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Abstract

Nonorthogonal multiple access (NOMA) increases spectrum efficacy by permitting multiple devices to
share link resources. It can be used to provide convenient offloading computing services for edge devices
(EDs) in unmanned aerial vehicle (UAV) and mobile-edge computing (MEC) networks. However, due to the
Line-of-Sight (LoS) of UAV transmission, NOMA-based UAV-MEC systems are susceptible to information
eavesdropping. In this paper, we investigate a secure offloading model for a NOMA-based UAV-aided MEC
in Internet of Things (IoT) network concerning an aerial eavesdropper (EAV) that considers imperfect channel
state information (ipCSI) and imperfect successive interference cancellation (ipSIC). We derive the expression
of secrecy successful computation probability (SSCP) across the entire system to analyze EAV’s impact on the
performance of the NOMA-based UAV-aided MEC in IoT networks. In addition, we present a formulation
of an optimization problem that optimizes the SSCP through the optimization of the UAV’s altitude and
location, as well as the offloading ratio. To address this issue, a genetic algorithm (GA)-based approach was
implemented. The results of our study were corroborated by the Monte Carlo simulations, which assessed
system performance by considering multiple system parameters including the UAV’s location, altitude,
average transmit signal-to-noise ratio (SNR), and offloading ratio.
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1. Introduction

The demand for computation capacity increases due
to the exponential growth of Internet of Things (IoT)
devices and their associated applications, including
autonomous driving, augmented reality, virtual reality,
and agriculture monitoring [1–3]. In response to this
need, researchers and professionals from both academic
and industrial sectors examined a novel computational
methodology called mobile-edge computing (MEC). In
this case, the edge device (ED) can delegate their
responsibilities to the MEC servers, which are typically
located at the network’s edge. Furthermore, it facilitates
energy consumption and reduces latency by enabling

∗Corresponding author. Email: nhatna3@fe.edu.vn

EDs to communicate with MEC servers over short
distances [4–6].

Unmanned aerial vehicle (UAV) with great mobility
and low cost can immediately provide an efficient
emergency and auxiliary means for UAV deployment
in remote locations [7, 8]. UAV equipped with MEC
servers can dynamically improve wireless link quality
and provide effective offloading compute service for ED
[9–11]. Liu et al. investigated the resource management
and cooperative offloading calculation scheme in the
UAV-aided MEC architecture under the requirements
of EDs and variable channels [9]. Hu et al. provided an
effective technique for obtaining the UAV-MEC system’s
optimum solution [10]. To improve computational
efficiency in the multiple UAV-aided MEC system,
Zhang et al. developed an optimal approach [11].
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On the other hand, nonorthogonal multiple access
(NOMA) allows many EDs to share link resources,
and successive interference cancellation (SIC) can be
utilized to decode signals in NOMA transmission. As a
result, NOMA transmission can achieve better spectrum
use and throughput. Because of these benefits, NOMA
is commonly used in UAV-aided MEC networks to
provide flexible and convenient compute offloading
services for large-scale access EDs [12–14]. Na et
al. presented a collaborative optimization approach
that employs clustered NOMA to reduce inter-channel
interference while increasing the overall uplink rate
[12]. Zhang et al. hypothesized that the UAV-aided
MEC framework with NOMA can reduce offloading
energy consumption and overcome device computing
energy limitations [13]. Budhiraja et al. presented a
NOMA-based uplink transmission technique that not
only supports large-scale access but also improves the
transmission quality of the UAV-aided MEC system
[14].

It can be demonstrated that NOMA transmission can
provide EDs in UAV-aided MEC networks with flexible
and convenient calculation services. However, malevo-
lent users can readily eavesdrop on offloading informa-
tion, posing serious security vulnerabilities to NOMA-
basedUAV-aided MEC networks. Physical-layer security
(PLS) ensures high-quality, secure communication by
employing wireless channels and transmission mecha-
nisms effectively [15–18]. The protected zone technique
was examined by Rupasinghe et al. to improve the PLS
of UAV-based communication networks [15]. Cao et al.
presented an anti-eavesdropping approach in NOMA
networks using beamforming [16]. Sun et al. demon-
strated that NOMA’s UAV communication not only
increases coverage but also enhances security [17]. To
prevent eavesdroppers from collecting useful offloading
information, Xu et al. investigated the security opti-
mization strategy in the UAV-aided MEC networks [18].
UAV eavesdroppers will have significantly better chan-
nel conditions due to Line-of-Sight (LoS) transmission
than ground eavesdroppers, which are positioned at
fixed sites in existing works. As a result, flying UAVs
can readily eavesdrop on the information.

This study investigates the performance of secrecy
offloading in IoT networks that utilize NOMA-based
UAV-aided MEC across Nakagami-m fading channels.
Furthermore, we take into account the likelihood of
LoS and non-LoS (NLoS) scenarios in wireless channels
between UAV and ground devices. In addition, we
examine the performance of the system in terms of
secrecy offloading, taking into account the presence
of imperfect channel state information (ipCSI) and
imperfect successive interference cancellation (ipSIC)
between the UAV and the EDs. Finally, we propose
an optimization problem to enhance the secrecy

Figure 1. System model for a NOMA-based UAV-aided MEC in
IoT network.

performance of the system. The following are our
paper’s main contributions:

• We investigate a NOMA-based UAV-aided MEC in
IoT networks in the presence of a passive flying
eavesdropper. In addition, we take into account
the use of ipCSI and ipSIC to ensure precise
assessments of the system’s secrecy offloading
performance in real-work scenarios. Accordingly,
we propose a system protocol to ensure effective
secrecy offloading performance.

• We derive closed-form expressions of secrecy
successful computation probability (SSCP) for
the entire system. In addition, we formulated a
problem for maximizing SSCP by optimizing the
location and altitude of UAV and also offloading
ratio. The problem was solved using a genetic
algorithm (GA).

• To confirm the efficacy of our system, numerical
results such as average transmit signal-to-noise
ratio (SNR), location and altitude of UAV; and
offloading ratio of ED are used to evaluate the
system’s secrecy offloading performance.

The remainder of this paper is organized as follows.
In Section 2, the system model, the communication
protocol are introduced. In Section 3, the SSCP and
optimization problem are analyzed. In Section 4,
numerical results are presented and discussed. Finally,
conclusions are presented in Section 5.

2. System Model and Communication Protocol
2.1. System and channel model
We investigate a NOMA-based UAV-aided MEC in an
IoT network with two EDs denoted by A and B, where A
is a high-priority device and B is a low-priority device,
as illustrated in Fig. 1. Due to their limited resources,
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these two devices attempt to transfer confidential duties
to the UAV-equipped MEC server, denoted by UM , in
the presence of a passive flying eavesdropper, denoted
by UE . Note that we assume that the position of UE
has been determined; all devices with a single antenna
operate in half-duplex mode and are located in an urban
environment.

Without loss of generality, we utilized a 3D Cartesian
coordinate system, we use UM

(
xUM

, yUM
, hUM

)
,

where hUM
> 0; A (xA, yA, 0); B (xB, yB, 0); and

UE

(
xUE

, yUE
, hUE

)
, where hUE

> 0. The likelihood
of LoS/NLoS is affected by the elevation angles of
UAVs. The straight-line distance and angle of elevation
between EDs and UAVs can be calculated following dab =

√
(xb − xa)2 + (yb − ya)2 + (hb − ha)2,

θab = (180/π) arcsin (hb
/
dab) ,

(1)

where a ∈ (A, B), b ∈ (UM , UE). Then the probability of
LoS/NLoS path between a and b is P LoS

ab = 1
1+ωe−ϖ(θab−ω) ,

PNLoS
ab = 1 − P LoS

ab ,
(2)

where ϖ and ω are constant values that vary according
to the surrounding environment [19]. Thus the path loss
in each case is given as [4]

Lξab = κξ (4πfcdab
/
c)σ , (3)

where ξ ∈ (LoS,NLoS), fc is the carrier frequency, c
is the speed of light, κξ is the excessive path losses
of the LoS/NLoS propagation, and σ is the path-
loss exponent. The average path loss of LoS/NLoS is
calculated as follows [5]:

L̄ab = P LoS
ab L

LoS
ab + PNLoS

ab LNLoS
ab . (4)

The channel from the a→ b is denoted by gab.
Obtaining perfect CSI (pCSI) in wireless systems
is difficult due to mistakes in channel estimation
and response delay. Hence, the channel coefficient is
expressed as follows:

gab = ĝab + eab, (5)

where ĝab is the estimated channel coefficient and eab ∼
CN (0, δab) denotes the channel estimation error, which
can be approximated as a Gaussian distribution, where
the parameter δab indicates the quality of channel
estimation. In this paper, it is assumed that the channel
estimation error variance δab is constant [20]. We
assume that all channels are modeled as Nakagami-
m fading channels and that the channel coefficients
are random variables (RVs) distributed following
the Nakagami-m model [3]. Thus the cumulative

Figure 2. Time flowchart of the considered NOMA-based UAV-
aided MEC in IoT networks.

distribution function (CDF) and probability density
function (PDF) of channel are respectively expressed as:

F|ĝab |2 (y) = 1 − e−
my
λab

m−1∑
s=0

1
s!

(
my

λab

)s
, (6)

f|ĝab |2 (y) =
mmym−1

λm
ab (m − 1)!

e
− my
λab , (7)

where |ĝab |2 is the channel power gain and λab denoted
is an average channel gain. Assume that all EDs execute
the same task of length L (bits) and are classified [5].
The capacity offload of A and B can thus be written as
follows:

Ca = βaL, (8)

where βa is the offloading ratio, 0 ≤ βa ≤ 1.

2.2. Communication protocol
In this subsection, we describe the proposed system’s
communication protocol. Fig 2 depicts the protocol’s
time flowchart and is described as follows.

• In the first phase, tO: a based on uplink NOMA to
offload L bits to UM . Thus, the received signal at
UM is as follows:

yUM
=

√
ρAP

L̄AUM

(
ĝAUM

+ eAUM

)
xA

+

√
ρBP

L̄BUM

(
ĝBUM

+ eBUM

)
xB + nUM

, (9)

where xA and xB are the offloaded signal to A and
B, respectively; P is the transmit power of EDs;
ρA and ρB are the power allocation coefficient,
ρA > ρB, ρA + ρB = 1; nUM

∼ CN (0, N0) is additive
white Gaussian noise (AWGN). UM decodes xA
based on SIC [21]. Therefore, the received signal-
to-interference-plus-noise ratios (SINRs) at UM
for detecting xA is expressed as follows:

γAUM
=

γ1

∣∣∣ĝAUM

∣∣∣2
γ2

∣∣∣ĝBUM

∣∣∣2 + γ3

, (10)
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where γI = P
N0

, γ1 = ρAγI
L̄BUM

, γ2 = ρAγI
L̄BUM

,

γ3 = γ1δBUM
+ γ2δBUM

+ 1. Considering the effect
of ipSIC, the residual xA from A is considered
interfering information, then the received SINRs
at UM for detecting xB can be represented as

γBUM
=

γ2

∣∣∣ĝBUM

∣∣∣2
ζγ1

∣∣∣ĝAUM

∣∣∣2 + γ4

, (11)

where ζ, 0 ≤ ζ ≤ 1 denotes the level of residual
signal from A (ζ = 0 corresponds to perfect
SIC (pSIC)). Then, the instantaneous legitimate
channel capacity a→ UM link is formulated as
follows:

CaUM
= W log2

(
1 + γaUM

)
, a ∈ (A, B) , (12)

where W is the bandwidth. Hence, the time
offloading from a∗ to UM is given by

tO,a =
Ca

CaUM

. (13)

Similarly, the expression of signal received at UE
is as follows:

yUE
=

√
ρAPE
L̄AUE

(
ĝAUE

+ eAUE

)
xA

+

√
ρBPE
L̄BUE

(
ĝBUE

+ eBUE

)
xB + nUE

, (14)

where nUE
∼ CN (0, NE) is AWGN at UE . We have

assumed that the eavesdropper UE is able to
successfully decode the signals from the two EDs
[22]. Therefore, the SINR to detect xA and xB at UE
is given by

γAUE
=

γ5

∣∣∣ĝAUE

∣∣∣2
γ6

∣∣∣ĝBUE

∣∣∣2 + γ7

, (15)

γBUE
=

γ6

∣∣∣ĝBUE

∣∣∣2
γ8

, (16)

where γE = PE
NE

, γ5 = ρAγE
LAUE

, γ6 = ρBγE
LBUE

,

γ7 = γ5δAUE
+ γ6δBUE

+ 1;γ8 = γ6δBUE
+ 1. Thus,

the instantaneous illegal channel capacity a→ UE
link is formulated as follows:

CaUE
= W log2

(
1 + γaUE

)
, (17)

• In the second phase, tC : UM computes the tasks
that have been offloaded. The time necessary to
complete the computation for the number of task

bits at UM is as follows:

tC =
(CA + CB) τ

f MEC
UM

, (18)

where τ is the number of CPU cycles required to
run the computation for one input bit and f MEC

UM
is the MEC operating frequency at UM .

• In the third phase, tR: UM send the resulting
computation data to the a. Latencies for returning
results from UM to a are overlooked because
the returned results are much smaller than the
offloaded data [23].

3. Performance Analysis
3.1. Secrecy successful computation probability
(SSCP)
In this subsection, we presents the secrecy and offload-
ing performance of the system under consideration in
terms of SSCP [24], denoted by S. The S is defined as
the probability that all offloading tasks are completed
within the maximum permissible system latency Tth
and the corresponding secrecy capacity is greater than
a predefined data rate threshold Ra. Thus, the S of the
entire system is calculated as follows:

S = Pr
(
tO,A < Tth, tO,B < Tth, C

Sec
A > RA, C

Sec
B > RB

)
,

(19)

where Tth = T − tC and Ra = Ca
Tth

[5]; and the instanta-
neous secrecy capacity of a wireless transmission from
a to UM in the presence of a passive flying Eav is defined
as [2]

CS
a =

⌈
CaUM

− CaUE

⌉+

=

 W log2

(
1+γaUM
1+γaUE

)
, γaUM

> γaUE

0, γaUM
≤ γaUE

, (20)

Theorem 1. The closed-form expression for the SSCP of
the entire system for UAV-aided NOMA-MEC under
quasi-static Nakagami-m fading is as follows:

S = Φ1

Q∑
q=1

O∑
o=1

Φ

ϕq ,ω
(ϕq)
o


2 Φ

ϕq ,ω
(ϕq)
o


3

1 − Φ
ϕq ,ω

(ϕq)
o


4

−Φ5

m−1∑
s=0

s∑
i2=0

Φ

ϕq ,ω
(ϕq)
o


6 Φ

ϕq ,ω
(ϕq)
o


7

1 − Φ

ϕq ,ω
(ϕq)
o


8


 ,

(21)

where O and Q are the complexity versus accuracy

trade-off coefficient [25]; Φ1, Φ

ϕq ,ω
(ϕq)
o


2 , Φ

ϕq ,ω
(ϕq)
o


3 ,
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Φ

ϕq ,ω
(ϕq)
o


4 , Φ5, Φ

ϕq ,ω
(ϕq)
o


6 , Φ

ϕq ,ω
(ϕq)
o


7 , Φ

ϕq ,ω
(ϕq)
o


8 are

defined as follows:

Φ1 =
π2

4QO(m − 1)2!

(
m

λBUM

)m(
m

λAUM

)m
, (22)

Φ

ϕq ,ω
(ϕq)
o


2 =

√
1 − ζq2

√
1 − ζo2

(
ϕqω

(ϕq)
o

)m−1
, (23)

Φ

ϕq ,ω
(ϕq)
o


3 = e

−mω
(ϕq)
o

λAUM ωq

m(ϕq)2

λBUM

(
Ξ

(ϕq)
2 − Ξ(ϕq)

1

)
ωqln2

(
ωq

) , (24)

Φ

ϕq ,ω
(ϕq)
o


4 = e

−
mΞ

ϕq,ω(ϕq)
o


5
λBUE

m−1∑
i1=0

1
i1!


mΞ

ϕq ,ω
(ϕq)
o


5
λBUE


i1

,

(25)

Φ5 =
1

(m − 1)!

(
m

λBUE

)m
, (26)

Φ

ϕq ,ω
(ϕq)
o


6 =

(m + i2 − 1)!
i2! (s − i2)!

(
γ7

γ6

)s−i2 m
λAUE

Ξ

ϕq ,ω
(ϕq)
o


3


s

,

(27)

Φ

ϕq ,ω
(ϕq)
o


7 =

Ψ
ϕq ,ω

(ϕq)
o


1


−(m+i2)

e
−
mΞ

ϕq,ω(ϕq)
o


4
λAUE , (28)

Φ

ϕq ,ω
(ϕq)
o


8 = e−Ψ

ϕq,ω(ϕq)
o


2

m+i2−1∑
i3=0

1
i3!

Ψ
ϕq ,ω

(ϕq)
o


2


i3

(29)

where θA = 2
CA

WTth − 1, θB = 2
CB

WTth − 1, ϕA = 2
RA
W , ϕB =

2
RB
W ; Ξ

(ϕq)
1 , Ξ

(ϕq)
2 , Ξ

ϕq ,ω
(ϕq)
o


3 , Ξ

ϕq ,ω
(ϕq)
o


4 , and Ξ

ϕq ,ω
(ϕq)
o


5

are defined as follows:

Ξ
(ϕq)
1 =

θA

(
γ2ϕq + γ3

)
γ1

, (30)

Ξ
(ϕq)
2 =

γ2ϕq − θBγ4

θBζγ1
, (31)

Ξ

ϕq ,ω
(ϕq)
o


3 =

 γ1ω
(ϕq)
o

γ2ϕq + γ3
+ 1 − ϕA

 γ6

ϕAγ5
, (32)

Ξ

ϕq ,ω
(ϕq)
o


4 =

 γ1ω
(ϕq)
o

γ2ϕq + γ3
+ 1 − ϕA

 γ7

ϕAγ5
, (33)

Ξ

ϕq ,ω
(ϕq)
o


5 =

 γ2ϕq

ζγ1ω
(ϕq)
o + γ4

+ 1 − ϕB

 γ8

ϕBγ6
, (34)

Ψ

ϕq ,ω
(ϕq)
o


1 =

mΞ

ϕq ,ω
(ϕq)
o


3
λAUE

+
m

λBUE

, (35)

Ψ

ϕq ,ω
(ϕq)
o


2 = Ψ

ϕq ,ω
(ϕq)
o


1 Ξ

ϕq ,ω
(ϕq)
o


5 , (36)

where ζq = cos
(
π(2q−1)

2Q

)
, ωq = (ζq+1)

2 , ϕq = −ln−1
(
ωq

)
,

ζo = cos
(
π(2o−1)

2O

)
, and ω

(ϕq)
o =

(ζo+1)

Ξ(ϕq)
2 −Ξ

(ϕq)
1


2 +

Ξ
(ϕq)
1 .

Proof. The proof is given in F.

3.2. Optimization
To improve system performance, we optimize parame-
ters such as UAV location, height, and offloading ratio of
two clusters of EDs to maximize secrecy and successful
computation. To accomplish this, we define and solve
the SSCP maximization problem using an algorithm
that is based on GA.

SSCP maximization problem:

(P1): maximize
xU , yU , hU , β

S

subject to 0 ≤ xU ≤ xmax
U , (37a)

0 ≤ yU ≤ ymax
U , (37b)

0 ≤ hU ≤ hmax
U , (37c)

0 ≤ β ≤ 1, (37d)

where constraints (37a) and (37b) represent conditions
on the UAV’s projected location on the ground,
constraint (37c) imposes conditions on the altitude of
the UAV and constraint (37d) offloading ratio of the ED.

To solve the problem (37) with multiple constraints,
we propose the GA [26]. The GA stands out as
a widely used optimization approach owing to its
adaptability and straightforward implementation. It
draws inspiration from the principles of natural
evolution, wherein individuals with the highest fitness
are chosen to produce the next generation’s offspring.
The descendants are likely to enhance their attributes
and increase their chances of survival if their parents
exhibit superior fitness compared to others in the same
generation. This iterative reproductive cycle continues
until the most optimal individuals are identified. The
process is as follows:

• Initialize Population: Generate a population of
N individuals, where each individual represents
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a potential solution, Ei
(
xUM

, yUM
, hUM

, β
)
, i ∈

(1,N ).

• Fitness Function: Evaluate the fitness of each
individual in the population. The fitness function
measures how well an individual satisfies the
optimization criteria, F = 1 − S (Ei).

• Selection: Select individuals from the population
based on their fitness. Using the roulette wheel
selection method should increase the likelihood of
selecting people with higher fitness values.

• Crossover: Combine genetic material from
selected parents to create offspring. This emulates
the crossover or recombination process in
biological reproduction.

• Mutation: Introduce random changes to the
genetic material of some individuals. This main-
tains genetic diversity and introduces new traits.

• Convergence: The algorithm iterates until the
fitness value does not change. This means the
algorithm generates kids that are identical to their
parents, finding the best solution. The algorithm
finishes after a certain period or number of
generations.

Algorithm 1 presents the overall SSCP maximization
based on GA (SSCPMax-GA) algorithm used for our
proposed system model. The complexity of SSCPMax-
GA typically depends on the population size N , the
number of generations I , and the computational cost
of evaluating fitness functions F . Thus, the worst-case
complexity of the SSCPMax-GA was given by O(INF ).

4. Numerical result
In this section, we describe the numerical results used to
validate the analytical expression of the SSCP described
in Section 3 for the NOMA-based UAV-aided MEC in
IoT network. Specifically, we consider the following
system parameters in all simulations, shown in Table 1
[4, 5].

The impact of the average SNR, γI , the channel
estimation error δ, and the level of residual signal, ζ
on the SSCP of the entire system is depicted in Fig. 3.
We can observe that the Monte Carlo simulation and
our analysis have a powerful match, confirming the
accuracy of our proposed model. In this figure, we
compare SSCP for two different scenarios: (δ, ζ) = (0, 0)
i.e. pCSI-pSIC; and (δ, ζ) = ([0.1, 0.3, 0.5], [0.1, 0.3, 0.5])
i.e. ipCSI-ipSIC. As we can see, the case (δ, ζ) =
(0, 0) corresponds to the best system performance
because this is the ideal case that the system wants
to achieve. However, in practice, it may be difficult
to achieve this ideal situation due to the limitations

Algorithm 1 SSCPMax-GA

Require: N , I , S, and constraint conditions
Ensure: x∗U , y∗U , h∗U and β∗

1: function SSCPMAX

2: j = 1, I
3: Initialize the population: Ei

(
xUM

, yUM
, hUM

, β
)

4: Check and modify the initial population
5: while i <= I do
6: Calculate the fitness value: F = 1 − S (Ei).
7: Store the individual with the highest fitness

value
8: Select the parents for next generation by

roulette wheel selection methodology
9: for all pairs of parents in the poll do

10: Generate offspring through crossover
operator

11: for all generated offsprings do
12: if mutation probability holds then
13: end if
14: end for
15: end for
16: Check and modify the next generation
17: Calculate the fitness and leave the best

individuals
18: i + +
19: end while
20: Get x∗UM

, y∗UM
, h∗UM

, β∗

21: end function

0 5 10 15 20

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
S

C
P

Figure 3. Impact of average transmit SNR, (γI ) on SSCP of the
entire system with different δ and ζ.

of wireless communication. Therefore, for the system
under investigation, we are more interested in the
ipCSI-ipSIC case. As the value of δ and ζ increases, it
is clearly the case that ipCSI-ipSIC is detrimental to
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Table 1. Simulation parameter.

Para. Val. Para. Val. Para. Val. Para. Val.
(xA, yA) (40, 0) (m) P [0, ..., 20] (dB) ϖ 0.1581 f MEC

UM
104 (Hz)

(xB, yB) (0, 50) (m) PE 10 (dB) ω 9.6177 τ 1(
xUE

, yUE
, hUE

)
(100, 100, 80) (m) T 0.5 (s) κLoS 1 Q = O 103

xUM
[0, ..., 80] (m) W 105 (bps) κNLoS 20 L 103 (bit)

yUM
[0, ..., 80] (m) ρA 0.75 c 3.108 (m/s) N 150

hUM
[0, ..., 200] (m) σ 2 fc 104 (Hz) I 100

Table 2. Result of Algorithm 1.

P (dB) x∗U (m) y∗U (m) h∗U (m) β∗

0 36.000069746984790 35.000521950444465 55.000017199247615 0.799999155070419
5 34.000369721641450 35.615000973341694 55.000929218186556 0.799432628372572

10 34.000010952722680 37.035463582606230 55.000003243601704 0.799996550616451
15 36.000022332516990 35.857151485044724 53.000003178133156 0.899999378299348
20 36.001831141447080 35.862911997892350 53.000505834925136 0.899974865333359
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Figure 4. Impact of altitude of UAV, (hU ) on SSCP of the entire
system with different number of ED in two clusters.

SSCP. In addition, we can see that as we increase the
generation power at ED, the SSCP increases accordingly.
This can be explained by the fact that when the ED’s
transmit power increases, the ED will have more energy
for offloading tasks onto the UAV, which also increases
the legal capacity, making it difficult for eavesdroppers
to eavesdrop on information.

Fig. 4 depicts of the altitude of UAV, hU on the
SSCP of the entire system. We can also observe that
the UAV will have an altitude to enhance secrecy
offloading performance; this could explain why the
UAV’s altitude is low, the probability of encountering
NLoS is greater than the probability of encountering
LoS owing to urban obstructions. The increased altitude
of the UAV enhances performance since the likelihood

0
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Figure 5. Impact of the location of UAV, (xUM
, yUM

) on SSCP
of the entire system.

of encountering a LoS between the UAV and the
ED is larger than the likelihood of encountering an
NLoS. Nonetheless, as altitude grows, so does the
communication distance between the UAV and the ED,
increasing the pass loss of the UAV-ED links and, as a
result, decreasing performance. As a result, there will be
an altitude that maximizes the effectiveness of secrecy
offloading.

Fig. 5 shows the impact of the location of UAV,
(xUM

, yUM
) on the SSCP of the entire system. Beyond

addressing the altitude concern of the UAV, it’s crucial
to factor in the UAV’s position for improved commu-
nication with the ED. We identify optimal coordinates,
denoted as x∗UM

and y∗UM
, where system performance

is optimized. This implies that the UAV strategically
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Figure 6. Impact of the task offloading ratio of ED, β on SSCP
of the entire system.
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Figure 7. Compare security offloading performance of system with
and without using optimization algorithms.

selects a location to enhance communication with the
EDs, thereby maximizing the SSCP. This represents a
notable capability of UAV.

Fig. 6 depicts of the task offloading ratio of ED, β on
the SSCP of the entire system. As we have shown EDs
all perform the same task of length L (bits). Therefore,
there will be a ratio β that divides these L bits among the
two EDs performing offloading. We can easily see that
there is an optimal task offloading ratio that maximizes
SSCP. This can be explained that the two EDs will
self-allocate the most suitable task offloading ratio to
offload their tasks onto the UAV. This also demonstrates
fairness among EDs.

Fig. 7 depicts the impact of UAV location and
altitude; and the task offloading ratio of ED,

(
xUM

, yUM
, hUM

, β
)

to the SSCP of the entire system.
In this result, we substitute the optimal values found
from solving the optimization problem proposed above
Algorithm 1. We compare SSCP

(
x∗UM

, y∗UM
, h∗UM

, β∗
)

with fixed-value SSCP
(
xUM

, yUM
, hUM

, β
)
, where the

values of
(
x∗UM

, y∗UM
, h∗UM

, β∗
)

are taken from the results
of Algorithm 1 comparing with the cases of fixed
location and height for the UAV as well as the ED task
offload ratio, note that these fixed values are qualitative
in nature. In this paper, we consider changing the
transmission power of ED to find the optimal x∗UM

, y∗UM
,

h∗UM
, and β∗ that maximize SSCP. The results show that,

by applying the SSCPMax-GA algorithm to give the
optimal value, the secret offload performance is best
compared to if we manually fixed these parameters for
the system, the results are shown in Table 2.

5. Conclusion
In this paper, we studied the secret offloading
performance of NOMA based on UAV supported MEC
in IoT over Nakagami-m fading channel. We propose
a three-phase system operation protocol, focusing on
NOMA-MEC techniques to increase secrecy offloading
performance. To evaluate the system performance, we
obtain the closed-form expressions of SSCP of the
entire system under the influence of ipCSI and ipSIC
Additionally, we proposed an algorithm based on GA
to determine the position and altitude of UAV and
the task offload ratio of ED to maximize SSCP. We
have provided numerical results to verify the covert
offloading performance of the proposed system.

F. Proof of Theorem 1
By substituting (13) and (20) into (19), we can rewrite
the S of system as

S = Pr
{
X > 0,Ξ(X )

2 > Y > Ξ
(X )
1 ,

S < Ξ
(X ,Y )
3 Z + Ξ

(X ,Y )
4 ,X < Ξ

(X ,Y )
5

}
,

=

∞∫
0

Ξ
(X )
2∫

Ξ
(X )
1

Ξ
(X ,Y )
5∫
0

FS

(
Ξ

(X ,Y )
3 Z + Ξ

(X ,Y )
4

)
× fZ (z) fY (y) fX (x) dzdydx, (F.1)

where X =
∣∣∣ĝBUM

∣∣∣2, Y =
∣∣∣ĝAUM

∣∣∣2, Z =∣∣∣ĝBUE

∣∣∣2, S =
∣∣∣ĝAUE

∣∣∣2, Ξ
(X )
1 = θA(γ2X+γ3)

γ1
, Ξ

(X )
2 =

γ2X−θBγ4
θBζγ1

, Ξ
(X ,Y )
3 =

(
γ1Y

γ2X+γ3
+ 1 − ϕA

)
γ6

ϕAγ5
,

Ξ
(X ,Y )
4 =

(
γ1Y

γ2X+γ3
+ 1 − ϕA

)
γ7

ϕAγ5
, Ξ

(X ,Y )
5 =
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(
γ2X

ζγ1Y+γ4
+ 1 − ϕB

)
γ8

ϕBγ6
. There are three integrals

here, so we do the integration one by one from (F.1).
First, we solve the 1st integral, denoted by I1. By

combining the CDF in (6) and the PDF in (7) into I1.
Through a few mathematical transformation steps, we
solve the integral of I1 shown in (F.2).

I1 =

Ξ
(X ,Y )
5∫
0

FS

(
Ξ

(X ,Y )
3 Z + Ξ

(X ,Y )
4

)
fZ (z) dz,

= 1 − Φ (X ,Y )
4 − Φ5

m−1∑
s=0

s∑
i2=0

Φ
(X ,Y )
6 Φ

(X ,Y )
7

(
1 − Φ (X ,Y )

8

)
,

(F.2)

where Φ
(X ,Y )
4 = e

−
mΞ

(X ,Y )
5

λBUE
m−1∑
i1=0

1
i1!

(
m

λBUE
Ξ

(X ,Y )
5

)i1
, Φ5 =

1
(m−1)!

(
m

λBUE

)m
, Φ

(X ,Y )
6 = (m+i2−1)!

i2!(s−i2)!

(
γ7
γ6

)s−i2( m
λAUE

Ξ
(X ,Y )
3

)s
,

Φ
(X ,Y )
7 =

(
Ψ

(X ,Y )
1

)−(m+i2)
e
−
mΞ

(X ,Y )
4

λAUE , Φ
(X ,Y )
8 =

e−Ψ
(X ,Y )
2

m+i2−1∑
i3=0

1
i3!

(
Ψ

(X ,Y )
2

)i3
, Ψ

(X ,Y )
1 = mΞ

(X ,Y )
3

λAUE
+ m

λBUE
,

Ψ
(X ,Y )

2 = Ψ
(X ,Y )

1 Ξ
(X ,Y )
5 .

Next, we substitute I1 in (F.2) and the PDF in (7)
into the 2nd integral, denoted by I2, then I2 solved by
applying the Gaussian-Chebyshev quadrature method
[25] is shown by (F.3) at the top of the next page, where

ζo = cos
(
π(2o−1)

2O

)
, ω

(X )
o =

(ζo+1)
[
Ξ

(X )
2 −Ξ

(X )
1

]
2 + Ξ

(X )
1 , and O

is the complexity versus accuracy trade-off coefficient.

Finally, we combining (F.3) and the PDF in (7) into the
last integral in (F.1). Then S is solved as shown in (F.4) at
the top of the next page, where ζq = cos

(
π(2q−1)

2Q

)
, ωq =

(ζq+1)e−ν1

2 , and θq = − ln
(
ωq

)
with Q is the complexity

versus accuracy trade-off coefficient. The closed-form
expression for the SSCP of the entire system is obtained
as given in Theorem 1.
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