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Abstract

INTRODUCTION: A lightweght lung image segmentation model was explored. It was with fast speed and low
resouces consumed while the accuracy was comparable to those SOAT models.
OBJECTIVES: To improve the segmentation accuracy and computational efficiency of the model in extracting
lung regions from chest X-ray images, a lightweight segmentation model enhanced with a visual attention
mechanism called VAEL-Unet, was proposed.
METHODS: Firstly, the bneck module from the MobileNetV3 network was employed to replace the
convolutional and pooling operations at different positions in the U-Net encoder, enabling the model to
extract deeper-level features while reducing complexity and parameters. Secondly, an attention module
was introduced during feature fusion, where the processed feature maps were sequentially fused with the
corresponding positions in the decoder to obtain the segmented image.
RESULTS: On ChestXray, the accuracy of VAEL-Unet improves from 97.37% in the traditional U-Net network
to 97.69%, while the F1-score increases by 0.67%, 0.77%, 0.61%, and 1.03% compared to U-Net, SegNet, Res-
Unet and DeepLabV3+ networks. respectively. On LUNA dataset. the F1-score demonstrates improvements of
0.51%, 0.48%, 0.22% and 0.46%, respectively, while the accuracy has increased from 97.78% in the traditional
U-Net model to 98.08% in the VAEL-Unet model. The training time of the VAEL-Unet is much less compared
to other models. The number of parameters of VAEL-Unet is only 1.1M, significantly less than 32M of U-Net,
29M of SegNet, 48M of Res-Unet, 5.8M of DeeplabV3+ and 41M of DeepLabV3Plus_ResNet50.
CONCLUSION: These results indicate that VAEL-Unet’s segmentation performance is slightly better than
other referenced models while its training time and parameters are much less.
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1. Introduction
In [1], trends in scientific production on artificial
intelligence and health in Latin America in Scopus
was explored. The conclusion was that main topics
were predictive models and the application of artificial
intelligence for classifying, diagnosing and treating
diseases .

When diagnosing respiratory diseases, doctors must
meticulously differentiate the lung regions in chest X-
ray images and exclude the influence of other areas.
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This can result in reduced efficiency and fatigue in
doctors, increasing the risk of misdiagnosis.

To attack these problems, medical image processing
algorithms based on deep learning have emerged
as a prominent solution [2], and they are also
used in other assisted diagnosis, such as ophthalmic
diseases diagnosis in [3–6] and diabetic eye disease
identification in [7, 8], etc. Deep learning is also used
in other scientific research, such as natural language
processing [9], remote sensing image processing [10],
etc.

Some researchers devoted to identifying neurological
disorders from EEG signals, early detection of mild
cognitive impairment [11–14]. Some also attemped to
identify antisocial behavior [15], and automatically
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detect autism spectrum disorder from EEG [16]. Mental
health was analyzed based on emotion recognition from
facial expressions and psychometric evaluations [17].
A personalized arrhythmia detection system based on
attention mechanism called personAD, was proposed in
[18]. On MIT-BIH Arrhythmia Database, the arrhythmia
detection system achieved 98.03%.

Breast lesions were automatically and accurately
segmented using max flow and min cut problems in
the continuous domain over phase preserved denoised
images in [19].

Fully convolutional network (FCN) network was
introduced in [20], which utilizes convolutional layers
for feature extraction and downsampling in the spatial
dimension, followed by transposed convolutional layers
for upsampling and feature fusion. This results in pre-
dictions of the same size as the input image, effectively
addressing semantic-level image segmentation. How-
ever, the FCN network lacks cross-layer feature fusion,
leading to lower segmentation accuracy.

Consequently, U-Net network was proposed in [21],
which builds upon the FCN network by incorporat-
ing a cross-layer feature fusion mechanism in the
encoder [22]. This mechanism involves concatenating
high-level features with low-level features to enhance
feature expression. The U-shaped structure of U-Net
facilitates the capture of contextual information at var-
ious scales and thereby improving segmentation accu-
racy.

To further enhance image segmentation accuracy,
Res-Unet network was adopted in [23], which combines
residual learning with the U-Net network. The Res-
Unet network demonstrates superior accuracy and
robustness in image segmentation, particularly in
contour segmentation. An improved U-Net neural
network for the auxiliary diagnosis of intracerebral
hemorrhage was proposed [24], which realizes the
automatic segmentation of the hemorrhage on CT
images. In [25], the performance of Multi-scale
Fusion Attention U-Net (MSFA-U-Net) in thyroid
gland segmentation on localized computed tomography
(CT) images for radiotherapy was explored . In [26],
MBConvBlock encoder module was adopted, decoder
module was interpolated and reconstructed and triple
threshold strategy was used to improve U-Net network
and good performance was achieved in pneumothorax
X-ray image segmentation.

This year, an enhanced medical image segmentation
model, RAAU-Net, based on the U-Net architecture
was proposed in [27]. It has better performance across
all metrics in the segmentation tasks of 2D medical
images, including retinal nerves, skin lesions, and
lung regions. A novel lung parenchyma segmentation
network named ACX-UNet was proposed in [28], which
incorporates attention mechanisms and cyclic cross-
feature extraction strategies. It produces prediction

maps that more closely resemble the true labels. In
[29], a new segmentation mechanism was introduced,
which is based on Fuzzy C-Means (FCM) and various
features by incorporating dual FCM. Compared to
several previous methods, this approach resulted in
improvements of 4.2210% and 2.3150% in the Jaccard
Index and Dice Coefficient, respectively.

In lung region image segmentation based on chest X-
ray images, main challenges include the complexity of
anatomical structures within images, such as the lungs
and ribs. These structures exhibit close grayscale values
in X-ray images, especially at the junction of the lungs
and ribs. Their visual similarity makes it difficult for
automatic segmentation algorithms to distinguish. In
addition, the quality of chest X-ray images is affected
by many factors, such as the angle of imaging, patient
body size, and radiation dose, which leads to huge
differences in contrast, brightness, and clarity in the
images, making accurate segmentation challenging. At
the same time, high-precision segmentation models
often have many parameters, requiring long training
time and large computing resources, which limits their
applications in resource-constrained situations. In some
resource-constrained medical settings, there may be a
lack of high-performance computing resources. How to
maintain segmentation accuracy while reducing model
resource consumption becomes an important challenge.

Therefore, to compromise between high accuracy
and low resource consumption, U-Net is used as
the benchmark and integrated with the lightweight
MobileNetV3(Small) network, along with the CBAM
(Convolutional Block Attention Module). This integra-
tion leads to the development of a vision and attention
enhanced lightweight lung region image segmentation
model, named VAEL-Unet.

The main contributions of this work are:
1) VAEL-Unet is designed, which is a lightweight

lung region segmentation model incorporating visual
attention enhancement;

2) The CBAM attention mechanism is introduced
in VAEL-Unet to adaptively learn the importance of
different regions in the image and concentrate attention
on the more informative areas;

3) Experimental results on benchmark datasets show
that VAEL-Unet can slightly improve the segmentation
performance while training time and parameters are
reduced sharply.

2. Methods
The VAEL-Unet consists of three components: an
encoder, a decoder, and a feature fusion module.
The encoder employs the lightweight MobileNetV3
for feature extraction, the decoder utilizes that of
the U-Net. In the feature fusion module, the CBAM
attention mechanism is introduced to extract useful
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features, followed by feature concatenation to enhance
the segmentation accuracy of the model.

2.1. Related Models
U-Net network model. U-Net demonstrates exceptional
performance in medical image segmentation tasks [30]
. The model comprises symmetric encoder and
decoder components. The encoder consists of multiple
convolutional layers and pooling layers that extract
high-level feature representations from the input
image.

The decoder incorporates multiple upsampling layers
and convolutional layers, to expand the feature maps
generated by the encoder to match the dimensions
of the original input image and generating pixel-level
segmentation masks [31]. To enhance the quality of
segmentation, U-Net incorporates skip connections to
connect feature maps from corresponding layers of the
encoder and decoder. This makes full use of both low-
level and high-level features.

MobileNetV3 network model. MobileNetV3 network
model is designed to address computational limitations
in real-world scenarios. It is commonly used as feature
extraction component in various models to reduce
parameters and improve training speed [32].

The feature extraction component of the
MobileNetV3 is predominantly composed of
bottleneck (bneck) modules. The bneck module, by
integrating technologies such as depthwise separable
convolution [33] , inverted residual structures [34],
and the Squeeze-and-Excitation mechanism [35]. and
the efficient H-swish activation function, achieves
the goal of enhancing model performance while
reducing computational complexity and the number of
parameters. The architecture is illustrated in Figure 1.

Figure 1. Bneck Module Architecture

Depthwise separable convolution consists of two
steps: depthwise convolution and pointwise convolu-
tion. The parameters are calculated as follows:

PDC = m × k × k (1)

PP C = m × n × 1 × 1 (2)

P = PDC + PP C (3)

R =
m × k × k + m × n × 1 × 1

m × n × k × k
=

1
n

+
1
k2 (4)

where PDC , PP Cand P are the number of parameters for
deep convolution, point-wise convolution, and depth-
wise separable convolution, respectively, k is the size
of the convolutional kernel, m is the number of input
channels, and n is the number of output channels. R is
the ratio between parameters of depth-wise separable
convolution and that of conventional convolution.
This ratio elucidates that the number of parameters
for depth wise separable convolution is significantly
lower than that for conventional convolution, thereby
substantially reducing the training time of the network.

The inverted residual structure reverses the tradi-
tional residual structure process by first extending
the input to a higher-dimensional feature space for
processing, and then compressing it back to a lower
dimension by a 1 × 1 convolutional layer. This structure
effectively enhances the model’s ability to process infor-
mation while keeping a lower number of parameters.
The Squeeze-and-Excitation mechanism dynamically
adjusts the weights of channels by explicitly model-
ing the dependencies between channels, allowing the
network to adaptively reinforce important features and
suppress unimportant ones, thereby improving model
accuracy and generalization ability. H-swish, a variant
of the Swish activation function, introduces a hard
gating to simplify the computation of Swish. While
keeping nonlinear characteristics, it enhances the net-
work’s learning capability and efficiency.

The integration of these technologies allows the
bneck module to offer outstanding performance within
a lightweight network architecture, optimizing the
utilization of computational resources while keeping or
improving the accuracy of the model. This is important
for deep learning models running in computationally
constrained settings.

CBAM attention module. The CBAM is an efficient and
lightweight attention module that can be integrated
into any convolutional neural network architecture
and trained end-to-end with the base network [36].
It focuses on both channel and spatial attention and
achieves better performance compared to attention
modules that only focus on a single aspect [37].

The CBAM module is divided into Channel Attention
Module and Spatial Attention Module [38]. The
mathematical expression for CBAM is shown in
Equation (5),

F′ = Mc (F) ⊗ F,

F′′ = Ms(F
′) ⊗ F′

(5)

where ⊗ denotes element-wise multiplication, F is the
input feature map, Mc(F) is the channel attention map
output from the channel attention module,Ms(F′) is the
spatial attention map output from the spatial attention
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module, and F′′ is the final output feature map of the
CBAM attention module.
Channel attention module. It manipulates the

channel information of input images to emphasize
essential channel features and suppress insignificant
ones.

Input feature F is pooled globally based on its width
and length, and global average pooling and maximum
pooling features are formed. The pooled features are fed
into a multi-layer perceptron (MLP) [39].

The computation of channel attention map is
described by Equation (6),

Mc(F) = σ (MLP (AvgP ool(F))

+ MLP (MaxP ool(F)))

= σ (W1(W0(Fc
avg )) + W1(W0(Fc

max)))
(6)

where σ is the Sigmoid activation function, W0 and W1
are the weights of the MLP, W0 ∈ RC/r×C , W1 ∈ RC×C/r ,
and r is the dimension reduction factor.
Spatial attention module. It is employed to modify

the spatial information of the input image, emphasizing
crucial spatial locations while suppressing irrelevant
ones.

Feature map F′ is its input; Fs
avg and Fs

max are channel-
wise global max pooling and global average pooling.

The computation of spatial attention map Ms(F′) is
defined by Equation (7),

Ms(F
′) = σ (f 7×7([AvgP ool (F′) ;MaxP ool(F′)]))

= σ (f 7×7([Fs
avg ;Fs

max))
(7)

where σ is the Sigmoid activation function, f 7×7 is the
convolution operation with a 7 × 7 kernel size.

2.2. VAEL-Unet architecture
Figure 2 illustrates the overall architecture of the
VAEL-Unet segmentation model. The entire process of
the VAEL-Unet model is described by equations (8) and
(9),

xi = fenc (x)

= bi (bi−1 (bi−2 (· · · b1 (W (x) · · · )))) ,
i = 1, 2, 3, 4, 5

(8)

yj = fdec
(
yj+1, xj

)
= fact

(
W

(
Gup

(
yj+1

)
⊕ A

(
xj
)))

,

j = 4, 3, 2, 1

(9)

where x is the input image of the model, fenc is the
operation of the encoder, xi is the output feature map
of the layer i in the encoder, bi is the operation of the
bneck module in the layer i , W is the convolution
operation; fdec is the operation of the decoder, yj is the

output feature map of the layer j in the decoder, fact
is the activation function, usually the ReLU function,
Gup is the upsampling operation, typically achieved
through deconvolution or bilinear interpolation, ⊕ is
the concatenation operation, A is the operation of the
CBAM attention module.

3. Results
3.1. Dataset
The dataset used is the public Chest X-ray dataset
from Kaggle. It consists of lung mask images and chest
X-ray images. The mask images were in one-to-one
correspondence with the chest X-ray images. According
to the 8:1:1 ratio, 8000 samples in the Chest X-ray
dataset were randomly selected as the training set, 1000
samples as the validation set, and 1000 samples as
the test set to form the ChestXray dataset. To meet
the image size requirements of segmentation network
model, it is necessary to scale the image in equal
proportion to achieve the required size.

To validate the generalization capability of the model,
we utilized the widely-used LUNA16 dataset [40, 41].
Following an 8:1:1 ratio, 640 samples from the LUNA16
dataset were randomly selected as the training set,
while 80 samples as the validation set and another
80 samples as the test set, forming the LUNA dataset.
Since each sample in the LUNA dataset is a three-
dimensional image, a slicing process was performed on
each sample to extract slices from the exact middle
of the sample image and the corresponding mask
image. Furthermore, the dimensions of the slices were
uniformly scaled to meet the requirements of the
segmentation model’s input.

3.2. Data Preprocessing
Due to different size of original images in the dataset,
a uniform scaling process is applied in preprocessing,
setting the dimensions of images to 256×256. Simulta-
neously, to further assure the robustness of the training
model, data augmentation techniques such as random
rotation, horizontal flipping, and vertical flipping are
employed to expand the dataset. The processed data is
illustrated in Figure 3.

3.3. Experiment setups
The experimental setups are shown in Table 1.The
input image size for the model is set to 256 × 256. The
Adam optimizer is employed to update the network’s
model weights, with a learning rate of 0.0001. Given the
performance of GPU, image samples randomly drawn
for each batch is set to 4. Epoch in training is fixed at
100, and the optimal network model obtained during
training is reserved.
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Figure 2. VAEL-Unet Architecture

Figure 3. Image Preprocessing

The task of segmenting lung regions is a binary
classification to determine whether a given pixel
belonged to the lung region or not. The activation
function utilized was the commonly used Sigmoid
function [42]. The Dice loss [43] was used as the loss
function, as shown in Formula (10),

LDice = 1 −
2
∑n

i=1 piti + ε∑n
i=1 p

2
i +

∑n
i=1 t

2
i + ε

(10)

where pi is the probability of the model’s prediction for
pixel i, ti is the true label of pixel i, n is the total number

Table 1. Experiment setups

Parameters Values

CPU
Intel Xeon Silver
4214 @ 2.20GHz, 12-core

Memory DDR 64GB
GPU NVIDIA Tesla V-100
Operating System Linux
Programming language Python 3.9.16

IDE
Pycharm Community
Edition(2021.3)

Framework PyTorch(2.0.0)

of pixels, and ε is a very small value to avoid division by
zero.

3.4. Evaluation metrics
The performance of the segmentation model is assessed
using the following metrics: accuracy (Ac), recall ,
intersection over union (IoU), and F1-score (F1). The
specific calculations are defined by the following
formulas,

Ac =
TP + TN

TP + TN + FP + FN
× 100% (11)

Recall =
TP

TP + FN
× 100% (12)

IoU =
TP

TP + FP + FN
× 100% (13)

F1 = 2
TP

FP + 2TP + FN
× 100% (14)

where TP is true positives, FN is false negatives, FP is
false positives, TN is true negatives.
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3.5. Model validation
The loss curves of the training are shown in Figure 4,
where 4(a) is the loss curve on ChestXray, and 4(b) is the
loss curve on LUNA. From both plots, it can be observed
that the training and validation losses of the model
decrease as the number of Epochs increases, eventually
reaching a stable state. Furthermore, the losses in both
cases are reduced to below 0.02.

(a) Training Loss Curve for ChestXray

(b) Training Loss Curve for LUNA

Figure 4. Training Loss Curve

3.6. Visualization of Segmentation
To more intuitively reflect the effect of the VAEL-
Unet on lung region segmentation, two chest X-ray
images were randomly selected from the test set for
segmentation and display. The results are shown in
Figure 5, where the white area is the segmented lung
region, and the black part represents the area outside
the lung. It can be seen from the figure that VAEL-Unet
can segment the lung area from the chest X-ray image
very well.

3.7. Comparisons among different models
VAEL-Unet is compared with the U-Net,
SegNet [44], Res-Unet [45], DeepLabV3+ [46] and
DeepLabV3Plus_ResNet50 [47] on ChestXray and
LUNA. The results are compared in Ac, Recall, IoU,
F1, training time and parameters. In the following
figures, DeepLabV3Plus_ResNet50 is abbreviated as
DL+ResNet50.

(a) Image (Original) (b) Image (Mask) (c) Segmentation

(d) Image (Original) (e) Image (Mask) (f) Segmentation

Figure 5. Visualization of Segmentation for Chest X-ray (a-c)
and LUNA Images (d-f)

By analyzing Figures 6(a) and 7(a), it is evident
that the training time of the VAEL-Unet segmentation
model is less compared to the U-Net, SegNet, Res-
UnetDeepLabV3+, and DeepLabV3Plus_ResNet50.

From Figure 6(b), it can be observed that VAEL-
Unet outperforms U-Net, SegNet, Res-Unet, and
DeepLabV3+ models on ChestXray in Ac, IoU, F1,
achieving 97.69%, 93.65%, and 94.85%, respectively.
While the Res-Unet network model exhibits a deeper
network architecture and stronger feature extraction
capability, its sensitivity to interfering pixel points
leads to moderate precision but higher recall . Among
the compared models, Res-Unet attains the highest
recall, with F1-score of 94.24%.

The accuracy of VAEL-Unet improved from the
conventional U-Net network’s 97.37% to 97.69%.
When compared with U-Net, SegNet, Res-Unet, and
DeepLabV3+ networks, the F1-score experiences an
increment of 0.67%, 0.77%, 0.61%, and 1.03%,
respectively.

As shown in Figure 7(b), that the VAEL-Unet
outperforms the traditional U-Net, SegNet, Res-Unet
and DeepLabV3+ on LUNA. The F1-score demonstrates
improvements of 0.51%, 0.48%, 0.22% and 0.46%,
respectively, while the accuracy has increased from
97.78% in the traditional U-Net to 98.08% in the
VAEL-Unet These results indicate that the VAEL-
Unet exhibits strong generalization capability and
consistently delivers excellent performance across
different datasets.

4. Discussion

4.1. Ablation Analysis
To assess the effectiveness of combining MobileNetV3
and CBAM within the VAEL-Unet framework, a
series of ablation experiments were done. These
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(a) Training time

(b) Different metrics

Figure 6. Comparison for Chest X-ray images

(a) Training time

(b) Different metrics

Figure 7. Comparison for LUNA images

experiments evaluated the performance of the models
under different ablation settings, focusing on metrics

including Ac, Recall, IoU, F1. The results of the model
ablation experiments are presented in Table 2. In this
table, “–” signifies the module is excluded, while “✓”
signifies the module is included.

It can be observed that the proposed VAEL-Unet
network model exhibits improvements in accuracy,
IoU, and F1 compared to the U-Net model, U-Net
model with the CBAM attention module, and the U-
Net model combined with MobileNetV3 without the
CBAM attention module, across both the ChestXray
and LUNA datasets. Therefore, it can be inferred that
the VAEL-Unet effectively enhances the performance
of pulmonary region segmentation from chest X-ray
images. This justifies incorporating MobileNetV3 and
CBAM within the VAEL-Unet framework to enhance
segmentation performance.

4.2. Limitations of the conventional U-Net network
model
The U-Net network model requires effective extraction
of abstract features from low-resolution, blurry bound-
ary, and poor contrast chest X-ray images to enhance the
segmentation performance. Although the U-Net net-
work model employs an encoder-decoder architecture
and skip connections to efficiently utilize features at
different levels, it still has several limitations:

1) The extensive use of convolutional layers and
pooling layers in the U-Net network model can
effectively extract features at various scales. However,
the use of conventional convolution operations may
lead to information loss and overfitting, making it
challenging to apply them to other image segmentation
tasks [48].

2) The U-Net network model has a relatively shallow
network depth [49], and typically layers range from 7 to
10 . This limitation may restrict the model’s expressive
capacity and hinder the accurate segmentation of chest
X-ray images. Additionally, the limited number of
network layers reduces the opportunities for feature
learning, potentially resulting in the inability to capture
richer feature representations.

3) The U-Net network model has a large number of
parameters, leading to longer training times. This limits
its application in real-time scenarios.

4.3. Advantages of VAEL-Unet model
To compromise between model performance and com-
puting resource consumption, we propose VAEL-Unet.
The bneck modules of the lightweight MobileNetV3
(Small) were employed as part of the encoder of the
VAEL-Unet to extract deep features. When these fea-
tures are fused with each layer of the decoder, the
CBAM attention module extracts expressive features
initially, followed by feature splicing. This approach
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Table 2. Ablation experiments on ChestXray and LUNA

Dataset U-Net MobileNetV3 CBAM Ac/% Recall/% IoU/% F1/%
✓ – – 97.37 99.90 92.83 94.18
✓ – ✓ 97.39 99.72 92.81 94.09

ChestXray ✓ ✓ – 97.47 99.88 93.11 94.42
✓ ✓ ✓ 97.69 99.84 93.65 94.85
✓ – – 97.78 99.73 93.97 95.21
✓ – ✓ 97.78 99.72 93.99 95.09

LUNA ✓ ✓ – 97.94 99.85 94.29 95.43
✓ ✓ ✓ 98.08 99.76 94.64 95.72

eliminates the impact of invalid features on the model
and resolves the challenging issue of improvement in
segmentation accuracy to some degree. Therefore, the
performance and parameters of the VAEL-Unet segmen-
tation model are optimized.

VAEL-Unet effectively reduces the network’s depth
and parameters, thereby mitigating the issue of
gradient explosion. It only has 1.1M parameters,
significantly smaller than 32M of U-Net, 29M of
SegNet, 48M of Res-Unet, 5.8M of DeepLabV3+ and
and 41M of DeepLabV3Plus_ResNet50, as shown in
Figure 8.

Figure 8. Comparison of Parameters

This reduction in parameters greatly alleviates the
computational burden of the model. Consequently, the
VAEL-Unet excels in model performance, parameters,
and training time when compared to the traditional U-
Net, SegNet, Res-Unet and DeepLabV3+.

Despite the slight decrease in accuracy, IoU, and
F1 compared to the latest DeepLabV3Plus_ResNet50,
VAEL-Unet needs less training time and parameters.
The training time is reduced by approximately 56%,
and the number of parameters is decreased by about 40
times compared to DeepLabV3Plus_ResNet50. From
perspective of computational resources consumption,
VAEL-Unet is better than DeepLabV3Plus_ResNet50.
VAEL-Unet is a lightweight model, while
DeepLabV3Plus_ResNet50 is a heavyweight model
which gets better results at the cost of more time and
space resources.

5. Conclusion
To improve the accuracy and efficiency of lung region
extraction from chest X-ray images, we use U-Net as
the baseline, combine lightweight MobileNetV3 (Small)
and introduce the CBAM attention module to design a
visually enhanced and lightweight lung region image
segmentation model VAEL-Unet. VAEL-Unet utilizes
MobileNetV3 for extracting abstract features, incor-
porates feature fusion from U-Net, and leverages the
CBAM attention module to enhance informative fea-
tures. This approach enhances the segmentation per-
formance while reducing the model’s parameters. Com-
pared to other commonly used segmentation network
models, VAEL-Unet achieves improved segmentation
accuracy, significant enhancement in training time and
reduction in parameters. Thus, it achieves better seg-
mentation results by balancing recognition accuracy
and computational efficiency.
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