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Abstract 

Disease detection on a farm requires laborious and time-consuming observation of individual plants, which is made more 
difficult when the farm is large and many different plants are farmed. To address these problems, cutting-edge technologies, 
AI, and Deep Learning (DL) are employed to provide more accurate illness predictions. When it comes to smart farming and 
precision agriculture, IoT opens up exciting new possibilities. To a certain extent, the goal-mouth of "smart farming" is to 
upsurge productivity and efficiency in agricultural processes. Smart farming is an approach to agriculture in which Internet of 
Things devices are interconnected and new technologies are used to optimize existing methods. Utilizing Internet of Things 
(IoT) devices, smart farming aids in more informed decision making. In many parts of the world, rice is the staple diet. This 
means that early detection of rice plant diseases using automated techniques and IoT devices is essential. Growing rice yields 
and profits may be helped along by DL model creation and deployment in agriculture. Here we introduce DRL, a deep 
residual learning framework that has been trained using photos of rice leaves to recognize one of four classes. The suggested 
model is called WO-DRL, and the hyper-parameter tuning procedure of DRL is executed with the help of the Whale 
Optimization algorithm. The outcomes demonstrate the efficacy of our suggested approach in directing the WO-DRL model 
to learn important characteristics. The findings of this study will pave the way for the agriculture sector to more quickly 
diagnose and treat plant diseases using AI. 
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1. Introduction

Globally, people rely on agriculture more than any other 
industry [1]. Farmers engage in agricultural activities, 
growing crops according to soil and weather conditions. 
Natural disasters, a lack of water, crop infections, and other 
threats are just some of the difficulties that farmers face. The 
goal of using cutting-edge scientific technology is to reduce 
the severity of problems like these. Curing plant diseases 
early on allows one to get the most out of plants without 
hiring a specialist. One of the most pressing issues in 
agriculture today is the ability to foresee the spread of a 
disease among plants [2]. With more people realizing how 

crucial agriculture and food supply are, there is a higher 
need for disease prediction and categorization of crops. 

The rapid increase in India's population calls for equally 
rapid advances in farming techniques. Rice, the staple meal, 
is the most widely consumed crop in India [3]. However, 
plant diseases have a significant influence on rice making 
and yield, reducing the crop's overall profitability. 
Predicting and preventing plant illnesses at early stages 
itself is necessary for recovery from such issues and 
improving agricultural management [4-5]. Verifying the 
presence of diseases often and adopting regular plant health 
monitoring as a strategy are both important steps toward 
achieving sustainable farming. Many studies have been done 
on plant disease detection thus far, and they all point to the 
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possibility that the illnesses may be visible, making the 
observation procedure straightforward and sophisticated. 
Manual crop infection prediction is notoriously unreliable 
and imprecise, adding more complexity to the process. 
Human intervention is labour-intensive and calls for more 
expertise in identifying the precise illness. Therefore, 
scientists have developed plant illness prediction models 
using IoT, AI, and image processing [6]. 
Many hybrid approaches, which successfully addressed the 
aforementioned problems, have been presented. A group of 
sensors, network nodes, and end users make up the Internet 
of Things (IoT). Through the use of wireless sensors, the 
Inter-net of Things creates a greater possibility for the 
growth of dynamic industrial net-works and of real-world 
domains [7]. With the aid of IoT and embedded mechanism, 
it is feasible to integrate and incorporate the observation 
mechanism in data collection. The implementation of IoT is 
the essential process in this infrastructure. This is because it 
uses a wireless communication system and an inference 
module to anticipate plant ailments and file them under the 
heading of nutrient deficiency [8]. While it comes to solving 
the problems that arise while trying to anticipate and 
categorize plant diseases, this method is often regarded as 
the best option. The collected agricultural data is then used 
to develop a Decision Support System (DSS) and 
technologies for warning farmers of potential danger. Since 
IoT data is generated rapidly, picking the right 
characteristics is crucial. Having access to large amounts of 
heterogeneous data reduces the impact of the generalization 
function [9, 10]. However, this issue may be solved by using 
the DL approach, which improves classification accuracy 
while simultaneously decreasing the number of factors. 
Image classifications are only few of the stages involved in 
using image pro-cessing for illness diagnosis. After 
inspecting the diseased plants by hand, these procedures are 
carried out [11]. Diseases of plants may often be anticipated 
by scrutinizing its primary parts, such as its leaves and 
stems. Plant diseases may show a wide range of symptoms. 
In addition, the symptoms of plant illness may vary in hue, 
size, and texture, while the specifics of each disease are 
different. Diseases that cause yellowing are uncommon, as 
are those that cause green leaves to become dark [12]. In 
addition to causing colour changes, plant diseases may alter 
the morphology of leaves without affecting their appearance. 
Once the diseased parts of the plants have been isolated, the 
overall portion showing symptoms of the illness may be 
collected. Manual illness prediction using just the naked eye 
is labour-intensive, not always precise, and expensive. 
Estimating it is difficult, and predictions of illness types are 
often inaccurate [13]. The lack of information about the 
plant causes these problems. In accordance with this, rice 
output might be negatively impacted if diseases affecting 
rice plants are not anticipated or recognized in their early 
stages, as has been the case during the last several decades 
[14]. 
The following are some of the main takeaways from this 
study: 
a) Demonstrating the DRL model, a deep learning-based 
system for illness identification. 

b) Rather than using a single spectral feature, WOA 
performs the hyper-parameter tuning process by using deep 
features that mix spatial and spectral characteristics. 
c) The ability to use real-time, accurate, and automated rice 
plant disease detection. 
d) Using a residual, depth-wise, and split convolution block 
e) Developing a new kind of loss function to address 
imbalanced situations.  
f) Validating the applicability of different datasets for 
training 
The remaining parts of the document serve as: The related 
research on rice plant disease detection is obtainable in 
Section 2. Section 3 delivers a concise summary of the 
optional model, while Section 4 provides a visual 
representation of the model's outcomes analysis. Section 5 
provides the research's scientific contribution. 

2. Related Works 

This research by Lu, Y., et al. [15] proposes a unique 
approach to disease detection in rice by using network 
(CNN) methods. 500 images of damaged and healthy rice 
leaves and stems from an experimental rice field are used to 
teach CNNs to recognize 10 common rice illnesses. To 
achieves 95.48 % accuracy. This precision is far better than 
that of conventional machine learning algorithms. The 
simulation results for disease detection in rice show the 
potential and effectiveness of the proposed method. 
In this research, Agustin, M. et al. [16] created a real-time 
video system with a rice disease classification system. The 
Livestream scheme employs 4G network connectivity and 
the WebSocket protocol to provide real-time interaction and 
assist the YOLO (You Only Look Once) algorithm-based 
rice disease detection system. Livestream also uses the 
raspberry pi camera V2 to record video streams. The 
efficiency of the Livestream system was evaluated with the 
use of four tests: one each for functionality, connection, 
categorization, and implementation. The Huy Minh Do 
dataset, consisting of 5447 images, was utilized for training 
the classification system, while Wireshark and Conky were 
employed for testing. Parameter results index indicates that 
all programs run normally with satisfactory Quality of 
Service. It is also found that the data may be reduced in size 
by delivering it in a format other than base64, by roughly 
200,000 bytes/s, and that the classification scheme performs 
well, with an average accuracy of 80%, while being highly 
demanding on the Raspberry Pi. Research into data transfer 
and the efficacy of machine learning in microcontrollers will 
benefit from further refinement and enhancement of this 
technology. 
Agrawal, M., and Agrawal, S. [17] have studied and trained 
several Convolution Neural Network models using unique 
permutations of training and learning approaches in an effort 
to improve accuracy. Baseline and transfer learning 
techniques are used to create state-of-the-art large-scale 
architectures including VGG19, XceptionNet, ResNet50, 
DenseNet, SqueezeNet, and Convolution Neural Network. 
Many different kinds of datasets were utilized for training 
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and testing these models. Experimental the highest accuracy 
(97.5%) compared to other Convolution Neural Network 
designs and previously published studies. 
The four principal rice illnesses are rice panicle stem blast; 
to identify these, Pan, J et al. [18] presented a two-stage 
technique called RiceNet. To begin, YoloX was used to 
detect the diseased areas of the rice photos, and based on 
those findings; a new rice disease patch dataset was created. 
The Siamese Network was used to locate the dataset for the 
rice disease patch created in the first stage. YoloX's mAP for 
rice disease images was 95.58%, making it the top 
performer in the comparative experiment's detection stage.  
In terms of identification performance, Siamese Network 
was superior to all other models, with a success rate of 
99.03%. The results of the experiments show that the 
proposed RiceNet model is superior to state-of-the-art 
approaches. It was also the lightest and fastest option for 
diagnosing rice illnesses. 
Atalla et al. [19] use the realistic WSN (Wireless Sensor 
Network) simulator COOJA (Contiki OS Java) to low-
power and lossy networks (RPL) in the two agricultural 
scenarios. The mobility of nodes is the primary 
distinguishing factor between the simulation settings for 
stationary and mobile nodes. The research characterizes 
many facets of performance requirements in the two 
agricultural scenarios duty cycle, and sensor network graph 
connection levels. As a novel approach to modelling and 
replicating the movement of animals, the random waypoint 
model (RWP) is implemented to describe horse motions in 
the COOJA simulator. The results show how mobile and 
stationary sensor networks may benefit from using the RPL 
(Responsys Personalization Language) routing protocol, 
which allows for flexible network architectures and higher 
overall performance. The suggested architecture is proven to 
be applicable to both fixed and mobile contexts via 
simulation and experimental validation, demonstrating high 
communication performance with minimal latency. The 
results have different practical implications for precision 
agriculture as a consequence of providing an efficient 
monitoring and management solution for farms that grow 
both crops and animals. This research provides a 
comprehensive analysis of the performance scalability of 
WSNs in the agricultural sector by using a novel 
categorization approach and performance assessment criteria 
for stationary and mobility circumstances in 6LowPAN 
networks. Results demonstrate that the proposed framework 
is well suited for precision agriculture due to its high 
throughput in transmission and little delay. 
In their research, Jiang, M. et al. [20] projected a method for 
disease detection in rice that makes use of a modified 
version of the DenseNet network. The DenseNet benchmark 
model is used to train the approach, and the channel 
attention technique squeeze-and-excitation is employed to 
boost desirable characteristics while dampening undesirable 
ones. In order to maximize parameter utilization and training 
efficiency, we swap out the dense network's regular 
convolutions with depth-wise separable convolutions. In 
combination with adaptive optimization, the AdaBound 

technique expedites parameter tuning. Experiments on five 
distinct datasets linked to rice dis-ease show that the method 
outlined in this study has an average classification accuracy 
of 99.4%, which is 13.8 percentage points better than the 
original model. ResNet, VGG, and Vision Transformer, 
three other well-known methods, are compared with it. This 
method improves detection rates, successfully classifies rice 
illness images, and represents a novel step forward in the 
evolution of crop disease identification technology and 
smart farming. 

3. Proposed System 

3.1. Data Preparation 

In this work, we examine brown spot, rice leaf blast as three 
examples of common rice illnesses. The most common 
method of manual diagnosis relies on seeing outward 
manifestations of illness. Brown spots are dark-brown, 
spherical to oval lesions surrounded by a yellow halo. 
Lesions stay spherical as they get larger, with a necrotic, 
grey core and a reddish-brown to dark brown periphery. As 
a result of rice hispa injury, only the bottom epidermis of 
leaf blades survives. Leaf tissue is not immune to the 
disease's tunnelling effects. When plants are severely 
damaged, their vitality decreases. Seeing the insect on the 
leaf is a certain way to identify rice hispa damage. Rice leaf 
blast manifests as a spectrum of lesions, from tiny, round, 
black spots to larger, oval patches with reddish-brown edges 
and a gray or white core. Long, thin, diamond- or linear-
shaped spots develop, with gray, lifeless centers surrounded 
by reddish-brown borders. We used a dataset consisting of 
2370 samples of rice leaves, split evenly across the three 
categories and also include healthy rice samples [20]. Table 
1 provides the specifics for each category. Each category has 
100 samples chosen at random for training and testing 
purposes. Morphology, are a few of the other picture pre-
processing techniques used in the sample preparation phase. 

Table 1: Thorough category information of the rice 
disease dataset. 

Sum of samples Category 
503 Healthy 
523 Brown spot 
565 Rice hispa damage 
779 Leaf blast 
2370 Total 

 
To overcome some of the constraints of the dataset, a pre-
processing method is carried out on the images. Specifically 
each photograph has a mostly white backdrop and a rice  
sample taken at an unusual angle. The white background 
was removed and Otsu's thresholding technique was used to 
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identify the leaf. The samples were then shifted such that 
they were all horizontally aligned. Otsu's threshold and 
opening morphology are used in the first step to determine 
the rice leaf's structure. In the second step, the recognized 
item is isolated from its irrelevant backdrop by shifting the 
picture horizontally. This improves learning performance by 
eliminating as much noise as possible from the original data. 
Before feeding them into the deep learning model, all of the 
rice leaf photos are scaled down to 299 by 299 pixels. In the       
section on classification performance, the effect of varying 
input size is also explored. 

3.2 Pre-processing 

Image contrast is improved using the (CLAHE) [22] 
technique for optimal rice plant image categorization. Here, 
the modified CLAHE is helpful for eliminating amplified 
noise. Plus, CLAHE is used to calculate a number of 
histograms, each of whose nodes is based on the boundaries 
of the canonical picture. In order to reduce any further 
amplification, the histogram is widely distributed. 

3.3 Proposed Deep Learning Architecture 

 For rice disease identification, a deep learning approach 
with two streams of features was presented. This design 
makes use of multiscale convolution layers, which are all 
implemented as layers. The multiscale block makes WO-
DRL more resistant to changes in size [23]. As a result, 
WO-DRL is better able to identify rice diseases. It has been 
shown that the residual blocks eliminate the vanishing 
gradient issue and provide efficiency on par with a more in-
depth network. In addition, the depth/point-wise 
convolutions are less expensive operators that cut down on 
the need for a small set of robust model parameters, which 
in turn lowers the computing cost. The Multiscale 2D 
convolutional layers are used to first extract the shallow 
features. Then, each deep feature extractor channel receives 
the extracted deep features. Due to the fact that even a tiny 
outbreak may spread quickly, we up-sampled the first 
channel by a factor of two before extracting the deep 
features. This route integrated multiscale residual block with 
residual block to draw out in-depth characteristics. 
Concurrently, the second channel was unearthed by the 
original resolution dataset's deep features using a 
combination of the residual block and the multiscale 
residual block. Then, the summing operator combined the 
two layers' retrieved deep features. The retrieved features 
were then combined into a single feature map and sent to a 
2D-convlotution layer, which made the final classification 
decision (disease or not). In the following sections, we will 
dive further into the architecture of WO-DRL. 
 

3.3.1 Convolution Layers  

Extracting high-level deep features from the input dataset is 
the primary responsibility of the convolution layers in a 
convolutional neural network (CNN) [24, 25], [26], [27]. 
The calculation for a layer l convolutional layer may be 
written as (1). 

𝑦𝑦𝑙𝑙 = 𝑔𝑔(𝑤𝑤𝑙𝑙𝑥𝑥𝑙𝑙−1) + 𝑏𝑏𝑙𝑙 (1) 
 

where (g) is weighted pattern, (b) is the bias vector, and (x) 
is the layer l-1 input data. 
Using equation (2), we can determine the output of the jth 
feature map (f) in the ith layer at the given spatial position 
(x, y). 
 

𝑓𝑓𝑖𝑖,𝑗𝑗
𝑥𝑥𝑥𝑥 = 𝑔𝑔�𝑏𝑏𝑖𝑖,𝑗𝑗 + ∑ ∑ ∑ 𝑊𝑊𝑖𝑖,𝑗𝑗

𝑟𝑟,𝑠𝑠𝑣𝑣𝑖𝑖−1,𝑚𝑚
(𝑥𝑥+𝑟𝑟)(𝑥𝑥+𝑠𝑠)𝑆𝑆𝑖𝑖−1

𝑠𝑠=0
𝑅𝑅𝑖𝑖−1
𝑟𝑟=0𝑚𝑚 � (2) 

 
where m is the feature cube in the (i - 1)th layer 

that is linked to the present feature cube through a kernel, W 
is the (r, s)th value of the kernel that links the mth feature 
layer before it, and R and S are the dimensions of the 
convolution kernel. 

 
 

The WO-DRL design makes use of three techniques: We 
avoid the vanishing or exploding gradient problem by using 
residual blocks layers, which allow the gradient to be 
directly back-propagated to earlier layers, and we use 
multiscale kernel convolution (i.e. different kernel size 
convolutions), as described in [23], [28] to ensure 
robustness against variations in scale. The third kind of 
convolution layer is the depth/point-wise convolution block, 
which uses a single filter for each feature in the input. 
When gauging training error, the loss function uses the 
difference among the predicted and actual values. The 
weight binary-cross entropy-dice (WBCED) loss function is 
employed in this study because it is more effective for low-
dimensional targets (Equation 3). The WBCED loss 
function is defined among the predicted value (p) and the 
real value (y) by combining the dice loss (Equation (4)) and 
the weighted (Equation (5)). 

: 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡 𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏𝑟𝑟𝑥𝑥 𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠 𝑤𝑤𝑏𝑏𝑡𝑡𝑟𝑟𝑐𝑐𝑒𝑒𝑥𝑥 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑊𝑊𝑖𝑖𝑐𝑐𝑤𝑤 (3) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑊𝑊𝑖𝑖𝑐𝑐𝑤𝑤 = 1 − 2∑𝑥𝑥×𝑒𝑒
∑𝑥𝑥+∑𝑒𝑒

 (4) 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡 𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏𝑟𝑟𝑥𝑥 𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠 𝑤𝑤𝑏𝑏𝑡𝑡𝑟𝑟𝑐𝑐𝑒𝑒𝑥𝑥 = −𝑤𝑤(𝑦𝑦 log(𝑝𝑝) + (1 −

𝑦𝑦)log (1 − 𝑝𝑝)) (5) 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏𝑟𝑟𝑥𝑥 𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠 𝑤𝑤𝑏𝑏𝑡𝑡𝑟𝑟𝑐𝑐𝑒𝑒𝑥𝑥 = −(𝑦𝑦 log(𝑝𝑝) + (1 − 𝑦𝑦) log (1 −

𝑝𝑝)) (6) 

𝑤𝑤 =
∑ ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗

𝑡𝑡
𝑗𝑗=1

𝑠𝑠
𝑖𝑖=1

𝑤𝑤−5×|𝑀𝑀𝑀𝑀𝑠𝑠−0.5|/∑𝑤𝑤−5×|𝑀𝑀𝑀𝑀𝑠𝑠−0.5| (7) 
 

where s and t are the width and height of the Mask, and 
where Mask is derived by the overage pooling of the 
reference map. 
Backpropagation with weights started with the Golorot 
initializer [31], [32], [33]   is used to train the WO-DRL 
architecture via an Adaptive Moment optimizer [30], [29]. 
WOA (Section 3.3.2) is used to choose the best values for 
the hyperparameters that guide DRL training. 

EAI Endorsed Transactions on 
Scalable Information Systems 

Online First



Whale Optimization based Deep Residual Learning Network for Early Rice Disease Prediction in IoT 
 
 
 
 

5 

: 
(i) Batch-size =7-patches 
(ii) Learning rate = 10−3  
(iii) Number of Epochs =250. 
 
In order to mix things up during practice, we shuffled things 
up. Tensorflow 2.4.1 and Keras 2.4.3 were used in the 
development of WO-DRL. 
WO-DRL connected to a working CNN, in this case the 
MSR-UNet. The primary cause is because MSR-U-Net, like 
DRL, uses a combination of multi-scale kernel convolution 
filters and residual blocks to extract deep features. Encoder-
decoder architecture is also used in MSRU-Net to probe 
hidden characteristics. 
 

3.3.2 Hyper-parameter Tuning using Whale 
Optimization Algorithm 
 
WOA is a method for maximizing efficiency. Its 
mathematical model is based on its efficiency in the field. 
The WOA employs a hunting technique called bubble-net 
feeding, which was originally developed by a type of killer 
whales known as hump-back whales. Each whale's position, 
marked by the symbol X_b, represents a solution that may 
be modified based on the whale's current attitude toward 
attacking the prey. There are two methods that whales might 
utilize to kill their food. The first tactic is called "encircling 
prey," and it involves the humpback whale finding its prey 
and then surrounding it. WOA operates on the assumption 
that the optimal response is (X_b(t)). Once X_b (t) is 
determined, the other whales will try to adjust their locations 
such that they are in agreement with X_b(t), as illustrated in 
Equations (8) through (10). 
 

𝐷𝐷𝐷𝐷𝐿𝐿𝑖𝑖 = |𝐵𝐵⨀𝑋𝑋𝑏𝑏(𝑡𝑡) − 𝑋𝑋𝑖𝑖(𝑡𝑡)|,𝐵𝐵 = 2𝑟𝑟 (8) 
𝑋𝑋𝑖𝑖(𝑡𝑡 + 1) = 𝑋𝑋𝑏𝑏(𝑡𝑡) − 𝐴𝐴⨀𝐷𝐷𝐷𝐷𝐿𝐿𝑖𝑖 (9) 

 
In Equation (10), 𝐷𝐷𝐷𝐷𝐿𝐿𝑖𝑖 stands for the distance among 𝑋𝑋𝑖𝑖(𝑡𝑡) 
and  𝑋𝑋𝑏𝑏(𝑡𝑡). A is a co-efficient vector and is calculated by the 
subsequent equation: 

𝐴𝐴 = 2𝑎𝑎⨀𝑟𝑟 − 𝑎𝑎 (10) 
 

where 𝑟𝑟 ∈  [0, 1]. Whereas, a parameter whose value 
changed is indicated by the letter a: 

𝑎𝑎 = 𝑎𝑎 − 𝑡𝑡 𝑏𝑏
𝑡𝑡𝑚𝑚𝑀𝑀𝑚𝑚

 (11) 
where 𝑡𝑡𝑚𝑚𝑏𝑏𝑥𝑥 stands for the sum of generations. 
Bubble-net assaulting, which stands in for the exploitation 
phase, is the second tactic, and it employs two methods: the 
spiral update of location, and a diminishing encircling 
mechanism. To accommodate the contracting encircling 
process, we must decrease an in Equation (10). The 
following expression uses the spiral updating position 
mechanism to determine the gap between X_i and X_b: 
 

𝑋𝑋(𝑡𝑡 + 1) = 𝐷𝐷𝐷𝐷𝐿𝐿′⨀𝑒𝑒𝑏𝑏𝑙𝑙⨀cos⨀  (2𝜋𝜋𝜋𝜋) + 𝑋𝑋𝑏𝑏(𝑡𝑡) (12) 

In Eq. (12), the number l represents the logarithmic spiral's 
form. In this manner, the whales are capable of both a 
decreasing circle and a spiralling route while 
circumnavigating the X_b. To further pinpoint this optimal 
site, we may utilize the subsequent equation, which is 
derived by combining Equations (8)– (10) and (12).. 
 

𝑋𝑋(𝑡𝑡 + 1) = �
𝑋𝑋𝑏𝑏(𝑡𝑡) − 𝐴𝐴⨀ 𝐷𝐷𝐷𝐷𝐿𝐿 𝐷𝐷𝑓𝑓 𝑝𝑝 ≥ 0.50

𝐷𝐷𝐷𝐷𝐿𝐿′⨀𝑒𝑒𝑏𝑏𝑙𝑙⨀cos⨀  (2𝜋𝜋𝜋𝜋) + 𝑋𝑋𝑏𝑏(𝑡𝑡)𝐷𝐷𝑓𝑓 𝑝𝑝 < 0.50 

(13) 
 

In Equation (13), 𝑝𝑝 ∈ [0, 1] to control the updating 
mechanism. 
Furthermore, as demonstrated in the equation below, X_r 
may be used in place of X_b to update each whale's 
location: 
 

𝑋𝑋(𝑡𝑡 + 1) = 𝑋𝑋𝑟𝑟 − 𝐴𝐴⨀𝐷𝐷𝐷𝐷𝐿𝐿 (14) 
𝐷𝐷𝐷𝐷𝐿𝐿 = |𝐵𝐵⨀𝑋𝑋𝑟𝑟𝑏𝑏𝑏𝑏𝑟𝑟 − 𝑋𝑋(𝑡𝑡)| (15) 

Algorithm 1 delivers the basic ladders of WOA. 

      Algorithm 1: WOA 

3.4 Autonomous Robot 

We have trained the model to recognize symptoms of illness 
in plant leaf photos. To put it into practice right now, we 
utilize a robot that can go about a farm or greenhouse 
autonomously and take pictures of the plant leaves. To go 
about without human intervention, we've designed a robot 

1: 𝐼𝐼𝐼𝐼𝑝𝑝𝐼𝐼𝑡𝑡: 𝑇𝑇ℎ𝑒𝑒max 𝐷𝐷𝑡𝑡𝑒𝑒𝑟𝑟𝑎𝑎𝑡𝑡𝐷𝐷𝐿𝐿𝐼𝐼𝐿𝐿 𝐼𝐼𝐼𝐼𝑛𝑛𝑏𝑏𝑒𝑒𝑟𝑟 𝑡𝑡𝑚𝑚𝑏𝑏𝑥𝑥 𝑎𝑎𝐼𝐼𝑎𝑎 𝑡𝑡ℎ𝑒𝑒  
    𝑝𝑝𝐿𝐿𝑝𝑝𝐼𝐼𝜋𝜋𝑎𝑎𝑡𝑡𝐷𝐷𝐿𝐿𝐼𝐼 𝐿𝐿𝐷𝐷𝑠𝑠𝑒𝑒 𝑁𝑁. 
2: 𝐶𝐶𝑟𝑟𝑒𝑒𝑎𝑎𝑡𝑡𝑒𝑒 𝑎𝑎 𝐿𝐿𝑒𝑒𝑡𝑡 𝐿𝐿𝑓𝑓 𝑁𝑁 𝑟𝑟𝑎𝑎𝐼𝐼𝑎𝑎𝐿𝐿𝑛𝑛 𝐿𝐿𝐿𝐿𝜋𝜋𝐼𝐼𝑡𝑡𝐷𝐷𝐿𝐿𝐼𝐼𝐿𝐿 (𝑋𝑋). 
3: 𝑆𝑆𝑒𝑒𝑡𝑡 𝑡𝑡 = 1. 
4: 𝐶𝐶𝑎𝑎𝜋𝜋𝐶𝐶𝐼𝐼𝜋𝜋𝑎𝑎𝑡𝑡𝑒𝑒 𝑒𝑒𝑎𝑎𝐶𝐶ℎ 𝑋𝑋𝑖𝑖’𝐿𝐿 𝑓𝑓𝐷𝐷𝑡𝑡𝐼𝐼𝑒𝑒𝐿𝐿𝐿𝐿 𝑣𝑣𝑎𝑎𝜋𝜋𝐼𝐼𝑒𝑒 (𝐹𝐹𝑖𝑖). 
5: 𝐹𝐹𝐷𝐷𝐼𝐼𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑋𝑋𝑏𝑏 𝑣𝑣𝑎𝑎𝜋𝜋𝐼𝐼𝑒𝑒 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝐶𝐶𝐿𝐿𝑟𝑟𝑟𝑟𝑒𝑒𝐿𝐿𝑝𝑝𝐿𝐿𝐼𝐼𝑎𝑎𝐿𝐿 𝑡𝑡𝐿𝐿 𝑡𝑡ℎ𝑒𝑒 𝑏𝑏𝑒𝑒𝐿𝐿𝑡𝑡   
     𝑓𝑓𝐷𝐷𝑡𝑡𝐼𝐼𝑒𝑒𝐿𝐿𝐿𝐿 𝑣𝑣𝑎𝑎𝜋𝜋𝐼𝐼𝑒𝑒 𝐹𝐹𝑏𝑏. 
6: 𝑓𝑓𝐿𝐿𝑟𝑟 𝑡𝑡 =  1: 𝑡𝑡𝑛𝑛𝑎𝑎𝑥𝑥 𝑎𝑎𝐿𝐿 
7: 𝑤𝑤ℎ𝐷𝐷𝜋𝜋𝑒𝑒 𝑎𝑎 >  0 𝑎𝑎𝐿𝐿 
8: 𝑓𝑓𝐿𝐿𝑟𝑟 𝑎𝑎𝜋𝜋𝜋𝜋 𝑋𝑋𝑖𝑖 ∈ 𝑋𝑋 𝑎𝑎𝐿𝐿 
9: 𝑈𝑈𝑝𝑝𝑎𝑎𝑎𝑎𝑡𝑡𝑒𝑒 𝑡𝑡ℎ𝑒𝑒 𝑣𝑣𝑎𝑎𝜋𝜋𝐼𝐼𝑒𝑒 𝐿𝐿𝑓𝑓 𝑝𝑝 𝑟𝑟𝑎𝑎𝐼𝐼𝑎𝑎𝐿𝐿𝑛𝑛𝜋𝜋𝑦𝑦 𝑎𝑎𝐿𝐿 𝑝𝑝 =  𝑟𝑟𝑎𝑎𝐼𝐼𝑎𝑎. 
10: 𝐷𝐷𝑓𝑓 𝑝𝑝 ≥  0.5 𝑡𝑡ℎ𝑒𝑒𝐼𝐼 
11: 𝑇𝑇𝐿𝐿 𝐷𝐷𝑛𝑛𝑝𝑝𝑟𝑟𝐿𝐿𝑣𝑣𝑒𝑒 𝑋𝑋𝑖𝑖 ,𝐼𝐼𝐿𝐿𝑒𝑒 𝐸𝐸𝑞𝑞𝐼𝐼𝑎𝑎𝑡𝑡𝐷𝐷𝐿𝐿𝐼𝐼 (12). 
12: 𝑒𝑒𝜋𝜋𝐿𝐿𝑒𝑒 
13: 𝐷𝐷𝑓𝑓 |𝐴𝐴| ≥  0.5 𝑡𝑡ℎ𝑒𝑒𝐼𝐼 
14: 𝑇𝑇𝐿𝐿 𝐷𝐷𝑛𝑛𝑝𝑝𝑟𝑟𝐿𝐿𝑣𝑣𝑒𝑒 𝑋𝑋𝑖𝑖 ,𝐼𝐼𝐿𝐿𝑒𝑒 𝐸𝐸𝑞𝑞𝐼𝐼𝑎𝑎𝑡𝑡𝐷𝐷𝐿𝐿𝐼𝐼 (14). 
15: 𝑒𝑒𝜋𝜋𝐿𝐿𝑒𝑒 
16: 𝑇𝑇𝐿𝐿 𝐷𝐷𝑛𝑛𝑝𝑝𝑟𝑟𝐿𝐿𝑣𝑣𝑒𝑒 𝑋𝑋𝑖𝑖 ,𝐼𝐼𝐿𝐿𝑒𝑒 𝐸𝐸𝑞𝑞𝐼𝐼𝑎𝑎𝑡𝑡𝐷𝐷𝐿𝐿𝐼𝐼 (8). 
17: 𝑒𝑒𝐼𝐼𝑎𝑎 𝐷𝐷𝑓𝑓 
18: 𝑒𝑒𝐼𝐼𝑎𝑎 𝐷𝐷𝑓𝑓 
19: 𝑒𝑒𝐼𝐼𝑎𝑎 𝑓𝑓𝐿𝐿𝑟𝑟 
20: 𝑈𝑈𝑝𝑝𝑎𝑎𝑎𝑎𝑡𝑡𝑒𝑒 𝑡𝑡ℎ𝑒𝑒 𝑣𝑣𝑎𝑎𝜋𝜋𝐼𝐼𝑒𝑒 𝐿𝐿𝑓𝑓 𝑎𝑎. 
21: 𝑒𝑒𝐼𝐼𝑎𝑎 𝑤𝑤ℎ𝐷𝐷𝜋𝜋𝑒𝑒 
22: 𝑒𝑒𝐼𝐼𝑎𝑎 𝑓𝑓𝐿𝐿𝑟𝑟 
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equipped with an obstacle avoidance system. The robot's 
camera pole is extendable so that a high-resolution 
photograph of the leaf may be taken. The robot is equipped 
with a global positioning system (GPS) location sensor that 
records the precise coordinates of the photo's capture. The 
robot first moves while using an algorithm designed to avoid 
obstacles. Meanwhile, the camera will keep scanning for 
leaves in real time using the same model we used. If the 
model predicts that a leaf is more likely to be present than 
not, the robot will cease taking pictures of it and instead 
record its GPS coordinates as the file name. The Raspberry 
Pi 4 is the appropriate microcontroller for this task. This is 
on-going, and we've already taken and used photographs of  
 real leaves to test our model. 

4 Results and Discussion 

4.1 Evaluation Metrics 

 
As metrics, the authors included training duration, average 
accuracy, precision, recall, and recall rate.  
 Matrix of Confusion: This indicates the proportion of 
properly and erroneously labelled samples. Here, TB 
represents the number of blast disease samples that were 
properly categorized, FB represents the number of blast 
disease samples that were mistakenly classified, TR 
represents the sum of rust disease samples that were 
correctly diagnosed, and FR represents the number of rust 
disease samples that were wrongly classified. The authors 
define the matrices using the labels provided in the 
confusion matrix. 
. 
1. Average accuracy: It's how certain you are that the 
categorization is accurate.  

𝐴𝐴𝐶𝐶𝐶𝐶𝐼𝐼𝑟𝑟𝑎𝑎𝐶𝐶𝑦𝑦 = 𝑇𝑇𝑊𝑊+𝑇𝑇𝑅𝑅
𝑇𝑇𝑅𝑅+𝐹𝐹𝑊𝑊+𝐹𝐹𝑅𝑅+𝑇𝑇𝑊𝑊

 (16) 
 

 2. Precision: This is how well blast samples can be 
categorized into blast types.  

𝑃𝑃𝑟𝑟𝑒𝑒𝐶𝐶𝐷𝐷𝐿𝐿𝐷𝐷𝐿𝐿𝐼𝐼 = 𝑇𝑇𝑊𝑊
𝑇𝑇𝑊𝑊+𝐹𝐹𝑊𝑊

 (17) 
 

3. Recall: Number of blast class samples correctly identified 
as belonging to that class as a percentage of all blast class 
samples.  

𝑅𝑅𝑒𝑒𝐶𝐶𝑎𝑎𝜋𝜋𝜋𝜋 = 𝑇𝑇𝑊𝑊
𝑇𝑇𝑊𝑊+𝐹𝐹𝑅𝑅

 (18) 
 

 
 
 
  
 
 
 

Table 2: Comparative analysis of Projected Model with 
Existing Technique 

 

 
 In the above Table 2 represent that the Comparative 
analysis of Projected Model with Existing Technique. In this 
analysis, we used different model to evaluate the 
performance range.  In the first evaluation of MPL method 
was used, in MLP reached the accuracy as 80.10 and 
precision rate of 87.21 and also the recall value of 80.15 and 
finally the F-score value as 80.43.  in the second evaluation 
of AE reached the accuracy as 85.71 and precision rate of 
84.32 and also the recall value of 85.93 and finally the F-
score value as 83.45. In another, DBN reached the 
accuracy as 92.10 and precision rate of 92.43 and recall rate 
of 92.15 and finally the F-score value as 91.68. And also 
another scheme as RNN reached the accuracy as 92.46 and 
precision rate of 93.48 and recall rate of 92.44 and finally 
the F-score value as 91.81. After that the CNN reached the 
accuracy as 89.52cand precision rate of 90.21 and recall rate 
ofc89.54cand finally the F-score value as 89.03. After the 
LSTM reached the accuracy as 94.53 and precision rate of 
96.61 and also the recall value as 92.52 and finally the F-
score value as 92.24. And the DRL reached the accuracy as 
94.16 and precision rate of  96.17and precision rate of 92.32 
92.10. And also, the WO-DRL 95.62, 98.32 and also the 
recall value of 94.62 and finally the F-score value as 94.53 
respectively. In this comparison analysis, the WO-DRL 
model reached better performance than other compared 
models. 
 

 

Figure 1: Analysis of Proposed Model for Accuracy 

 

Algorithm Accuracy Precision Recall F-score 
MLP 80.10 87.21 80.15 80.43 
AE 85.71 84.32 85.93 83.45 
DBN 92.10 92.43 92.15 91.68 
RNN 92.46 93.48 92.44 91.81 
CNN 89.52 90.21 89.54 89.03 
LSTM 94.53 96.61 92.52 92.24 
DRL 94.16 96.17 92.32 92.10 
WO-DRL 95.62 98.32 94.62 94.53 
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Figure 2: Precision validation 

 

Figure 3: Comparison of Model for Recall 

 
 

Figure 4: F-score analysis 

 
 

Table 3: Analysis of Proposed Model on various 
classes 

Disease Brown 
Spot 

Rice hispa 
damage 

Leaf blast Healthy 

Accuracy 
(%) 

98.98  98.15 98.68 99.79 

Precision 
(%) 

99.58  99.10 99.29 99.29 

Recall (%) 99.64  98.39 98.42 98.59 
F1 score (%) 99.11  98.69 98.85 98.94 
 
In the above Table 3 represent that the Analysis of Proposed 
Model on various classes. In this we evaluate different ratios 
as analysis, Brown Spot, Rice hispa damage, Leaf blast and 
Healthy. In first the Brown Spot reached the accuracy as 
98.98 and the precision rate of 99.58, and also the recall 
value as 99.64 and also the F1-score as 99.11. and another 
the Rice hispa damage reached the accuracy as 98.98 and 
the precision rate of 98. 68, and also the recall value as 
99.29 and also the F1-score as 98.42. and also, the Leaf blast 
reached the accuracy as 98.68 and the precision rate of 
99.58, and also the recall value as 99.64 and also the F1-
score as 99.11. and finally, the Healthy reached the accuracy 
as 99.79 and the precision rate of 99. 29, and also the recall 
value as 98.59 and also the F1-score as 98.94 respectively. 
 

 

Figure 5: Validation Analysis of Different classes using 
Proposed Model 

5 Conclusion 

This study introduced a unique WO-DRL model for disease 
diagnostics in rice plants in a precision agriculture setting. 
The suggested technique includes many steps, such as 
gathering and pre-processing images, and then classifying 
them, all of which occur on the server. Specifically, Internet 
of Things gadgets in rice-growing areas take pictures of the 
crops and upload them to the cloud, where they can be 
analysed. The contrast of the incoming photos is increased 
by a pre-processing step. The suggested model achieves 
99% accuracy on healthy leaves and 98% accuracy on Rice 
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hispa damage, Leaf blast, and brown spot thanks to the 
WOA model's optimum selection of DRL's hyper-parameter 
tuning. The given approach may be expanded in the future 
to identify illnesses that typically affect other plant types 
than rice, such as fruit plants. We want to soon implement a 
real-time classifier inside the microcontroller that will allow 
us to apply this method to all plant species, resulting in more 
precise and useful results. We also want to develop a mobile 
application that can keep track of this data and send out 
notifications when a potentially unhealthy plant is found. 
We'd also want to supplement our current data collection 
with information gathered from other sources and via 
excursions to the field. 
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	Extracting high-level deep features from the input dataset is the primary responsibility of the convolution layers in a convolutional neural network (CNN) [24, 25], [26], [27]. The calculation for a layer l convolutional layer may be written as (1).



