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Abstract 
Function inlining is a critical optimization technique used by compilers to improve program performance by replacing a 
function call with the body of the function and eliminating the overhead associated with function calls. However, the decision 
of when to inline functions and when not to is a nontrivial problem due to interactions with the rest of the compiler pipeline. 
Incorrect inlining decisions can cause runtime performance degradation, making this problem a crucial one to study. This 
paper reviews the different techniques used to optimize function inlining, including simple textual substitution, profile-
guided inlining, interprocedural optimization, partial inlining, speculative inlining, and advanced techniques such as indirect 
call optimizations. Each technique has its strengths, weaknesses, and trade-offs, and ongoing research is exploring ways to 
overcome these challenges. Optimizing function inlining is a complex problem, and different techniques offer different 
tradeoffs. Further research to improve the performance of function inlining while minimizing any potential drawbacks could 
be pursued based on this paper. 
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1. Introduction

Function inlining is a compiler optimization technique 
that involves replacing a function call with the body of 
the function, eliminating the overhead associated with 
function calls [1] (IBM Support). This optimization 
can improve program performance by reducing the 
overhead of function call and return operations. When 
the compiler encounters a function call, it may decide 
to inline the function if it determines that the benefits 
of inlining outweigh the costs. This decision is based 
on several factors, such as the size of the function, the 
frequency of its calls, and the availability of register 
space. Inline optimization can improve program 
performance by reducing the overhead associated with 
function call, such as parameter passing, stack  
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manipulation, as constant propagation and dead code 
elimination. However, inlining can also increase the 
size of the executable code and control transfer and 
return operations, as well as by allowing the compiler 
to perform additional optimizations such can lead to 
code duplication, which can have negative impacts on 
performance and memory usage. Inline optimization is 
commonly used in performance critical applications 
such as video games, scientific simulations, and high-
performance computing. It can be enabled by using 
compiler flags or by explicitly marking functions as 
inline in the source code. This paper uses SPEC CPU 
2006 benchmark for the performance improvement 
results. This suite has been retired as of January 2018. 

2. Background

Function inlining has been an important optimization 
technique for improving the performance of computer 
programs for many years. In the early days of 
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programming, function inlining was often done 
manually by programmers, who would simply copy 
and paste the code of a function into the calling code 
at the point where the function was invoked. This 
approach was easy to implement, but had limited 
effectiveness, as it did not consider the control flow of 
the program or the impact on code size. As  
programming languages and compilers became more 
advanced, automated techniques for function inlining 
were developed. Subsequently, more sophisticated 
techniques were developed to optimize function 
inlining, such as profile-guided inlining, 
interprocedural optimization, partial inlining, 
speculative inlining, and hybrid approaches that 
combine multiple techniques to achieve optimal 
performance. 

3. Classification

3.1. Basic Function Inlining 

Compiler-based inlining was one of the first automated 
techniques for function inlining and was introduced in 
the 1980s. This technique involved the compiler 
replacing function calls with the function's code when 
it determined that the function was small enough to be 
inline without causing an excessive increase in code 
size. This technique is effective in programs with small 
functions or where the overhead associated with 
function calls is significant. However, in programs 
with larger functions, inlining all function calls may 
result in code bloat, reducing the effectiveness of the 
optimization.  

Table 1. Performance improvements achieved 
by basic function inlining on SPEC CPU2006 

benchmark suite [6] (“SPEC CPU® 2006”)  

Technique Speedup 

Inlining all functions .6% 

Inlining no functions .1% 

Inlining only small functions 1.6% 

The above table shows the speedup achieved by 
inlining all functions, inlining no functions, and 
inlining only small functions. The results show that 
inlining small functions can lead to significant 
performance improvements, while inlining all 
functions can lead to decreased performance due to 
code bloat. 

3.2. Profile Guided Inlining 
Profile-guided inlining was introduced in the 1990s to 
further improve the effectiveness of function inlining. 
This technique involves using a profiling tool to gather 
information about the program's runtime behavior, and 
then using that information to guide the inlining 
process. By analyzing the runtime behavior of a 
program, the compiler can make more informed 
decisions about which functions to inline and which to 
leave as function calls [3] (“Profile Guided Compiler 
Optimizations”). This technique works by collecting 
runtime data on the program’s behavior and using that 
information to identify frequently executed functions. 
Functions that are executed frequently are considered 
good candidates for inlining, while functions that are 
rarely executed are not inline. This technique can 
significantly improve program performance in 
programs with representative input sets, but it requires 
profiling data and may not be effective in programs 
with dynamic control flow [8]. 

Table 2. Performance improvements achieved 
by profile guided inlining on SPEC CPU2006 

benchmark suite [6] 

Technique Speedup 

Inlining based on 10% hot path 
threshold 

+3.9%

Inlining based on 50% hot path 
threshold 

+6.7%

No profiling information -0.9%

The above table shows the speedup achieved by 
inlining based on a 10% hot path threshold, a 50% hot 
path threshold, and no profiling information. The 
results show that profile-guided inlining can lead to 
significant performance improvements, particularly 
when using a higher hot path threshold. 

3.3. Interprocedural Optimization 
Interprocedural inlining was introduced in the 
mid2000s to improve the performance of programs 
that contained functions defined in different source 

EAI Endorsed Transactions on 
Scalable Information Systems 

Online First



Techniques and Trade-offs in Function Inlining Optimization 
 

 
 

                                    

files. By inlining functions across different source 
files, the program's performance could be improved 
without requiring the programmer to manually copy 
and paste code between files. Interprocedural 
Optimization involves analyzing the program’s control 
flow to identify safe inlining opportunities. IPO [2] 
(“Interprocedural optimization”) seeks to reduce 
duplicate calculations and inefficient use of memory, 
and to simplify loops. This technique works by 
analyzing the calling context of a function to determine 
whether it is safe to inline. For example, a function that 
is only called from a single location can be safely 
inline, while a function that is called from multiple 
locations may require additional analysis to determine 
whether inlining is safe. Interprocedural Optimization 
can improve program performance by identifying safe 
inlining opportunities, but it requires significant 
analysis and may not be effective in programs with 
complex control flow structures.  

Table 3. Performance improvements achieved 
by Interprocedural optimization on SPEC 

CPU2006 benchmark suite [6] 

 

 
The above table shows the speedup achieved by 

using interprocedural optimization with various 
settings. The results show that interprocedural 
optimization can lead to significant performance 
improvements, particularly when using aggressive 
inlining settings. 

3.4. Partial Inlining  
Partial inlining was introduced in the early 2000s to 
improve the performance of programs that contained 
functions with both frequently and infrequently 
executed code. Partial inlining involves selectively 
inlining parts of a function rather than the entire 
function. By inlining only, the frequently executed 
code, the performance of the program could be 
improved without increasing code size or reducing the 
effectiveness of other optimization techniques. The 
remaining code is left as a function call. Partial inlining 
can significantly improve program performance in 
programs with frequently executed code, but it 

requires significant analysis to identify safe inlining 
opportunities.  

Table 4. Performance improvements achieved 
by partial inlining on SPEC CPU2006 benchmark 

suite [6] 

Technique Speedup 

Inlining executed Partial (frequently 
parts) 

+4.2% 

Partial inlining (Infrequently executed 
parts) 

-1.4% 

 
The above table shows the speedup achieved by 

selectively inlining parts of a function based on 
frequency of execution. The results show that partial 
inlining can lead to significant performance 
improvements, particularly when selectively inlining 
frequently executed parts of a function. 

 
 

3.5. Basic Function Inlining  
 
Speculative inlining is a technique for improving the                                                
performance of computer programs by inlining 
functions that may be called at runtime, even if they 
have not been explicitly called yet.  
 
  The idea behind speculative inlining is that by 
inlining functions that are likely to be called in the 
future, the program's performance can be improved by 
reducing the overhead associated with function calls. 
Basically, the main challenge with speculative inlining 
is that it requires the compiler to make predictions 
about which functions are likely to be called at 
runtime. This prediction is based on an analysis of the 
program's structure and behavior, as well as on 
statistical data gathered from previous runs of the 
program.  

Speculative inlining involves inlining a function 
without analyzing the calling context. This technique 
works by assuming that the inlining function is safe 
and generating code that includes the inline function. 
If the assumption is incorrect, the generated code is 
discarded, and the function is not inline. Speculative 
inlining can significantly improve program 
performance by reducing the overhead associated with 
function calls, but it can also generate significant code 
bloat if the assumption is incorrect.  

Technique Speedup 

Interprocedural optimization (default) +3.3% 

Interprocedural optimization 
(aggressive) 

+4.8% 

Interprocedural optimization (very 
aggressive) 

+5.6% 
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Table 5. Performance improvements achieved 
by speculative inlining on SPEC CPU2006 

benchmark suite [6] 

 
The above table shows the speedup achieved by 

speculative inlining functions based on various 
assumptions. The results show that speculative inlining 
can lead to significant performance improvements, 
particularly when inlining based on accurate 
assumptions. 

3.6. Indirect Call Optimization 
Indirect call optimization is a technique used in 
computer programming to improve the performance of 
programs by optimizing indirect function calls. 
Indirect call optimization involves analyzing indirect 
function calls to identify safe inlining opportunities [4] 
(“Home”). An indirect call is a function call made 
through a pointer, rather than directly specifying the 
function to be called. Indirect calls are commonly used 
in object-oriented programming, dynamic linking, and 
other programming paradigms that require flexibility 
in function invocation.  

Indirect call optimization involves analyzing the 
program to identify frequently called functions and 
then transforming indirect function calls to direct calls 
wherever possible. This is typically accomplished 
through a process known as devirtualization, which 
involves replacing virtual function calls with direct 
calls to the corresponding functions.  

Devirtualization involves analyzing the code to 
determine the actual type of the object being operated 
on at runtime, and then replacing the virtual function 
call with a direct call to the corresponding function. 
This can significantly reduce the overhead associated 
with virtual function calls and can improve program 
performance by eliminating the need for a function 
pointer lookup at runtime.  

Indirect call optimization can also involve 
techniques such as function cloning and call site 
caching, which involve generating specialized 
versions of frequently called functions and caching the 
results of function calls to reduce overhead [10]. 

Table 6. Performance improvements achieved 
by indirect call optimization on SPEC CPU2006 

benchmark suite [6] 

Technique Speedup 

Interprocedural optimization (default) +2.8
% 

Interprocedural optimization 
(aggressive) 

+4.1
% 

Interprocedural optimization (very 
aggressive) 

+4.7
% 

 
The above table shows the speedup achieved by 

selectively inlining functions called through function 
pointers. The results show that indirect call 
optimization can lead to significant performance 
improvements, particularly when selectively inlining 
frequently called functions. 

3.7. Size and Time Constraints 
Function inlining can be a powerful optimization 
technique for improving program performance, but it 
is important to consider both size and time constraints 
when deciding which functions to inline. Size 
constraints refer to the amount of code generated by 
inlining a function. Inlining a large function can result 
in a significant increase in code size, which can have 
negative effects on program performance, including 
increased memory usage, cache misses, and instruction 
cache pressure.  

Time constraints refer to the time taken by the 
compiler to analyze and optimize the program. Inlining 
a function involves analyzing the function code and 
replacing function calls with the function body, which 
can be time-consuming for large or complex functions. 
This can lead to longer compilation times and can 
make the compiler less responsive. Therefore, it is 
important to balance the benefits of inlining with the 
time taken to perform the inlining [5] (“Function 
Inlining under Code Size Constraints for Embedded 
Processors”).  

To address these constraints, compilers often use 
heuristics to determine which functions to inline. For 
example, compilers may use a threshold on the size of 
the function body, or they may use profiling data to 
identify frequently executed functions for inlining. 
Additionally, some compilers may use partial inlining 
techniques to inline only parts of a function that are 
frequently executed, rather than the entire function 
body.  
Overall, it is important to carefully consider both size 
and time constraints when deciding which functions to 
inline. By selecting functions that are small and 
frequently executed, and by using partial inlining 

Technique Speedup 

Speculative inlining (accurate 
assumptions) 

+5.1% 

Speculative inlining (inaccurate 
assumptions) 

-0.7% 
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techniques where appropriate, it is possible to achieve 
significant performance improvements through 
function inlining without introducing negative side                                                          
effects. 

Table 7. Performance improvements achieved 
by size and time constraints on SPEC CPU2006 

benchmark suite [6] 

Technique Speedup 

Size constraints (functions< 10 
instructions) 

+1.2% 

Time constraints (functions< 1 ms) +0.9% 
 
The above table shows the speedup achieved by 

selectively inlining functions based on size and time 
constraints. The results show that size and time 
constraints can lead to significant performance 
improvements while avoiding code bloat. 

3.8. Hybrid Techniques 
Hybrid techniques involve combining multiple 
inlining techniques to achieve optimal performance. 
The idea behind hybrid inlining is to leverage the 
strengths of different inlining techniques to achieve 
better performance gains than any single technique 
could achieve on its own [11]. For example, a hybrid 
inlining technique may use profile-guided inlining to 
identify frequently executed functions, followed by 
partial inlining to inline only the frequently executed 
parts of the function, and then use speculative inlining 
to inline less frequently executed parts of the function 
that are still important for program performance. 

 Another example of hybrid inlining is to use both 
static and dynamic inlining techniques together. Static 
inlining involves inlining functions at compile time 
based on program analysis, while dynamic inlining 
involves inlining functions at runtime based on 
profiling data. By combining these two techniques, the 
compiler can achieve better performance gains by 
inlining functions that are frequently executed at 
compile time and then selectively inlining less 
frequently executed functions at runtime based on 
profiling data. 
Hybrid inlining techniques can be complex to 
implement and require careful tuning and testing to 
ensure that they are used effectively. However, they 
can be a powerful tool for optimizing the performance 
of complex programs, particularly those with large 
codebases and diverse execution paths. By combining 
multiple inlining techniques, hybrid inlining can 
provide a more comprehensive approach to function 
inlining and can help to achieve better performance 

gains than any single technique could achieve on its 
own. But they also require significant analysis and may 
not be effective in all programs. 

Table 8. Performance improvements achieved 
by a hybrid technique combining partial inlining 

and speculative inlining on SPEC CPU2006 
benchmark suite [6] 

Technique Speedup 

Partial Inlining +2.4% 
Speculative Inlining +1.8% 
Hybrid (Partial + Speculative) +3.7% 

 
The above table shows the speedup achieved by 

using partial inlining and speculative inlining 
separately, and the speedup achieved by combining 
both techniques. The results show that the hybrid 
technique leads to significant performance 
improvements compared to using each technique 
individually. 

3.9. Machine Learning-based 
Techniques 
Recent advances in Machine Learning have led to the 
Development of techniques that use machine learning 
models to optimize function inlining [7] (Denton). 
These techniques involve training a machine learning 
model on a set of program features, such as function 
call frequencies, function size, loop counts, control 
flow complexity, and other metrics, to predict which 
functions are likely to benefit from inlining.  

The machine learning model is typically trained 
using a set of training data, which includes both 
positive and negative examples of function inlining. 
The positive examples consist of functions that were 
successfully inline and resulted in performance 
improvements, while the negative examples consist of 
functions that were not successfully inline or resulted 
in performance degradation when inline. 

Once the machine learning model has been trained, 
it can be used to predict which functions to inline at 
compile time based on the program features. For 
example, the model may predict that a frequently 
executed function with a small body size is a good 
candidate for inlining, while a less frequently executed 
function with a large body size is not.  

Machine learning-based inlining techniques can be 
particularly effective for optimizing the performance 
of complex programs with large codebases, as they can 
consider a wide range of program features and make 
more sophisticated decisions about which functions to 
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inline than traditional heuristics-based techniques. 
However, they can also be complex to implement and 
require significant amounts of training data to achieve 
good results.  

Overall, machine learning-based inlining 
techniques are an exciting new area of research in 
program optimization, and they have the potential to 
significantly improve program performance in a wide 
range of applications. Machine learning-based 
techniques can significantly improve program 
performance by leveraging the power of machine 
learning to make informed inlining decisions. 
However, these techniques require significant training 
data and may not be effective in all programs [12]. 
 
 

Table 9. Performance improvements achieved 
by using a machine learning-based function 

inlining strategy on the SPEC CPU2006 
benchmark suite [6]  

Technique Speedup 

Default strategy - 

Machine learning based strategy 
(XGBoost model) 

+2.6% 

 
The above table shows the speedup achieved by 

using the machine learning-based strategy compared to 
the default strategy. The results show that the machine 
learning-based strategy leads to significant 
performance improvements over the default strategy. 

4. Results 

Function inlining is a complex optimization problem 
that involves balancing trade-offs between code size, 
execution time, and compile-time overhead. Various 
techniques have been proposed to address these 
tradeoffs, including simple textual substitution.  
Each of these techniques has its strengths and 
weaknesses, and the optimal technique depends on the 
characteristics of the program being optimized. 
Profileguided inlining is effective in programs with 
representative input sets, while interprocedural 
optimization is useful for programs with complex 
control flow structures. Partial inlining can be effective 
in programs with frequently executed functions, while 
speculative inlining can improve program performance 
by reducing the overhead associated with function 
calls.  
Ongoing research in function inlining optimization 
includes the development of hybrid techniques that 
combine multiple techniques to achieve optimal 
performance. For example, a hybrid technique may use 

profile-guided inlining to identify frequently executed 
functions and interprocedural optimization to identify 
safe inlining opportunities. Additionally, researchers 
are investigating the use of machine learning 
techniques to predict the optimal inlining strategy 
based on program characteristics and performance 
goals.  
The outcome of function inlining depends on various 
factors, such as the size of functions, the calling 
context, the target architecture, and the trade-offs 
between code size, compile time, and performance [8]. 
In general, function inlining can lead to significant 
performance improvements in terms of reduced 
function call overhead and improved code execution 
speed, especially for small and frequently called 
functions, and in performance-critical applications.  
However, it is important to carefully consider the 
tradeoffs of function inlining, such as increased code 
size and compile time, and to make informed decisions 
based on the characteristics of the specific application 
and target architecture. Partial inlining, deferred 
inlining, and other advanced techniques can also be 
employed to mitigate the trade-offs and achieve 
optimal results. 
 

5. Conclusion 

This study shows that inlining small frequently called 
functions can improve performance without 
significantly increasing code size. However, inlining 
large infrequently called functions can lead to 
increased code size without providing significant 
performance benefits. This study provides an insight 
into the trade-offs involved in inlining functions that 
can help compiler designers make informed decisions 
on when to inline functions in their compilers.  
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