
EAI En d or se d Tra n sa ct ion s
on Sca la b le In fo r m a t ion Sys t e m s Research Article

1

Techniques and Trade-Offs in Function Inlining
Optimization
Priya Gupta1, Aditya Jha2, Brinda Gupta2, Kime Sumpi2, Sabyasachi Sahoo2, Mukkoti Maruthi Venkata
Chalapathi3, *

1 Atal Bihari Vajpayee School of Management and Entrepreneurship, Jawaharlal Nehru University, New Delhi, India
2 School of Engineering, Jawaharlal Nehru University, New Delhi
3 School of Computer Science and Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India

Abstract
Function inlining is a critical optimization technique used by compilers to improve program performance by replacing a
function call with the body of the function and eliminating the overhead associated with function calls. However, the decision
of when to inline functions and when not to is a nontrivial problem due to interactions with the rest of the compiler pipeline.
Incorrect inlining decisions can cause runtime performance degradation, making this problem a crucial one to study. This
paper reviews the different techniques used to optimize function inlining, including simple textual substitution, profile-
guided inlining, interprocedural optimization, partial inlining, speculative inlining, and advanced techniques such as indirect
call optimizations. Each technique has its strengths, weaknesses, and trade-offs, and ongoing research is exploring ways to
overcome these challenges. Optimizing function inlining is a complex problem, and different techniques offer different
tradeoffs. Further research to improve the performance of function inlining while minimizing any potential drawbacks could
be pursued based on this paper.

Keywords: Function inlining, Compiler optimization, function call, program performance, compiler pipeline

Received on 21 September 2023, accepted on 18 November 2023, published on 22 November 2023

Copyright © P. Gupta et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-SA 4.0,
which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original
work is properly cited.

doi: 10.4108/eetsis.4453

1. Introduction

Function inlining is a compiler optimization technique
that involves replacing a function call with the body of
the function, eliminating the overhead associated with
function calls [1] (IBM Support). This optimization
can improve program performance by reducing the
overhead of function call and return operations. When
the compiler encounters a function call, it may decide
to inline the function if it determines that the benefits
of inlining outweigh the costs. This decision is based
on several factors, such as the size of the function, the
frequency of its calls, and the availability of register
space. Inline optimization can improve program
performance by reducing the overhead associated with
function call, such as parameter passing, stack

*Corresponding author. Email: mmv.chalapthi@vitap.ac.in

manipulation, as constant propagation and dead code
elimination. However, inlining can also increase the
size of the executable code and control transfer and
return operations, as well as by allowing the compiler
to perform additional optimizations such can lead to
code duplication, which can have negative impacts on
performance and memory usage. Inline optimization is
commonly used in performance critical applications
such as video games, scientific simulations, and high-
performance computing. It can be enabled by using
compiler flags or by explicitly marking functions as
inline in the source code. This paper uses SPEC CPU
2006 benchmark for the performance improvement
results. This suite has been retired as of January 2018.

2. Background

Function inlining has been an important optimization
technique for improving the performance of computer
programs for many years. In the early days of

EAI Endorsed Transactions on
Scalable Information Systems

Online First

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:mmv.chalapthi@vitap.ac.in

P. Gupta et al.

2

programming, function inlining was often done
manually by programmers, who would simply copy
and paste the code of a function into the calling code
at the point where the function was invoked. This
approach was easy to implement, but had limited
effectiveness, as it did not consider the control flow of
the program or the impact on code size. As
programming languages and compilers became more
advanced, automated techniques for function inlining
were developed. Subsequently, more sophisticated
techniques were developed to optimize function
inlining, such as profile-guided inlining,
interprocedural optimization, partial inlining,
speculative inlining, and hybrid approaches that
combine multiple techniques to achieve optimal
performance.

3. Classification

3.1. Basic Function Inlining

Compiler-based inlining was one of the first automated
techniques for function inlining and was introduced in
the 1980s. This technique involved the compiler
replacing function calls with the function's code when
it determined that the function was small enough to be
inline without causing an excessive increase in code
size. This technique is effective in programs with small
functions or where the overhead associated with
function calls is significant. However, in programs
with larger functions, inlining all function calls may
result in code bloat, reducing the effectiveness of the
optimization.

Table 1. Performance improvements achieved
by basic function inlining on SPEC CPU2006

benchmark suite [6] (“SPEC CPU® 2006”)

Technique Speedup

Inlining all functions .6%

Inlining no functions .1%

Inlining only small functions 1.6%

The above table shows the speedup achieved by
inlining all functions, inlining no functions, and
inlining only small functions. The results show that
inlining small functions can lead to significant
performance improvements, while inlining all
functions can lead to decreased performance due to
code bloat.

3.2. Profile Guided Inlining
Profile-guided inlining was introduced in the 1990s to
further improve the effectiveness of function inlining.
This technique involves using a profiling tool to gather
information about the program's runtime behavior, and
then using that information to guide the inlining
process. By analyzing the runtime behavior of a
program, the compiler can make more informed
decisions about which functions to inline and which to
leave as function calls [3] (“Profile Guided Compiler
Optimizations”). This technique works by collecting
runtime data on the program’s behavior and using that
information to identify frequently executed functions.
Functions that are executed frequently are considered
good candidates for inlining, while functions that are
rarely executed are not inline. This technique can
significantly improve program performance in
programs with representative input sets, but it requires
profiling data and may not be effective in programs
with dynamic control flow [8].

Table 2. Performance improvements achieved
by profile guided inlining on SPEC CPU2006

benchmark suite [6]

Technique Speedup

Inlining based on 10% hot path
threshold

+3.9%

Inlining based on 50% hot path
threshold

+6.7%

No profiling information -0.9%

The above table shows the speedup achieved by
inlining based on a 10% hot path threshold, a 50% hot
path threshold, and no profiling information. The
results show that profile-guided inlining can lead to
significant performance improvements, particularly
when using a higher hot path threshold.

3.3. Interprocedural Optimization
Interprocedural inlining was introduced in the
mid2000s to improve the performance of programs
that contained functions defined in different source

EAI Endorsed Transactions on
Scalable Information Systems

Online First

Techniques and Trade-offs in Function Inlining Optimization

files. By inlining functions across different source
files, the program's performance could be improved
without requiring the programmer to manually copy
and paste code between files. Interprocedural
Optimization involves analyzing the program’s control
flow to identify safe inlining opportunities. IPO [2]
(“Interprocedural optimization”) seeks to reduce
duplicate calculations and inefficient use of memory,
and to simplify loops. This technique works by
analyzing the calling context of a function to determine
whether it is safe to inline. For example, a function that
is only called from a single location can be safely
inline, while a function that is called from multiple
locations may require additional analysis to determine
whether inlining is safe. Interprocedural Optimization
can improve program performance by identifying safe
inlining opportunities, but it requires significant
analysis and may not be effective in programs with
complex control flow structures.

Table 3. Performance improvements achieved
by Interprocedural optimization on SPEC

CPU2006 benchmark suite [6]

The above table shows the speedup achieved by

using interprocedural optimization with various
settings. The results show that interprocedural
optimization can lead to significant performance
improvements, particularly when using aggressive
inlining settings.

3.4. Partial Inlining
Partial inlining was introduced in the early 2000s to
improve the performance of programs that contained
functions with both frequently and infrequently
executed code. Partial inlining involves selectively
inlining parts of a function rather than the entire
function. By inlining only, the frequently executed
code, the performance of the program could be
improved without increasing code size or reducing the
effectiveness of other optimization techniques. The
remaining code is left as a function call. Partial inlining
can significantly improve program performance in
programs with frequently executed code, but it

requires significant analysis to identify safe inlining
opportunities.

Table 4. Performance improvements achieved
by partial inlining on SPEC CPU2006 benchmark

suite [6]

Technique Speedup

Inlining executed Partial (frequently
parts)

+4.2%

Partial inlining (Infrequently executed
parts)

-1.4%

The above table shows the speedup achieved by

selectively inlining parts of a function based on
frequency of execution. The results show that partial
inlining can lead to significant performance
improvements, particularly when selectively inlining
frequently executed parts of a function.

3.5. Basic Function Inlining

Speculative inlining is a technique for improving the
performance of computer programs by inlining
functions that may be called at runtime, even if they
have not been explicitly called yet.

 The idea behind speculative inlining is that by
inlining functions that are likely to be called in the
future, the program's performance can be improved by
reducing the overhead associated with function calls.
Basically, the main challenge with speculative inlining
is that it requires the compiler to make predictions
about which functions are likely to be called at
runtime. This prediction is based on an analysis of the
program's structure and behavior, as well as on
statistical data gathered from previous runs of the
program.

Speculative inlining involves inlining a function
without analyzing the calling context. This technique
works by assuming that the inlining function is safe
and generating code that includes the inline function.
If the assumption is incorrect, the generated code is
discarded, and the function is not inline. Speculative
inlining can significantly improve program
performance by reducing the overhead associated with
function calls, but it can also generate significant code
bloat if the assumption is incorrect.

Technique Speedup

Interprocedural optimization (default) +3.3%

Interprocedural optimization
(aggressive)

+4.8%

Interprocedural optimization (very
aggressive)

+5.6%

EAI Endorsed Transactions on
Scalable Information Systems

Online First

P. Gupta et al.

 4

Table 5. Performance improvements achieved
by speculative inlining on SPEC CPU2006

benchmark suite [6]

The above table shows the speedup achieved by

speculative inlining functions based on various
assumptions. The results show that speculative inlining
can lead to significant performance improvements,
particularly when inlining based on accurate
assumptions.

3.6. Indirect Call Optimization
Indirect call optimization is a technique used in
computer programming to improve the performance of
programs by optimizing indirect function calls.
Indirect call optimization involves analyzing indirect
function calls to identify safe inlining opportunities [4]
(“Home”). An indirect call is a function call made
through a pointer, rather than directly specifying the
function to be called. Indirect calls are commonly used
in object-oriented programming, dynamic linking, and
other programming paradigms that require flexibility
in function invocation.

Indirect call optimization involves analyzing the
program to identify frequently called functions and
then transforming indirect function calls to direct calls
wherever possible. This is typically accomplished
through a process known as devirtualization, which
involves replacing virtual function calls with direct
calls to the corresponding functions.

Devirtualization involves analyzing the code to
determine the actual type of the object being operated
on at runtime, and then replacing the virtual function
call with a direct call to the corresponding function.
This can significantly reduce the overhead associated
with virtual function calls and can improve program
performance by eliminating the need for a function
pointer lookup at runtime.

Indirect call optimization can also involve
techniques such as function cloning and call site
caching, which involve generating specialized
versions of frequently called functions and caching the
results of function calls to reduce overhead [10].

Table 6. Performance improvements achieved
by indirect call optimization on SPEC CPU2006

benchmark suite [6]

Technique Speedup

Interprocedural optimization (default) +2.8
%

Interprocedural optimization
(aggressive)

+4.1
%

Interprocedural optimization (very
aggressive)

+4.7
%

The above table shows the speedup achieved by

selectively inlining functions called through function
pointers. The results show that indirect call
optimization can lead to significant performance
improvements, particularly when selectively inlining
frequently called functions.

3.7. Size and Time Constraints
Function inlining can be a powerful optimization
technique for improving program performance, but it
is important to consider both size and time constraints
when deciding which functions to inline. Size
constraints refer to the amount of code generated by
inlining a function. Inlining a large function can result
in a significant increase in code size, which can have
negative effects on program performance, including
increased memory usage, cache misses, and instruction
cache pressure.

Time constraints refer to the time taken by the
compiler to analyze and optimize the program. Inlining
a function involves analyzing the function code and
replacing function calls with the function body, which
can be time-consuming for large or complex functions.
This can lead to longer compilation times and can
make the compiler less responsive. Therefore, it is
important to balance the benefits of inlining with the
time taken to perform the inlining [5] (“Function
Inlining under Code Size Constraints for Embedded
Processors”).

To address these constraints, compilers often use
heuristics to determine which functions to inline. For
example, compilers may use a threshold on the size of
the function body, or they may use profiling data to
identify frequently executed functions for inlining.
Additionally, some compilers may use partial inlining
techniques to inline only parts of a function that are
frequently executed, rather than the entire function
body.
Overall, it is important to carefully consider both size
and time constraints when deciding which functions to
inline. By selecting functions that are small and
frequently executed, and by using partial inlining

Technique Speedup

Speculative inlining (accurate
assumptions)

+5.1%

Speculative inlining (inaccurate
assumptions)

-0.7%

EAI Endorsed Transactions on
Scalable Information Systems

Online First

Techniques and Trade-offs in Function Inlining Optimization

techniques where appropriate, it is possible to achieve
significant performance improvements through
function inlining without introducing negative side
effects.

Table 7. Performance improvements achieved
by size and time constraints on SPEC CPU2006

benchmark suite [6]

Technique Speedup

Size constraints (functions< 10
instructions)

+1.2%

Time constraints (functions< 1 ms) +0.9%

The above table shows the speedup achieved by

selectively inlining functions based on size and time
constraints. The results show that size and time
constraints can lead to significant performance
improvements while avoiding code bloat.

3.8. Hybrid Techniques
Hybrid techniques involve combining multiple
inlining techniques to achieve optimal performance.
The idea behind hybrid inlining is to leverage the
strengths of different inlining techniques to achieve
better performance gains than any single technique
could achieve on its own [11]. For example, a hybrid
inlining technique may use profile-guided inlining to
identify frequently executed functions, followed by
partial inlining to inline only the frequently executed
parts of the function, and then use speculative inlining
to inline less frequently executed parts of the function
that are still important for program performance.

 Another example of hybrid inlining is to use both
static and dynamic inlining techniques together. Static
inlining involves inlining functions at compile time
based on program analysis, while dynamic inlining
involves inlining functions at runtime based on
profiling data. By combining these two techniques, the
compiler can achieve better performance gains by
inlining functions that are frequently executed at
compile time and then selectively inlining less
frequently executed functions at runtime based on
profiling data.
Hybrid inlining techniques can be complex to
implement and require careful tuning and testing to
ensure that they are used effectively. However, they
can be a powerful tool for optimizing the performance
of complex programs, particularly those with large
codebases and diverse execution paths. By combining
multiple inlining techniques, hybrid inlining can
provide a more comprehensive approach to function
inlining and can help to achieve better performance

gains than any single technique could achieve on its
own. But they also require significant analysis and may
not be effective in all programs.

Table 8. Performance improvements achieved
by a hybrid technique combining partial inlining

and speculative inlining on SPEC CPU2006
benchmark suite [6]

Technique Speedup

Partial Inlining +2.4%
Speculative Inlining +1.8%
Hybrid (Partial + Speculative) +3.7%

The above table shows the speedup achieved by

using partial inlining and speculative inlining
separately, and the speedup achieved by combining
both techniques. The results show that the hybrid
technique leads to significant performance
improvements compared to using each technique
individually.

3.9. Machine Learning-based
Techniques
Recent advances in Machine Learning have led to the
Development of techniques that use machine learning
models to optimize function inlining [7] (Denton).
These techniques involve training a machine learning
model on a set of program features, such as function
call frequencies, function size, loop counts, control
flow complexity, and other metrics, to predict which
functions are likely to benefit from inlining.

The machine learning model is typically trained
using a set of training data, which includes both
positive and negative examples of function inlining.
The positive examples consist of functions that were
successfully inline and resulted in performance
improvements, while the negative examples consist of
functions that were not successfully inline or resulted
in performance degradation when inline.

Once the machine learning model has been trained,
it can be used to predict which functions to inline at
compile time based on the program features. For
example, the model may predict that a frequently
executed function with a small body size is a good
candidate for inlining, while a less frequently executed
function with a large body size is not.

Machine learning-based inlining techniques can be
particularly effective for optimizing the performance
of complex programs with large codebases, as they can
consider a wide range of program features and make
more sophisticated decisions about which functions to

EAI Endorsed Transactions on
Scalable Information Systems

Online First

P. Gupta et al.

 6

inline than traditional heuristics-based techniques.
However, they can also be complex to implement and
require significant amounts of training data to achieve
good results.

Overall, machine learning-based inlining
techniques are an exciting new area of research in
program optimization, and they have the potential to
significantly improve program performance in a wide
range of applications. Machine learning-based
techniques can significantly improve program
performance by leveraging the power of machine
learning to make informed inlining decisions.
However, these techniques require significant training
data and may not be effective in all programs [12].

Table 9. Performance improvements achieved
by using a machine learning-based function

inlining strategy on the SPEC CPU2006
benchmark suite [6]

Technique Speedup

Default strategy -

Machine learning based strategy
(XGBoost model)

+2.6%

The above table shows the speedup achieved by

using the machine learning-based strategy compared to
the default strategy. The results show that the machine
learning-based strategy leads to significant
performance improvements over the default strategy.

4. Results

Function inlining is a complex optimization problem
that involves balancing trade-offs between code size,
execution time, and compile-time overhead. Various
techniques have been proposed to address these
tradeoffs, including simple textual substitution.
Each of these techniques has its strengths and
weaknesses, and the optimal technique depends on the
characteristics of the program being optimized.
Profileguided inlining is effective in programs with
representative input sets, while interprocedural
optimization is useful for programs with complex
control flow structures. Partial inlining can be effective
in programs with frequently executed functions, while
speculative inlining can improve program performance
by reducing the overhead associated with function
calls.
Ongoing research in function inlining optimization
includes the development of hybrid techniques that
combine multiple techniques to achieve optimal
performance. For example, a hybrid technique may use

profile-guided inlining to identify frequently executed
functions and interprocedural optimization to identify
safe inlining opportunities. Additionally, researchers
are investigating the use of machine learning
techniques to predict the optimal inlining strategy
based on program characteristics and performance
goals.
The outcome of function inlining depends on various
factors, such as the size of functions, the calling
context, the target architecture, and the trade-offs
between code size, compile time, and performance [8].
In general, function inlining can lead to significant
performance improvements in terms of reduced
function call overhead and improved code execution
speed, especially for small and frequently called
functions, and in performance-critical applications.
However, it is important to carefully consider the
tradeoffs of function inlining, such as increased code
size and compile time, and to make informed decisions
based on the characteristics of the specific application
and target architecture. Partial inlining, deferred
inlining, and other advanced techniques can also be
employed to mitigate the trade-offs and achieve
optimal results.

5. Conclusion

This study shows that inlining small frequently called
functions can improve performance without
significantly increasing code size. However, inlining
large infrequently called functions can lead to
increased code size without providing significant
performance benefits. This study provides an insight
into the trade-offs involved in inlining functions that
can help compiler designers make informed decisions
on when to inline functions in their compilers.

EAI Endorsed Transactions on
Scalable Information Systems

Online First

Techniques and Trade-offs in Function Inlining Optimization

References

1. IBM Support,

https://www.ibm.com/support/pages/what
doesit-mean-inline-function-and-how-
does-itaffect-program, last accessed
2023/03/03.

2. Wikipedia,
https://en.wikipedia.org/wiki/Interprocedu
ral_optimization, last. accessed
2023/03/10.

3. Rajiv, G., Eduard, M., Youtao, Z.: Profile
guided compiler optimizations. The
Compiler Design Handbook:
Optimizations & Machine Code
Generation. CRC Press (2002).

4. YouTube Home,
https://www.gnu.org/software/gawk/manu
al/In direct-Calls. Last accessed
2023/03/10.

5. Leupers, R., Marwedel, P.: Function
inlining under code size constraints for
embedded processors. In: IEEE/ACM
International Conference on Computer-
Aided Design. Digest of Technical Papers
(Cat. No. 99CH37051), pp. 253-256.
(1999).

6. SPEC CPU® 2006,
https://www.spec.org/cpu2006/. last
accessed 2023/03/10.

7. Google AI Blog Denton, Tom,
http://www.ai.googleblog.com/. last
accessed 2023/03/10.

8. Agarwal, R., Srikant, Y.N.: Inlining of
library functions using profiling
information. In: ACM SIGPLAN Notices,
41(6) (2006).

9. Gao, L., Chen, Q., Su, Z.: A study on
function inlining optimization. In:
Proceedings of the 3rd International
Conference on Computer Science and
Information Technology, (2010).

10. Lee, H., Lee, J. W., Kim, C.: An indirect
call optimization for dynamic languages.
In: Proceedings of the 2009 ACM
SIGPLAN Conference on Programming
Language Design and Implementation, pp.
390-399, (2009).

11. Zhao, J., Chen, X., Chen, H.: Combining
Profile-guided Inlining and Partial Inlining
for Performance Optimization. In: IEEE
Transactions on Parallel and Distributed
Systems, 31(10), pp. 2368-2379, (2020).

12. Kulkarni, P., Choudhary, A.: Machine
Learning-based function inlining in
LLVM. In: Proceedings of the 4th
International Workshop on Software
Engineering for Parallel Systems, pp. 23-
29, (2018).

EAI Endorsed Transactions on
Scalable Information Systems

Online First

https://en.wikipedia.org/wiki/Interprocedural_optimization
https://en.wikipedia.org/wiki/Interprocedural_optimization
https://www.gnu.org/software/gawk/manual/In
https://www.gnu.org/software/gawk/manual/In
https://www.spec.org/cpu2006/
http://www.ai.googleblog.com/

