]. 

3. Proposed Methodology

In this section, we present our proposed approach for 
code-switch detection. Our approach utilizes three distinct 
methods to effectively identify code-switched data: Log-
Mel Spectrogram, Mel-frequency Cepstral Coefficients 
(MFCCs), and Perceptual Linear Prediction (PLP). 
Additionally, we apply various augmentation techniques 
to the dataset, such as Speed perturbation, Room Impulse. 
Responses (RIRs) and the addition of noise sampled at 16 
kHz with 16-bit precision. These augmentation methods 
aim to enhance the robustness and diversity of the training 
data. 
    The first method involves the extraction of Log-Mel 
Spectrograms, which are representations of speech signals 
in the frequency domain. As Log-Mel Spectrograms can 
be treated as images, we employ a Convolutional Neural 
Network (CNN) to process and analyse these 
spectrograms.
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Figure 1. Schematic Flow of Proposed Method 

    The subsequent methods focus on extracting MFCCs 
and PLP coefficients from the speech utterances. These 
features capture essential characteristics of the audio 
signals, particularly related to the spectral and cepstral 
domains. Since the input data for these methods consists 
of ordered sequences of spoken language, we employ 
Long Short-Term Memory (LSTM) networks. The 
bidirectional nature of the network allows it to capture the 
context before and after code-switching points, enabling 
accurate detection of code-switching instances. LSTM’s 
memory-like behaviour helps capture long-range 
dependencies, making them suitable for processing 
MFCCs and PLP coefficients. Detailed Methodology is 
discussed as follows: 

3.1. Data Collection 

Due to the unavailability of large Marathi and English-
Marathi CS datasets, we decided to create our dataset for 
our experiment.  In order to have diverse data, we applied 
two modes of Data Collection: a) Recording Apps and b) 
YouTube Videos like News, Speeches, Broadcasts, 
Podcasts etc. Their details and characteristics are as 
follows: 

    Self-Recorded Dataset: There are a number of 
Recording Apps available online to record audio in WAV 
format. The dataset collected from these apps has a 
sampling frequency of 44.1 kHz with 16 bits. The dataset 
consists of different Male and Female speakers, covering 
various aspects of variations of audio signals such as 
pronunciation, noise, pitch, gender, age etc. 

    YouTube Data Collection: We used YouTube data as 
the second source to obtain audio samples. We 
downloaded YouTube videos and extracted audio from 
them by splitting them into segments of 7 seconds each. 
We inspected every sample for CS data and cleaned the 
samples that contained a decent number of embedded 
words in a non-native language. 

    The obtained dataset contains many desired properties, 
such as High sound quality and a good mix of speakers. 
Further data augmentation and noise injection techniques 
are used to diversify our dataset. The statistics of our 
dataset are given in Table 1. 

Table 1. Conv2D Neural Network Layers 

Language Label Gender Sample Total 
Samples 

(Augmented) 
Marathi MAR F 423 2914 

M 423 
English ENG F 430 2930 

M 423 
Code-
Switch 

ENG_MAR F 440 2946 
M 439 

3.2 Data Preprocessing 

The entire dataset has been converted into an 
uncompressed lossless WAV format. Initial sampling 
rates for audio files were 44100 Hz and 48000 Hz, down 
sampled to a 16 kHz sampling frequency to reduce 
computation time. In the process of preparing the dataset, 
we employed various augmentation techniques to enhance 
the diversity and robustness of the data, which include 
speed perturbation, room impulse response (RIR) and the 
addition of noise. This section describes how each 
technique was applied and its impact on the dataset. 

    Speed Perturbation: We applied speed perturbation to 
the speech utterances using librosa. time_stretch () library 
for accounting for natural variations in speech rate. It 
involves altering the temporal aspect of the speech signal 
by accelerating or decelerating it. We utilised two 
variations: increasing the speed of speech by 0.9 and 1.1. 
The application of speed perturbation served two primary 
purposes. Firstly, it introduced variability in speech rate, 
enabling the model to handle different speaking speeds. 
Secondly, it expanded the dataset by generating multiple 
versions of each utterance at varying speeds, thereby 
augmenting the training data with increased diversity. 

    Room Impulse Response (RIR): We incorporated 
room impulse response (RIR) augmentation by 
convolving it with speech data to simulate the effect of 
different acoustic environments. RIR captures the 
characteristics of sound propagation within a room, 
including reflections, echoes, and reverberation. We 
simulated different acoustic conditions by convolving the 
speech signals with RIRs generated for various room 
configurations. This augmentation aimed to improve the 
model’s ability to handle real-world scenarios with 
diverse acoustic environments. Exposing the model to 
different room characteristics during training taught it to 
extract meaningful speech features even in the presence of 
reverberation and echoes, increasing its robustness. 

    Addition of Noise: To simulate realistic acoustic 
conditions, we introduced noise augmentation. The noise 
samples were sourced at a sampling rate of 16 kHz with 
16-bit precision. The noise was carefully added by
maintaining controlled signal-to-noise ratios (SNRs). The
addition of noise has enhanced the model’s ability to
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handle speech signals corrupted by noise, as encountered 
in real-world environments. All these augmentation 
techniques also act as a regularization technique. This 
helps in preventing over-fitting of the model. By applying 
these techniques, we add a form of controlled randomness 
to the training process, encouraging the model to learn 
more robust and generalised representations. 

3.3. Feature Extraction 

Feature extraction is a sequence of feature vectors for 
input speech signals to classify the code-switch 
utterances. In this paper, several feature extraction 
methods have been performed and discussed to extract 
static parameters along with their first-derivative and 
second-derivative dynamic parameter coefficients. The 
above feature coefficients are extracted with 25ms 
window and 10 ms hop lengths. Delta and Double Delta 
Features: The speech recognition performance can 
significantly be enhanced by computing the time 
derivative of static parameters (given in eq. (1)). The 
trend of speech signals depends on the time axis’s frame-
by-frame analysis. The time derivatives (Delta) and 
accelerations (Double Delta) represent the speech rate and 
acceleration of the speech, respectively. The dynamic 
parameters can be computed using the following equation, 

𝑑𝑑𝑡𝑡 = ∑ 𝑛𝑛(𝑐𝑐𝑡𝑡+𝑛𝑛−𝑐𝑐𝑡𝑡−𝑛𝑛)𝑁𝑁
𝑛𝑛=1

2∑ 𝑛𝑛2𝑁𝑁
𝑛𝑛=1

(1) 

where dt is Delta coefficient at time t in the term of static 
coefficient Ct+n to Ct−n. Again, the same formula is applied 
to Delta’s coefficient to get acceleration parameters. 
These features are essential for a speech recognition 
system to become independent of speakers. In the 
following sections, we will see more about these features 
and their detailed analysis.  

    Keras sequential layer for Log-Mel-Spectrogram: 
The Log Mel-spectrogram is extracted, which involves 
converting the spectrograms to the log-Mel scale by 
applying Mel filter banks (Equation 2) and converting 
power to decibel form [18]. During our experiment, we 
found that training time increases drastically because of 
the steps involved in finding the log Mel-spectrogram for 
each audio file. Due to the above constraints, the Keras 
sequential model with four layers is used to reduce the 
training time as it uses real-time GPU. The first layer 
computes a short-time Fourier transform (STFT) on the 
original audio waveform. The second layer computes the 
magnitude of STFT. Mel-filter banks are applied at the 
3rd one. And finally, 4th layer converts these magnitudes 
to decibels (db). 

    The Mel-Frequency Cepstral Coefficient (MFCC): 
The Mel-Frequency Cepstral Coefficient (MFCC) is a 
popular feature extraction approach used in speech 
recognition. It is based on the frequency domain using the 
Mel scale, similar to the human ear scale. MFCC 

coefficients are robust to changes caused by the speakers 
and the recording environment. This method extracts 
speech characteristics that are comparable to those utilised 
by people to hear speech while, at the same time, de-
emphasising all other information. The first step in the 
MFCC computation is the speech signal’s windowing to 
divide it into overlapping frames. After windowing, the 
Fast Fourier Transform (FFT) is used to determine each 
frame’s power spectrum. The logarithmic Mel-Scale filter 
bank is applied to the Fourier-transformed frame. This 
scale is approximately linear up to 1 kHz and logarithmic 
at greater frequencies. The relationship between the Mel-
scale and the frequency of the signal is given by: 

Mel (𝑓𝑓) = 2595 ∗ log �1 + 𝑓𝑓
700
� (2) 

Where, mel(f) is the frequency (mels) and f is the 
frequency (Hz).  
    The final step is the computation of the Discrete cosine 
transform (DCT) of output from the filter bank. MFCCs 
and their Delta and Double Delta features were also 
extracted for improvement in accuracy. Fig 1 depicts the 
MFCC workflow. 

Figure 2. MFCC computation steps 

    Perceptual Linear Prediction (PLP): Perceptual 
Linear Prediction is a frequency-based feature extraction 
method for speech recognition. These features are 
characterized to match the human auditory system using 
an auto-regressive all-pole model [15]. The general flow 
diagram is shown in Fig 2. Equation 3 converts frequency 
warp into bark scale to find frequencies with low 
resolution. 

 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑓𝑓) = 13 arctan(0.00076𝑓𝑓) + 3.5 arctan �� 𝑓𝑓
700

�
2
� (3)

    The advantage of using PLP features over MFCC is 
that PLP coefficients are Noise immune. Also, it discards 
irrelevant audio information, which is unnecessary for 
speech identification. The number of PLP features 
extracted was 13, along with its Delta and double delta 
features were also extracted for improvement in accuracy. 

Speech Pre-
Emphasis

Frame Blocking 
and Windowing

Fast Fourier 
Transform 

(FFT)

Mel-Filter 
BankLog(.)Discrete Fourier 

Transform (DCT)MFCC
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 Figure 3. PLP computation steps 

3.1. Models 

Conv2D: The following design principles are applied to 
our model. 

• Each convolution layer is followed by a MaxPooling
layer which helps to reduce the variance, and
computation complexity, e.g. (2*2 Max/Avg
Pooling) reduces 75% of data. Sometimes average
pooling can't extract the good features as it considers
the average value, which may or may not be
necessary. In contrast to this, MaxPooling helps in
extracting the sharpest features.

• The rectifier linear unit (ReLU) activation layer is
applied after each convolution layer. Layer
normalisation is applied to the input layer, which is
the output of the Log Mel-spectrogram Keras
sequential layer. This helps in speeding up the
training of neural networks.

• The model ends with two dense layers, out of which
one is the final output layer with three neurons and
SoftMax activation.

Table 2. Conv2D Neural Network Layers 

Legend Output Shape Filter 
size Units 

Mel-
Spectrogram 

Layer 
(None, 700,40,1) - - 

Layer 
Normalization (None, 700,40,1) Axis=2 - 

Conv2D-(Relu) (None,700,40,8) (7,7) - 
MaxPooling2D (None, 350,20,8) (2,2) 16 
Conv2D-(Relu) (None,350,20,16) (5,5) - 
MaxPooling2D (None,175,10,16) (2,2) 16 
Conv2D-(Relu) (None,175,10,16) (3,3) - 
MaxPooling2D (None, 88,5,32) (2,2) 32 
Conv2D-(Relu) (None, 88,5,32) (3,3]) - 
MaxPooling2D (None,44,3,32) (2,2) 32 
Conv2D-(Relu) (None,44,3,32) (3,3) - 

Flatten (None,4224) - - 
Dense (None,64) - 64 
Dense 

(Softmax) (None,3) - 3 

    Model details: As mentioned in section 3.1 audio 
signal has sampling rate and time duration of 16 kHz and 
7 sec respectively. Hence, the model has an input size of 
(Batch-Size, 112000, 1). Table 2 represents the detailed 
layer-by-layer visualization of the model, including the 
hyper-parameters. Further hyper-parameters optimization 
is discussed in the Experiment Results section. 

Figure 4. Layer By Layer Visualization of LSTM 

    Long short-term memory (LSTM): The following 
design principles have been applied to our model. 

• We added a Bi-directional LSTM (BLSTM) layer
with 256 units. The bidirectional nature of the
network allows it to capture the context before and
after code-switching points, enabling accurate
detection of code-switching instances, while LSTM's
memory-like behaviour helps in capturing long-range
dependencies [16]. This is followed by two LSTM
layers with 128 and 64 units, respectively.

• Three dense layers are added to the network and
MaxPooling 1D  and flattened layers are used.

• Dropouts and l2 regularizer are used to avoid
overfitting problems. The dense layer with an l2
regularizer follows the dropout layer as an activity
regularizer.

Table 3. LSTM Neural Network Layer 

Layer Output Layer No. of Units 
Input Layer (None,699,39) - 

BLSTM (None,699,512) 256 
LSTM-1 (None,699,128) 64 
LSTM-2 (None,699,64) 64 
Dense-1 (None,699,64) 64 

MaxPooling1D (None,349,64) - 
Dense-2 (None,349,32) 32 
Flatten (None,11168) - 
Dropout (None,11168) 0.25 
Dense-3 (None,32) 32 
Dense 

(Softmax) (None,3) 3 

Speech Windowing FFT
Bark-scale

Filter
Bank

Equal
loudness

pre-emphasis

Intensity-
loudness

power

Linear
Prediction
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    Model details: Long Short-Term Memory Recurrent 
Neural are useful for analysing significant features in a 
sequence of inputs over a long distance and for capturing 
the relationship between elements in the acoustic signal 
over time. The audio data is sampled to 16 kHz by 
truncating their length to 7 sec. The model has an input 
shape of (batch_size, 699, 39). Table 3 and Fig 4 
represent the model's detailed layer-by-layer visualization. 

4. Experimental Results

This section contains the experimental setup and results of 
different techniques. All the details regarding the use of 
datasets, hyperparameter optimization and evaluation 
metrics of the different proposed approaches using 
various feature extraction techniques, including MFCC, 
Log-Mel Spectrogram, and PLP coefficients, are 
illustrated. 

    Dataset: Long The experiments were carried out using 
Self Recorded and YouTube datasets as discussed in 
section 2. To increase the dataset to a considerable 
amount, we applied the data augmentation technique of 
speed perturbation, which includes slowing the audio by 
0.9 and fasting it by 1.1. We included Room Impulse 
Responses (RIRs) having different categories of small, 
large and medium rooms and noises sampled at 16 kHz 
16-bit precision [14] into the speech utterances. The
recorded 2581 utterances of the YouTube dataset and
1096 utterances of the Self-Recorded dataset have been
augmented to 10324 and 4384, respectively by increasing
speed to 1.1, reducing speed to 0.9 and convolution with
RIRs' with addition of noise. For the experimentation
purpose, we used a test dataset separated from training
and validation. The recorded utterances are partitioned
into training, validation, and testing sets with ratios of 0.6,
0.2 and 0.2. Analytical results are discussed in Table 4.

    Evaluation Metrics: The evaluation metrics used to test 
the performance are F1 score and accuracy. The model's 
performance is evaluated using the following equations 
(4) and (7):

 Accuracy = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝐹𝐹+𝑇𝑇𝐹𝐹

(4) 

Precision(P) = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

(5) 

𝑅𝑅𝑅𝑅𝑅𝑅𝐵𝐵𝑅𝑅𝑅𝑅(𝑅𝑅) = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹

(6) 

𝐹𝐹1𝑆𝑆𝑅𝑅𝑆𝑆𝐵𝐵𝑅𝑅 = 2∗𝑇𝑇∗𝑅𝑅
𝑇𝑇+𝑅𝑅

(7) 

    Where, TP: True Positive, TN: True Negative, FP: 
False Positive, FN: False Negative 

    Hyperparameter Optimization: We used the Keras 
tuner for hyperparameter optimization, a grid-based or 

random search algorithm provided by the Keras 
framework, to find the optimum set of hyperparameters. 
Our observations for two models CNN and LSTM, are 
summarised as follows: 

• Number of convolution layers: 5 convolution layers
(specifically, CNN layers) were found to provide the
best results among [3, 4, 5, 6] layer.

• Number of filters for CNN layer: The filters for
convolution layers are chosen from [8, 16, 32] for the
different layers.

• Kernel size: kernel sizes of the CNN are chosen from
[3, 5, 7]. Convolution layers with the 1st and 2nd
layers having filters (7,7) and (5,5), respectively,
give us the best results. The size of filters is kept
large to capture the suitable receptive field, i.e., the
patterns in the input. The rest of the kernel sizes are
kept as (3,3).

• Dropout and Regularizer: We experimented with
different values such as [0.2, 0.25, 0.3, 0.35, 0.4].
Dropout value of 0.2 is used to avoid the
development of co-dependency among each other.

 Long Short-Term Network (LSTM): 

• Number of units of BLSTM:  We also experimented
with different values such as [32, 64, 128, 256], but
256 worked well for the model.

• Number of units to LSTM: Different values such as
[16, 32, 64, 128] have been experimented but 64
worked well for both layers of LSTM in the model.

• Dropout:  We experimented with different values
such as [0.25, 0.3, 0.35, 0.4, 0.5]. A dropout of 0.25
worked well for our dataset.

    Performance Evaluation: We have done a feature-
based performance evaluation, and the results are 
discussed in this section. We applied the K-fold cross-
validation method with three folds to increase the 
significance of the results on the training and validation 
dataset. The results presented in the last column of the 
Table 4. are the average values of all folds. Second, third 
and fourth column shows the best f1 scores for the fold 
among three. 
    Log-Mel Spectrogram: As mentioned in section 3.1, all 
the audio files were fixed to a length of 7sec. Log-Mel 
spectrogram for each audio file is computed by keeping 
n_mels equal to 40, window length and hop length of 
25ms and 10ms respectively. We generated the Log-Mel 
spectrogram using Keras sequential layers. Fig.5 
represents the confusion matrix of the Testing dataset. 
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Figure 5. Log Mel Spectrogram 

    MFCC: The Mel-Frequency cepstral coefficient of each 
audio file is computed by varying the size of coefficients 
from 13 to 39. Again, the time derivatives (Delta) and 
accelerations (double Delta) are computed as mentioned 
in section 4. In the first step, 39 MFCC coefficients were 
applied to the model. In the next step, MFCC + Δ + ΔΔ 
(13+13+13) coefficients were applied, and Fig 6 and 7 
represent the confusion matrix of the Testing dataset. 

Figure 6. MFCC without energy 

Figure 7. MFCC+Δ + ΔΔ without energy 

Figure 8. MFCC with energy 

Figure 9. MFCC +Δ + ΔΔ with energy 

    PLP: The final analysis for the Predictive Linear 
Perceptual coefficients varies the number of features from 
five to twenty.  

Figure 10. PLP coefficients 

     Finally, the performance comparison of the number of 
coefficients is discussed in Table 4. 
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Table 4. Results 

Feature 
Extraction 
methods 

Network 
F1 Score of Best Fold K-Fold

Accuracy Eng Mar Eng-
Mar 

MFCC 
(without 
energy) 

LSTM 98.09 86.22 86.81 88.06 

Log Mel 
Spectrogram Conv2D 92.23 85.88 83.98 87.56 

MFCC + Δ + 
ΔΔ (without 

energy) 
LSTM 94.74 85.80 84.65 86.41 

MFCC + Δ + 
ΔΔ (with 
energy) 

LSTM 96.29 90.51 89.26 92.99 

PLP LSTM 81.54 71.25 70.17 74.00 

    Table 4 discusses the overall results of the test dataset 
with different feature extraction methods and different 
models. The Table shows that the use of MFCC 
coefficients with the addition of energy coefficient 
achieved better results than any other method. 

5. Conclusion

In conclusion, this research paper explored three different 
methods for code-switch detection. The first method 
utilized log-mel spectrogram images and achieved an 
accuracy of 87.56% using a CNN model. However, this 
approach had limitations in identifying subtle variations in 
code-switched language. 
    The second method involved training the dataset on Bi-
LSTM and LSTM networks using MFCC coefficients. 
Various variations were applied, including the addition of 
delta and double delta features and training with and 
without the energy coefficient. It was found that 
incorporating the energy coefficient significantly 
improved performance. The best accuracy of 92.99% was 
achieved using MFCC + delta and double delta features 
with the energy coefficient. 
    The third method employed PLP coefficients on an 
LSTM network, resulting in an accuracy of 74%. While 
this approach demonstrated satisfactory results, further 
enhancements can be made.  
    In summary, this research has provided valuable 
insights into code-switch detection. The findings highlight 
the importance of feature selection and data augmentation 
techniques in achieving higher accuracy. There is 
potential for improvement through data augmentation 
techniques such as Pitch Shifting, Time Shift, and other 
methods to increase the variability of available data. 
Future research can focus on refining the proposed 
approaches and exploring additional augmentation 
methods to further enhance performance in code-switch 
detection tasks. 
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