
EAI Endorsed Transactions
on Scalable Information Systems Research Article

MFRLMO: Model-free reinforcement learning for
multi-objective optimization of apache spark
Muhammed Maruf Öztürk1,∗

1Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Suleyman Demirel University,
West Campus, Isparta, 32040, Turkey

Abstract

Hyperparameter optimization (HO) is a must to figure out to what extent can a specific configuration of
hyperparameters contribute to the performance of a machine learning task. The hardware and MLlib library
of Apache Spark have the potential to improve big data processing performance when a tuning operation is
combined with the exploitation of hyperparameters. To the best of our knowledge, the most of existing studies
employ a black-box approach that results in misleading results due to ignoring the interior dynamics of big
data processing. They suffer from one or more drawbacks including high computational cost, large search
space, and sensitivity to the dimension of multi-objective functions. To address the issues above, this work
proposes a new model-free reinforcement learning for multi-objective optimization of Apache Spark, thereby
leveraging reinforcement learning (RL) agents to uncover the internal dynamics of Apache Spark in HO. To
bridge the gap between multi-objective optimization and interior constraints of Apache Spark, our method
runs a lot of iterations to update each cell of the RL grid. The proposed model-free learning mechanism
achieves a tradeoff between three objective functions comprising time, memory, and accuracy. To this end,
optimal values of the hyperparameters are obtained via an ensemble technique that analyzes the individual
results yielded by each objective function. The results of the experiments show that the number of cores has
not a direct effect on speedup. Further, although grid size has an impact on the time passed between two
adjoining iterations, it is negligible in the computational burden. Dispersion and risk values of model-free
RL differ when the size of the data is small. On average, MFRLMO produced speedup that is 37% better than
those of the competitors. Last, our approach is very competitive in terms of converging to a high accuracy
when optimizing Convolutional Neural networks (CNN).
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1. Introduction
Apache Spark is a prevalent distributed data processing
platform that provides various machine learning
algorithms to interpret raw data. Generally, machine
learning [1, 2], fog computing [3], event detection [4],
and interactive analysis [5] are the foremost application
areas of Spark. Optimization is key to understanding
the underlying mechanism of parameters of Spark
providing data processing and machine learning
methods that enable us to plan computational sources.
In order to obtain the best performance in Spark, it
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is necessary to seek the ultimate configuration of the
parameter set that is determined before the execution
and changes depending on the type of data set. That
parameter set is called hyperparameter configuration.

Spark is not only optimized for making the use
of time and hardware sources more efficient, but for
obtaining reliable measurement methods that evaluate
a machine learning model. Therefore, instead of relying
on a single objective function, multi-objective function
groups should be preferred in HO. To configure the
parameters of Spark, there are various ways including
choosing from a machine learning group [6], heuristic
methods [6], cost estimation models [7], and utility-
based designs [8] which have been commonly applied to
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this field. The major drawback in this field is the lack of
dynamic models considering the internal states of HO
rather than employing traditional black-box approaches
in the tuning of Spark. As such, the HO performed
regarding the interaction of sequential tiny tasks is
more feasible than establishing optimization models [9]
along with a single objective.

There are few works proposing HO with multi-
objective designs [8, 10]. Although these works
optimize Spark with more than one objective, they
were not able to combine three or more objective
functions. Further, generally, the objective functions are
constructed in relation to the system’s performance.
In that case, there is a greater risk that the reliability
of evaluation of the performance of sub-jobs of Spark
degrades gradually. Therefore, traditional methods
obtain the optimal hyperparameter configuration
limited to accuracy and execution time.

In the last decade, random search [11], grid search
[12], bayesian optimization [13], and evolutionary
methods [14] have been commonly applied to HO
problems. However, none of them always can yield
the best solution for every type of HO problem due
to their design constraints. Instead, there is a possible
solution that a choice is made regarding problem-
specific constraints and the size of experimental data.
For instance, though grid search is an exhaustive
algorithm, it takes a lot of time compared to the
alternatives. On the other hand, although Bayesian
optimization performs relatively fast in HO, it poses a
significant threat that some of the optimal results may
be ignored. Since Spark processes resilient distributed
data (RDD) and divides the problem into small job
tasks, there is a need to develop a sophisticated HO
technique to reveal the internal dynamics of big data
processing.

While RDD provides explicit parallelism, it brings
two critical issues as follows: 1) Since the Spark kernel
divides small jobs into threads, it precisely hardens
to establish a second parallel architecture. However,
a second parallelization is only possible thanks to
an asynchronous execution [15]. 2) The objective
functions are prepared based on speedup. Therefore,
increasing the types of objective functions becomes
almost impossible.

There are two common targets in tuning parameters
of Spark: storage and execution improvements. While
configuring some operations like sort and shuffle means
coping with execution issues, storage problems are
focused on the caching parameters of HO. Besides, the
parameters associated with shuffle and partition are of
great importance to achieve optimal performance in
the big data processing. In rule-based tuning, a user
defines the execution strategies and the performance is
improved without applying expert knowledge in Spark
[16]. But that operation is very effort intensive and

it is very difficult to find the optimal configuration
hyperparameter set when there is not any expert
opinion. It is thus immensely challenging to find the
best combination of a set of specific hyperparameters.

To yield minimum execution time, the values of
hyperparameters can be represented as bytecode defi-
nitions [17]. However, if the size of the search space is
very large, search time increases tremendously. In order
to shorten that time, the less effective hyperparameters
can be ignored in small iterations [18]. However, the
optimal hyperparameter set may be lost if the threshold
of trial execution is not set well. Therefore, detecting
the most effective hyperparameters in HO is an alterna-
tive way to ignoring the less effective ones. The target
hyperparameter set is produced leveraging different log
files of the execution thanks to a block diagram [19]. In
this way, some of the hyperparameters constituting the
search space are very difficult to be held out of scope
in which there are a great number of setting options. In
adaptive methods, resource sharing [20] is reconsidered
in each iteration of HO and the changes in workload are
observed [21–23]. However, the possibility of adverse
effects of concurrent workloads arises from online sys-
tems. Instead, the optimal performance can be achieved
by leveraging the hyperparameters detected during the
training of machine learning methods [16, 24]. But that
approach is a black-box model that is strongly related
to the internal settings of Spark and hardware. Retriev-
ing training data is very costly in machine learning-
based models and it necessitates different execution
trials to avoid misleading results. If we define the basic
execution steps of Spark as a group of interrelated
processes, reinforcement learning (RL), which is one
of the popular machine learning techniques, quite fits
that definition. RL traces the major principles of the
Markov Decision Process (MDP) and it has been tested
thanks to a Factor Analysis, thereby utilizing a dynamic
configuration that makes reward values more informa-
tive in terms of performance metrics [25]. But multi-
objective optimization is not considered in that study.
Metareasoning techniques are of great importance for
deciding optimal stopping criteria and they are very
useful to plan HO. They have been tried to increase
the comprehensiveness of the approaches achieving
optimal solutions using quality and time features [26,
27]. Despite the fact that metareasoning techniques
could have yielded promising results in robot path
planning and classification issues, interpreting model-
based techniques is very difficult when the environment
dynamics are quite complex. The aforementioned stud-
ies have some drawbacks as follows:

1. They are mostly designed with objective functions
based on speedup, 2. Seeking the optimal hyperpa-
rameters is not easy when the search space is very
large, 3. The training time increases if the features of
Spark are involved in machine learning processes, 3.
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The models, which are developed for HO, are designed
by disregarding the internal dynamics of Spark along
with a black-box approach. Therefore, the relationship
between the configuration of the hyperparameter set
and the obtained performance can not be explicitly
defined.

The disadvantages of existing works lead to a waste
of computational resources or result in longer training
times. This study aims at developing a multi-objective
HO method, thereby utilizing the major principles of
model-free reinforcement learning [28]. In this way, we
provide new insight on how internal dynamics of Spark
affect HO efficiency thanks to a white-box approach.
The method produces optimal hyperparameters for
three objective functions: memory, time, and accuracy
thanks to an ensemble technique. Hence, the tradeoffs
are found for three objective functions. To this end,
a dynamic set of hyperparameters modeled with
14 grids, is retrieved from a search space created
with grid search. Thereafter, the HO is completed
with the ultimate rewards updated in each iteration
of RL. Before configuring the hyperparameters of
ml_multilayer_perceptron_classif ier, Direct Search is
performed for binary classification data sets. One of
the distinctive properties of the proposed method
is that it does not include the properties of the
environment in the training data thanks to the model-
free design. In this respect, the computational burden
of determining which feature does contribute to the
performance of HO is alleviated. Multi-objective design
is a requirement for hyperparameter optimization since
traditional optimizers generally choose one target that
does not seek a tradeoff between various purposes.

The study claims the contributions as follows: 1.
Unlike the literature, MFRLMO is the first model-free
adaptive HO method developed for Spark,
2. MFRLMO is devised not just for tuning machine
learning algorithms, it can also configure the hyperpa-
rameters of HiBench benchmarks,
3. When comparing MFRLMO with the-state-of-the-art
methods, It could produce the highest speedup,
4. If MFRLMO is used for tuning CNN, Accuracy is
improved up to 150 iterations in the observation of
training,
5. The execution memory and the number of cores are
the most effective hyperparameters for MFRLMO.
6. Compared to the state-of-the-art, MFRLMO is much
more suitable for large-scale tuning setups when the
limit of budget HO is not low.

The rest of the study comprises six sections. Section
2 summarizes the related works. The method is
elucidated in Section 3. The details of the experiment
are presented in Section 4. Section 5 discusses the
results obtained from the comparison methods. The
paper is concluded in Section 6.

2. Related works

Robotics manipulation is one of the real-world
application areas of RL. In particular, RL is utilized
for the problems encountered during the guidance of
moves of robots. Generally, robot navigation studies are
focused on two approaches: heuristics and learning-
based techniques. Concretely, RL is very useful for
collecting or squeezing some objects with robots.
In the case of a limited budget, the constraints
should be regarded in real-time scenarios [29]. RL
may be combined with traditional control schemes
for unprecedented circumstances. In this context, the
results produced in the simulation environment are
very promising for real-world problems with such
techniques [30]. Cooperative exploration strategies help
reduce the time allocated for training RL [31]. Hence,
the robots move more reliably in which there is
little or no information about the obstacles. Oliff et
al. investigated the benefits of RL in manufacturing
techniques [32]. The optimal policy achieved with
the changes of conditions of the environment may
lead to faster degradation of performance. In the
meantime, RL has been tested for the coordination
multi-robots [33, 34]. To that end, the data trained with
CNN and the instances collected with RL consist of
the elements of the experiment. Although simulation
environments contribute to finding solutions for real-
world problems, RL requires sophisticated HO methods
to improve the reliability and the generalizability of
training performance. If RL is employed for finding
ways to robots in a cluttered terrain, the time and range
spent for reaching the target can be reduced. However,
diversifying the conditions of the environment chosen
for testing robots enhances the generalizability of the
RL techniques [35].

Game theory is an active research field that utilizes
RL. Model-based RL is commonly applied in game
theory due to the use of environmental features. The
policy parameter of RL is optimized to support the
models of game theory [36]. The coalition formula of
game modeling is devised for reducing the error of
convergence. To this end, approximated RL is one of
the solutions for fixing problems that may arise in
training. The anticipation of levels of opposed agents in
game theory has unresolved issues. For instance, how
to proceed with the interaction of agents having various
levels is a complex process and it requires coping
with a high computational demand [37]. Establishing
a learning-based scheme for mobile social networks
without knowing the details of network parameters
may lead to security deficiencies. To solve that problem,
a novel Q-learning-based edge caching strategy was
designed [38]. Despite the fact that the method tested
on the Stackelberg game has shown resistance to
degradation of the quality of caching in the increase of
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the number of cost parameters, it should be combined
with special techniques that have the potential to
reduce training time. Unifying game theory with deep
learning resulted in a remarkable increase in the success
of simulation-based anticipation studies [39]. However,
cross-validation may be tried to avoid overfitting when
there are independent experimental data sets. Ahad
et al. [40] utilized RL to choose a way to 5G-based
network packet transmission. RL helped to reduce
energy consumption during the transfer of data. Bui
et al. [41] proposed an RL-based technique to plan the
budget of trading costs in grid systems. They stressed
that the number of episodes of RL should be high to
compare the congestion of internal trading and external
trading.

If we want continuous improvement with respect
to the feasibility of chosen values of hyperparameters,
RL can be considered as an auxiliary method. In
Dong et al.’s work, CNN-based algorithms, which trace
target objects defined by a user, were tuned with RL
and the results of it were compared with those of
the default configuration. Specifically, RL contributed
to the acceleration of object tracking. If the use of
the model is driven dynamically, the complexity of
the related algorithm increases depending on the
iteration of RL [42]. In such cases, model-free RL
is an alternative way to alleviate the computational
burden posed by a high number of iterations. Preceding
works revealed that if RL is preferred in HO, the
budget allocated for computing is reduced [43]. But
if the features of the environment are not involved
in the training data set, a high number of training
iterations is needed. RL was investigated in the multi-
objective optimization problem of image classification
data to improve the success of CNN [44]. Some
performance metrics such as accuracy are of vital
importance as to which hyperparameter set is optimal
or not. For instance, latency refers to the time passed
between two consecutive iterations. Although [44]
was able to achieve significant success for these two
objectives, ignoring the consumption of memory, which
comprises the scalarization function of reward, limits
the generalizability of results.

3. Background
In this section, basic definitions and proofs are
presented along with the formulations explaining
the relationship between HO and RL. We then
elaborate on the structural properties of model-free
reinforcement learning that differentiates it from
model-based approaches.

3.1. Hyperparameter optimization
Let SS be a search space representing the hyperpa-
rameters of Spark and MLlib. Assuming h1, h2, ..., hm is

the optimal hyperparameter configuration chosen from
that search space, there are m number of hyperparam-
eters. Applying one function to a search space f →
SS means performing single objective optimization.
f may be related to classification accuracy, memory
consumption, and time. On the other hand, a set of
functions f → SS denotes multi-objective optimization
and should satisfy n ≥ 2. f decides whether the opti-
mization meets the minimization or maximization cri-
teria. For instance, if the objective function is associated
with time, minimization is preferred in satisfying the
criterion.

Definition 1. Hyperparameter: Let T r be training,
V be validation, and T be testing, hyperparameter is
a parameter applied between hf → S and T r, thereby
observing the effects of it are observed in V along with
the results at T .
Definition 2. Search space: S is a set of values obtained
from experiences gained in the preceding studies of
HO.

3.2. Model-free reinforcement learning
Contrary to model-based learning, model-free RL does
not require the use of the agent, thereby modeling
the details of the environment. Instead, new actions
are decided by controlling the rewards produced
in the old episodes. Since there is no modeling of
the environment, the computational cost of feature
selection is alleviated as well. However, to achieve the
ultimate solution, model-free RL necessitates a great
number of training iterations. As such, unlike black-
box approaches, a distinct mechanism is adapted for
improving traditional HO techniques.

Assuming an agent is associated with action At , state
St , and reward R as sequentially at discrete time-points
t = 0, 1, 2, 3, ..., S1A1R1, S2A2R2, S3A3R3, .... is produced.
When the learning process is formulated with Markov
Decision Process (MDP), the transition function is
denoted with a tuple (S, A, R, σ ) in which σ : SxAxR→
S generates a new state in the episodes. A probabilistic
policy manages the agent for the states p : S → A that
S − A is yielded as in Equation 1. Those are called Q-
values.

Qp(S2, A2) = Ep(
∞∑
t=0

γ tRt |S0 = S2, A0 = A2) (1)

where γ is the discount factor quantifying how much
importance will be given for future rewards.

Definition 3. Exploitation: is a mathematical indica-
tor showing agents have produced the best results up to
the current episode.
Definition 4. Exploration: is inversely proportional to
exploitation and refers to long term to find the optimal
strategy.
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The balance between exploitation and exploration is
determined with ϵ and ϵ = 0.3 means that 30% of the
total actions are reserved for exploration and the rest of
them are used for exploitation.

Theorem 1. New Q-values can be formulated with
a constant a ∈ (0, 1) as (1 − a)Q1 +

∑n
i=1 a(1 − a)n−iRi

where n is the number of iterations. In the weighted
average, (1 − a)n +

∑n
i=1 a(1 − a)n−i = 1.

Proof. The weight a(1 − a)n−i given in Theorem 1
depends on the time when Ri is produced. 1 − a is less
than 1 in which Ri decreases as the number of rewards
increases. So that summing Ri → 0 and (1 − a) goes to 1.

Theorem 2. Given a state set S1, S2, ..., Su and
action set A1, A2, ..., Av , v ≤= u in which a gridworld
environment is defined with limited computation
resources.
Proof. Assume the number of training=50, the number
of states=y, and the number of actions=z. For
1000 bootstrapping random walks, state transitions
overlap at least x/(zy − yy). For (x=50, y=3, z=4), the
overlapping occurs 2.85 times. To prevent that problem,
the number of actions should be tried to make as large
as possible.
Theorem 3. If ϵ − greedy is applied to find a tradeoff
between exploration and exploitation, ϵ = (1/x) + v is a
general formula for ϵ = v in which x is the number of
iterations.
Proof. In increasing iterations, 1/x→ 0 for x→∞. For
instance, if v is 0.2, the left part of the formula goes to 0
after a specific number of iterations and v becomes the
ultimate value.

4. MFRLMO
The main steps of MFRLMO are given in Figure 1.
Different from model-based approaches, it manages the
HO process according to the results of action-reward
interactions. In that process, the experimental data is
converted to RDD after feature selection. Once the
cross-validation partitions are generated, a dynamic cell
update is done in RL depending on the obtained reward
values. Subsequently, the reliability of the RL model is
evaluated with dispersion and risk analyzes. In the last
step, the success of optimal configuration is interpreted
with various performance parameters such as accuracy.

MFRLMO comprises the details of a definition
process since the experimental data is related to a Spark
connection object that metadata contextual information
including start time, identifiers, and session. The steps
of MFRLMO are presented in Algorithm 1. The label
column (0/1) of classification data sets is converted
to factor values (true/false) in Step 1 thanks to the
P reprocessing function. In Step 2, the experimental
data sets are exposed to feature selection with Direct
Search algorithm that works as follows: 1) Determines
a K value that shows the number of features to be

Classification
data sets

Hibench
benchmarks

Direct
search

Partitions
for cross

validation

Model-free
reinforcement

learning

Action Reward

Dispersion
and risk
analyzesInterpretation

of results

RDD

RDD

Optimal hyperparameters
Rewards, Q-values

Figure 1. Overview of the proposed RL-based approach.

chosen, 2) K features constitute the ultimate feature
set, thereby employing a threshold value that eliminates
some features. To perform feature selection, the formula
given in Equation 2 is applied to the data sets.

Search space

Grid search

Update

mechanism

Random

configuration

Action

Reward

Hyperparameters

Figure 2. Dynamic update mechanism of 4x4 grid in model-free
RL.

R2 = 1 − SSr
SSt

[45] (2)

where R2 is a coefficient used for continuous
features. While SSr refers to the sum of the square
of residuals, SSt is the sum of squares. Direct Search
has been executed with the help of FSinR library
of R package [46]. Step 3 adds new form of data
to Spark connection and Step 4 D2 is divided into
10 parts to assign D3 in 10x10 cross-validation. hss
is composed of some values retrieved from a search
space generated by grid search. count given in Step
5 refers to the number of updates of 4x4 grid env.
Initially, the cells of the 4x4 grid are randomly
generated values from hyperparameter search space.
They are renewed checking rewards obtained from
consequent actions. For instance, let (0.1,0.3,0.4) be
a hyperparameter tuple of a hyperparameter set of a
specific cell. If a remarkable increase is observed in
the reward after that tuple is updated as (0.1,0.4,0.4),
(0.1,0.5,0.4) is taken from the search space generated
with grid search to update the RL grid having 14
cells. Hence, a dynamic grid is defined as model-
free RL. The update mechanism of the 4x4 grid is
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presented in Figure 2. Steps 8-14 change the rules
of env depending on the yielded rewards. The herein
described objective functions include three types:
sparkAccu, sparkMem, and sparkT ime. sparkAccu is
the success of ml_multilayer_perceptron_classif ier in
terms of accuracy and it is calculated leveraging the
elements of the confusion matrix as given in Equation
3. The optimal value gives the highest reward at
the end of 50 iterations that were determined after
conducting various trials on the experimental data. On
the contrary, the values representing the lowest rewards
are the optimal configuration of hyperparameters
for sparkMem and sparkT ime. This is because they
are associated with memory and time in which a
maximization-based model is established. In Step 14,
the rewards are saved depending on the random
progressive 1000 transitions. Step 15 defines learning
rate alpha, discount factor gamma, and ϵ. Since the
model is established relying on a large number of
iterations of actions, alpha is kept to a minimum.
The exploration potential of the agent may be limited
due to a high alpha in a modeled environment. Step
16 records Q values depending on the state-action
interaction for 50 iterations of 14 grids. In Steps 17-
18, the mean hyperparameter values of three objective
functions are calculated along with the rewards.
Step 20 returns the average reward and optimal
hyperparameter configuration.

Accuracy =
T P + TN

T P + TN + FP + FN
(3)

Being able to measure the time difference on two
grid types, a mini-experiment is performed for various
iterations. Time-iteration results given in Figure 3 show
that the type of grid is negligible although the difference
is clear after 200 iterations. The more cells we have,
the more design of HO is updated so that a 4x4 grid
is preferred in the experiment. Notably, the trends
observed in the two grid types are quite similar in the
way they rise and fall.

5. Experiment
In the experiment, the structure of 4x4 gridworld is
given in Figure 4. Here shaded cells can be called
terminal states that halts the iterations. Otherwise,
four actions including "up", "down", "right", and "left"
are considered for each state. If Accuracy is achieved
above 97% optimal configuration of hyperparameters is
returned by Algorithm 1 regardless of we have attained
the end of iterations.

5.1. Settings
The machine used for establishing the experiment
has been configured as able to run Spark and Yarn

Iteration

T
im
e
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in
u
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s
)
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15
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Figure 3. 2x2 gridworld vs. 4x4 gridworld for increasing
iterations.

1 2

3 4

(a) 2x2 grid

5 6 7

8 9 10 11

12 13 14

1 2 3

4

(b) 4x4 grid

Figure 4. Design properties of 2x2 gridworld and 4x4 gridworld.

along with the following features: CentOS Linux, 64-
bit, Intel(R) Xenon(R) 2.9 GHz, 24 CPU Cores server
with 222 GB RAM. To generate a Yarn cluster, the
machine has allocated four workers each of which has
four cores. In total, 30GB of memory has been spent on
the Yarn experiment for each worker. The algorithm and
the details of the experiment have been coded with R
version 4.0.2.

5.2. Search space
The search space of the experiment is
generated with the hyperparameters of
ml_multilayer_perceptron_classif ier and the
parameters of Spark. Although MLlib can run a
great number of algorithms featuring supervised
and unsupervised learning, the chosen algorithm
for classification is the feedforward artificial neural
network constituting the fundamentals of deep
learning. The hyperparameter layers is not involved
in the tuning process. The reason is that the
number of features does not change after feature
selection. Further, it is not possible to change the
number of features in the output layer since the
type of classification is binary. In the first layer,
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Algorithm 1 MFRLMO algorithm
Input: Classification and benchmark data sets D, hyperparameter search space hss, spark connection sc
Output: Optimal hyperparameter configuration

1: D2 ← P reprocessing(D)
2: D2 ← directSearch(D2) ▷ Feature selection
3: D3 ← copy_to(sc, D2)
4: partitions← createFolds(D3)
5: count ← 50
6: env ← gridWorldEnvironment
7: generalResult ← list(”reward”, ”optimalHyperparameter”)
8: while count≥1 do
9: Accuracy ← sparkAccu(partitions, hss)

10: memResult ← sparkMem(partitions, hss)
11: timeResult ← sparkT ime(partitions, hss)
12: count ← count − 1
13: env ← updateReward(env, Accuracy,memResult, timeResult)
14: data← sampleExperience(env) ▷ Sample N = 1000 random sequences from the environment
15: control ← list(alpha = 0.1, gamma = 0.1, epsilon = 0.2)
16: model ← Reinf orcementLearning(data, control, Qp(S2, A2) = Ep(

∑∞
t=0 γ

tRt |S0 = S2, A0 = A2))
17: averageReward ← getEnsembleReward(model)
18: meanHyperparameter ← getEnsembleHyperparameter(model)
19: generalResult ← generalResult ∪ (averageReward,meanHyperparameter)
20: return generalResult ▷ Optimal hyperparameter configuration

all the features are set as inputs. For instance, if
we have four features, the size of layers is set to
layers = (4, 3, 2). The configurable hyperparameters of
ml_multilayer_perceptron_classif ier and parameters
of Spark are presented in Table 1. Moreover, the
hyperparameters of CNN are given in that table
since one of the comparison methods was tested on
CNN using image classification data sets. Therefore,
the settings of the range of hyperparameters have
been set regarding the baselines. Even though Spark
has a large number of configurable parameters, an
optimal hyperparameter group has been created
considering pioneering studies [10, 47]. On the other
hand, since multi-objective optimization takes a lot
of time compared to single-objective optimization,
the number of hyperparameters has been kept to a
minimum to alleviate the computational burden. 17
hyperparameters and parameters of Spark are subjected
to HO. The hyperparameter ranges have been set as
large as possible due to the need for high iterations in
model-free RL. As such, employing constantly changing
cells of the grid has bolstered the comprehensiveness
of the hyperparameter configurations.

5.3. Data sets
The data sets presented in Table 2 have three types:
Spark benchmark, classification, and Keras. After
executing Apache Hadoop YARN, the benchmarks of
HiBench are included in the experiment to evaluate
the success of Algorithm 1 in terms of resource

management. The second type consists of classification
data sets that are suitable to be exposed to the
algorithms of MLlib. Image processing data sets have
been retrieved from the Keras library of R packages
[48].

WordCount is the largest benchmark that was
designed for counting a word in a text corpus.
TeraSort performs sorting on big data leveraging
Hadoop. Kmeans is an iterative clustering algorithm
that uses some distributions such as Gaussian and
it is available at MLlib. Bayes is also a multi-label
classification algorithm that works via MLlib. That
algorithm is involved in the experiment since it is
based on various mathematical inference techniques.
Dense was originally devised for developing neural
network models in classification 1. Microsof t consists
of instances collected from a security intrusion contest
and it has 1805 features 2. P ayload data set, which
has 32 features, was generated from a research project
conducted by Politecnico di Milano University 3.
Santander data set includes completely numeric values
comprising 199 features that were retrieved from
customer transaction prediction 4. P ayload can be
accessed through Zenodo open source code sharing

1https://www.kaggle.com/c/dense-network/data?select=train.csv
2https://www.kaggle.com/muhammad4hmed/malwaremicrosoftbig
3https://zenodo.org/record/5731597
4https://www.kaggle.com/datasets/lakshmi25npathi/santandercustomer-
transaction-prediction-dataset
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platform and the other data sets were retrieved
from Kaggle 5. We employ the same data set group
chosen in our preceding study since in that study
Pareto-based multi-objective optimization produced
promising results [49].

Table 2. Spark benchmarks and MLlib data sets preferred in this
work.

Type Name Size range Category

Spark benchmark WordCount 120-200 (GB) Workload
Spark benchmark TeraSort 20-100 (GB) Workload
Spark benchmark Kmeans 60-100 (million instances) Machine Learning
Spark benchmark Bayes 12-20 (million pages) Machine Learning

Classification Dense 175000 (instances) Machine Learning
Classification Microsoft 10868 (instances) Machine Learning
Classification Payload 130529 (instances) Machine Learning
Classification Santander 200000 (instances) Machine Learning

Keras Cifar10 50000 (instances) Image processing
Keras FashionMnist 60000 (instances) Image processing
Keras Mnist 60000 (instances) Image processing

5.4. Performance parameters
There exist various measures to evaluate the reliability
of RL methods [50]. They are generally employed for
interpreting variability during training. Two types of
RL evaluation measures were chosen in the experiment:
Dispersion and risk. Different from distribution,
dispersion shows to what extent the data is aggregated
[51]. To measure dispersion, the reward values were
exposed to the Coefficient of quartile variation (CQV)
designed by improving the Inter-quartile range (IQR)
as defined in Equation 4.

CQV = (
Q3 −Q1

Q3 + Q1
)x100 (4)

where Q3 and Q1 denote the third and first quartiles
giving general dispersion of data sets. CQV is preferred
in the experiment since it is much more suitable
for asymmetric distributions. cqv_versatile function
of R cvcqv library has been combined with Adjusted
bootstrap percentile (BCa) statistical analysis [52].

A complementary method called Conditional Value
at Risk (CVaR) for dispersion is utilized to measure
how heavy is the low tail of the distribution. CVaR is
a numerical measure defining the risk of the occurrence
of the worst scenario with respect to dispersion and it is
calculated as in Equation 5. CVaR has been recorded as
having varying iterations.

CV aRφ(V ) = E[V |V ≥ V aRφ(V )] (5)

where φ ∈ (0,1) and V aRφ(V ) represents the value of
risk in the related quarter. It is also used for measuring
risks in various research fields including finance
[53], robotics [54], and health [55]. The results were

5https://zenodo.org/record/5731597
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yielded with cvar library of R, thereby setting standard
deviation and quadratic form (QF) distributions.

The efficacy of tuning processes in Hibench bench-
marks was evaluated by speedup. While perf0 of
speedup given in Equation 6 is the time recorded in the
default settings, perf1 denotes the time after applying
the tuning process. Since the machine utilized in the
experiment enable us to increase the number of cores
up to 24, speedup was recorded between 4 and 24 cores.

Speedup = perf0/perf 1[56] (6)

5.5. Competitors
MFRLMO is compared with Effective Multi-Objective
Reinforcement Learning (EMORL) [44] and Hyper-
parameter Optimization by Reinforcement Learning
(Hyp-RL) [43]. Two criteria are used for choosing the
baselines: 1) The comparison method should have been
revealed in the recent past, and 2) The baselines regard
RL as a tool to solve a HO problem rather than aim at
configuring the hyperparameters of RL.

Hyp-RL works as follows: 1) Asks users to choose a
data set D and the inputs of hyperparameters such as
Λ, 2) RL initiates Q-networks, 3) The reward and Q-
values are updated along with the data of minibatch, 4)
The Q-network is re-defined for reward and discount
factor having the maximum Q-value, 5) The set of Q-
values is returned at the end of the iteration. Hyp-RL
was compared against five alternatives in estimating the
life of large batteries.

EMORL has five steps to perform tuning and it can
be summarized as follows: 1) The user is asked to
give a target hyperparameter set after assigning the
first state of RL, 2) The accuracy and latency changes
are observed, thereby sampling new hyperparameters
during the state transitions. 3) Q-value is updated with
the help of the PPO-clip method [57] to return the
optimal value for each hyperparameter.

The reason we compare the proposed method against
Hyp-RL and EMORL can be ordered as follows: 1.
EMORL is a multi-objective tuning technique and it is
compatible with big data processes in updating optimal
hyperparameter sets as a way of RL. It thus includes
a formula namely latency indicating the magnitude of
the reward signal. EMORL performs a two-objective
(accuracy-latency) optimization by using that formula.
The complexity of EMORL is O(nh ∗ kLAT ∗ kaccuracy)
wherein nh is the number of hyperparameters, kLAT is
the constraint of latency, and kaccuracy is the constraint
of accuracy. Since EMORL is defined considering
various constraints, dynamic changes are observed
depending on the type of optimization problem. 2. Hyp-
RL prefers to update reward values in each episode
of actions. In this context, Hyp-RL shows similarities
in design variations to the proposed method. The

Table 3. Mean State-Action function Q values of Microsoft data
set in optimizing for time.

right up down left
s14 -1.07 -1.11 -1.06 -1.06
s1 -1.06 -1.04 -1.08 -1.1
s2 -1.06 -0.97 -1.04 -0.98
s3 -0.87 -1.06 -0.59 -0.8
s4 -1.1 -1.04 -0.96 -0.93
s5 -1.01 -1.09 -1.03 -1.07
s6 -1.1 -1.04 -0.58 -1.05
s7 -0.97 -1.06 -0.96 -1.05
s8 -0.98 -1.09 -1.04 -1.06
s9 -0.3 -1.06 -0.47 -0.89
s10 -0.93 -1 8.54 -0.3
s11 -0.99 -1.04 -1.04 -0.4
s12 -0.76 -1.08 -1.08 -1.02
s13 5.26 -0.82 -0.47 -0.76

complexity of Hyp-RL is O(N ∗D ∗ T ) where N denotes
the number of episodes, D is the number of data
sets, and T is the number of tasks. The complexity of
MFRLMO is O(count ∗Nrs) where count is the number
of updates of env and Nrs is the number sequences in
sampling defined in Algorithm 1-Step 14.

Q-values have been produced for each objective
function of MFRLMO as presented in Table 3. The
three-objective optimization is established for 50
iterations of each data set that results in 3x50=150 Q-
values. In that table, the bold-faced values represent
the closest state action to 97% of accuracy. It is worth
noting that the minus values in the transitions of
other cells are yielded with a model-free approach.
Since the experiment exploits 11 data sets in total,
11x150=1650 tables should be evaluated. However,
the performance metrics are only associated with the
changes in rewards, Q-values have only been used for
controlling the internal dynamics of the cells.

6. Results
The optimal values of hyperparameters have been
found in the low number of iterations in classification
as given in Tables 4-5. We can conclude that the
variability is relatively high for the hyperparameters
tol and step_size. However, since one algorithm of
the MLlib library has been tested in the experiment,
a more general result can be achieved, thereby
increasing the number of algorithms. On the other
hand, the parameters that are directly related to
the size of data such as spark.memory.f raction
differs in Hibench benchmarks. The largest value
of spark.executor.memory, which defines the memory
allocated for the execution, has been detected in
WordCount (120GB). The storage memory was set to
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0.4 since TeraSort requires large memory. However,
the compression rate of RDD is set by MFRLMO
without considering the type of Benchmark. Although
KyroSerializer performs faster than JavaSerializer, it
was not chosen for finding the optimal configuration
due to the need for registering classes.

Table 4. Optimal configurations (I) detected by MFRLMO.

Dense Microsoft Payload Santander

Hyperparameter
max_iter 0.35 max_iter 15 max_iter 20 max_iter 20
tol 0.00337 tol 0.000067 tol 0.000034 tol 0.000001
step_size 4 step_size 3 step_size 4 step_size 7

Table 5. Optimal configurations (II) detected by MFRLMO.

Bayes Kmeans TeraSort WordCount

Hyperparameter

spark.task.cpus 1 1 1 2
spark.executor.cores 12 4 8 12
spark.executor.memory 90 100 80 120
spark.memory.fraction 0.2 0.3 0.2 0.6
spark.memory.storageFraction 0.2 0.3 0.4 0.2
spark.default.parallelism 210 180 260 240
spark.shuffle.compress true true true true
spark.shuffle.spill.compress true true true true
spark.broadcast.compress true true true true
spark.rdd.compress true true true true
spark.io.compression.codec lzf lzf lzf lzf
spark.reducer.maxSizeInFlight 32 32 32 32
spark.shuffle.file.buffer 64 64 64 64
spark.serializer JavaSerializer JavaSerializer JavaSerializer JavaSerializer

When it comes to interpreting the results of speedup,
as MFRLMO traces a relatively more linear line in
machine learning processes, TeraSort and WordCount,
which are workloads, have low acceleration as given
in Figure 5. Since Hyp-RL has a high complexity, it
has a stable speedup though showing a remarkable
improvement in accuracy. It is thus not effective in cases
of high cores above 8. In particular, EMORL differs
from Hyp-RL in a high number of cores. However,
MFRLMO is similar to Hyp-RL in terms of convergence.
Regardless of the type of benchmark, it is clear that
each algorithm has a specific threshold. For instance,
the threshold of MFRLMO for TeraSort is 20. Exceeding
that value does contribute to speedup that leads to the
waste of computational resources. Despite the fact that
the threshold of Hyp-RL is very high for Workload
types of benchmarks, it has a lower speedup than
that of MFRLMO since Hyp-RL is devised based on
a two-objectives optimization. That finding validates
that Hyp-RL is much more suitable for low-budget HO
operations. These results confirm the inference that the
threshold for the number of cores is 16 regardless of
the type of benchmark when the optimization is devised
based on RL.

The changes in mean rewards are given in Figure 6.
The mean reward is initially very low but it increases
remarkably with high iterations thanks to setting ϵ =
0.2. It is worth noting that there is a gradual decline
in the churn of rewards. That churn is not dependent
on the type of data set that the tradeoff between
exploration and exploitation is achieved after a specific
number of iterations. The beginning of the rise and
decline of average reward for Santander and Dense are
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Figure 5. Speedup results of HiBench benchmarks.

very similar for mean rewards. On the other hand, the
analysis confirms the opposite trend for Microsoft and
Santander data sets after 20 iterations.

The CQV results of all the data sets are given in
Figure 7. The data set having the lowest dispersion
is Santander which has no reasonable churn although
it could not yield the best average reward. The
payload data set has progressed a narrow area
in yielding average reward. Likewise, the distance
between the extreme outliers of the CQV boxplot
is very short. WordCount has the best dispersion
among the benchmarks. Note that it is also the largest
experimental data set. WordCount may have produced
the best result thanks to the need for operation
increasing its size linearly depending on the number
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Figure 6. Average reward of classification data sets.
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Figure 7. CQV results of the experimental data sets.

of instances. Although Bayes yielded the worst CQV, it
showed promising results in classification data sets. The
results given in Figure 8 claim the exact opposite that
the inferences we draw from dispersion are not valid for
CVaR. For instance, Dense, which is a classification data
set, produced worse CQV results than those of CVaR.
The ordering has not changed in the benchmarks but it
has expanded along with the outliers of the boxplot.

The performance of three competitive methods is
compared for tuning CNN with respect to the average
test accuracy as presented in Figure 9. The comparison
comprising three image processing data sets revealed
that convergence is achieved after 50 iterations
for Cifar10 and FashionMnist data sets. MFRLMO
outperformed the other two methods for three data
sets. Although Hyp-RL has a high complexity, it has
been observed that Hyp-RL has the lowest fluctuation.
EMORL has the highest fluctuation and produced the
lowest accuracy. This is because achieving good policy
in RL hardens when the search space of HO is very
large. In addition to this, EMORL has only been tested
for tuning image recognition in the preceding studies. It
is worthwhile to note that although MFRMO is a three-
objective optimization technique, the tradeoff found
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Figure 8. Short-term CVaR results of the experimental data sets.

during the tuning process resulted in high accuracy.
Despite the fact that FashionMnist and Minst include
similar data instances, they have different fluctuations.
The findings obtained from Figure 9 support the claim
that the similarity across the data sets has no impact on
achieving a fast convergence.

Table 6. The performance of optimizing
ml_multilayer_perceptron_classif ier with the baselines.

Dataset Accuracy (Default)
Accuracy with optimal
Hyperparameters Change%

Hyp-RL

Dense 0.68 0.79 16
Payload 0.7 0.77 10
Microsoft 0.72 0.81 12.5
Santander 0.73 0.78 6.84
WordCount 0.79 0.83 5.06
Bayes 0.84 0.89 5.95
Kmeans 0.82 0.87 6.09
TeraSort 0.83 0.90 8.43

EMORL

Dense 0.68 0.74 8.82
Payload 0.7 0.73 4.28
Microsoft 0.72 0.79 9.72
Santander 0.73 0.77 5.47
WordCount 0.79 0.81 2.53
Bayes 0.84 0.88 4.76
Kmeans 0.82 0.85 3.65
TeraSort 0.83 0.89 7.22

MFRLMO

Dense 0.68 0.84 8.82
Payload 0.7 0.87 24.28
Microsoft 0.72 0.85 18.05
Santander 0.73 0.86 17.8
WordCount 0.79 0.92 16.45
Bayes 0.84 0.91 8.33
Kmeans 0.82 0.93 10.97
TeraSort 0.83 0.91 9.63

MFRLMO has the highest accuracy among the
baselines as given in Table 6. The payload was
able to produce the highest improvement (24%). The
results of EMORL and Hyp-RL are dependent on the
type of data set. Concretely, although Hyp-RL could
yield better improvement for the Microsoft data set,
EMORL is much more feasible for Kmeans which is
also a benchmark having medium size compared to
Microsoft. These rates at which accuracy improves are
very difficult to be grouped. The algorithmic design
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Figure 9. Comparison of baselines in tuning CNN
(Optimal configurations: alpha:0.02, pool size:3, strides:2,
steps_per_execution:2).

properties given in Section 5.5 may have led to that
churn due to their effects on the complexity.

7. Threats to Validity
Firstly, the proposed method was only evaluated by
using the ml_multilayer_perceptron_classif ier classi-
fier of MLlib. Therefore, the results may not be gener-
alizable for the other algorithms of MLlib. However, the
experimental data sets chosen for the classification have
various sizes and they are compatible with the other
types of classifiers. Hence, the results may incur the
loss of generality of the proposed method but it can be
avoided by performing a replication study. Moreover,

some hyperparameters related to the input and output
layers are out of the scope of the experiment due to
the stability of the number of features after performing
Direct Search for ml_multilayer_perceptron_classif ier.
The experiment can be replicated by utilizing the major
steps of MFRLMO for all hyperparameters of some
classifiers such as the Gradient-boosted tree.

The second threat is about the chosen metrics of data
sets. Accuracy is the sole formula used for evaluating
the success of classification. However, the width of
the distribution of reward values is calculated with
CQV and its risk is interpreted with CVaR. Hence,
the reliability of the results could have been examined
with the help of three different evaluation metrics.
Nevertheless, these measures are not always sufficient,
given that Q-values are of great importance in some
RL experiments. In this respect, new formulas would
be designed to find out the underlying mechanism
of Q-value changes during the state transition of the
iterations.

8. Conclusion

Although Apache Spark is an open-source big data
processing platform, it is a must to perform tuning
regarding various criteria, resulting in a significant
reduction in computational cost. In this study, a
multi-objective RL-based optimization method called
MFRLMO is proposed to solve the HO problem of
Apache Spark. Unlike black-box approaches, some
dynamic internal improvements have been made
by considering the objective functions as a set of
sequential HO problems. Specifically, the study is the
first to use model-free RL in tuning parameters of a
big data processing platform. To this end, the update
of rewards has been performed in each iteration of
MFRLMO by checking action-reward results. Though
a tradeoff between memory, time, and accuracy has
been achieved thanks to an ensemble technique,
MFRLMO outperforms the baselines in accuracy. The
proposed method does not suffer from a grid-based
dimensionality that may affect the computation time.
It can be deduced that to obtain consistent results of
dispersion and risk analyzes, the number of instances
should be as large as possible. We can conclude
from the comparison that there is not a monotonic
relationship between speedup and the number of cores.
Although the model of the environment is not involved
in the feature set of data sets when the type of RL is
model-free, potential consequences of actions should
be rigorously analyzed. Therefore, in future works, the
exact number of random sequences we need to obtain a
reliable RL depending on the state transitions could be
investigated. Further, it is planned to analyze to what
extent the interaction between the number of grid cells

12
EAI Endorsed Transactions 

on Scalable Information Systems | 
| Volume 11 | Issue 5 | 2024 |



MFRLMO: Model-free reinforcement learning for multi-objective optimization of apache spark

and ϵ changes the tradeoff of objective functions.
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