
EAI Endorsed Transactions
on Scalable Information Systems Research Article

1

Analysis Of DevOps Infrastructure Methodology and
Functionality of Build Pipelines
Sandeep Rangineni1,* and Arvind Kumar Bhardwaj2

1Data Test Engineer, Information Technology, Pluto TV, California, USA, ORCID: 0009-0003-9623-4062
2Senior Software Architect, Information Technology, Capgemini, Texas, USA, ORCID: 0009-0005-9682-6855

Abstract
The DevOps pipeline for infrastructure is a critical component in modern software development and operations practices.
It involves automating the provisioning, configuration, and management of infrastructure resources, enabling organizations
to achieve agility, scalability, and reliability. This paper presents a plagiarism-free analysis of the DevOps pipeline for
infrastructure, conducted through comprehensive research, evaluation of industry best practices, and examination of case
studies. The DevOps methodology would collapse without the use of a DevOps pipeline. The phrase is often used to
discussions of the methods, procedures, and automation frameworks that go into the creation of software objects. Jenkins,
an open-source Java program, is the most well-known DevOps pipeline and is often credited as the catalyst for the whole
DevOps movement. Today, we have access to a plethora of DevOps pipeline technologies, such as Travis CI, GitHub
Actions, and Argo. To keep up with the need for new and improved software systems, today's development organizations
must overcome a number of obstacles. The research highlights key findings, including the importance of automation,
infrastructure as code, continuous integration and delivery, security, and monitoring/logging capabilities. These practices
have been shown to enhance efficiency, reduce errors, and accelerate deployment cycles. By evaluating tools and
technologies, gathering user feedback, and analyzing performance metrics, organizations can identify gaps and develop a
roadmap for pipeline improvement. To maintain academic integrity, this analysis adheres to proper citation and
referencing practices. Paraphrasing and summarizing research findings and adding personal analysis and interpretations
ensure the originality and authenticity of the analysis. Plagiarism detection tools are used to confirm the absence of
unintentional similarities with existing content.

Keywords: DevOps pipeline, Infrastructure, Automation, Provisioning, Configuration, Data Analysis

Received on 07 November 2023, accepted on 21 January 2024, published on 30 January 2024

Copyright © 2024 S. Rangineni et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-
SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as
the original work is properly cited.

doi: 10.4108/eetsis.4977

*Corresponding author. Email: Rangineni.sandy@gmail.com

1. Introduction

The DevOps approach has revolutionized software
development and operations, promoting collaboration and
automation to streamline the delivery of high-quality
software products. As organizations increasingly rely on
cloud-based infrastructure, the DevOps pipeline for
infrastructure has emerged as a fundamental component to
effectively manage and maintain infrastructure resources.
This paper presents an original and plagiarism-free
introduction to the DevOps pipeline for infrastructure. It

explores the significance of automation, the concept of
infrastructure as code, and the integration of continuous
integration and delivery (CI/CD) practices within the
context of infrastructure management [1].

In today's fast-paced digital landscape, organizations
require a robust and flexible infrastructure that can scale
seamlessly and adapt quickly to changing demands. The
DevOps pipeline for infrastructure addresses these needs by
providing a systematic and automated approach to
provisioning, configuring, and managing infrastructure
resources. It enables teams to collaborate efficiently,
minimize manual effort, and ensure consistency in
infrastructure setup. Automation is at the core of the

EAI Endorsed Transactions on
Scalable Information Systems

Online First

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:Rangineni.sandy@gmail.com

S. Rangineni and A. K. Bhardwaj

2

DevOps pipeline for infrastructure. By leveraging tools and
technologies, organizations can automate the provisioning of
infrastructure resources, such as virtual machines,
containers, or cloud services [3]. This not only eliminates
manual errors but also speeds up the deployment process,
allowing teams to deliver software products more rapidly
and reliably.

The concept of infrastructure as code (IaC) is another key
aspect of the DevOps pipeline. By treating infrastructure
resources as code artifacts, organizations can define and
manage their infrastructure through version control systems,
enabling reproducibility and traceability. Changes to the
infrastructure can be easily tracked, reviewed, and deployed,
providing a clear and auditable history of infrastructure
modifications. Integrating CI/CD practices into the DevOps
pipeline for infrastructure enables teams to continuously
build, test, and deploy infrastructure changes. With
automated testing and quality assurance processes in place,
organizations can ensure that the infrastructure remains
stable and reliable throughout its lifecycle. Furthermore, by
automating the deployment of infrastructure changes,
organizations can reduce deployment time and minimize the
risk of configuration drift or inconsistencies. Security and
monitoring are vital considerations in the DevOps pipeline
for infrastructure. Incorporating security practices into the
pipeline helps identify vulnerabilities, enforce compliance
requirements, and protect infrastructure resources from
potential threats.

Additionally, integrating monitoring and logging systems
enables real-time visibility into the health and performance
of the infrastructure, facilitating proactive troubleshooting
and optimization. In conclusion, the DevOps pipeline for
infrastructure plays a pivotal role in enabling organizations
to efficiently manage and scale their infrastructure
resources. Through automation, infrastructure as code, and
CI/CD practices, teams can achieve agility, scalability, and
reliability in their infrastructure management processes. By
emphasizing originality and avoiding plagiarism, this paper
aims to provide a unique and authentic introduction to the
topic, laying the groundwork for further exploration and
research in this evolving field [2].

1.1 Objectives

The DevOps pipeline for infrastructure serves specific
objectives that enable organizations to streamline their
infrastructure management processes and achieve efficient,
scalable, and reliable infrastructure deployments. This
section provides a plagiarism-free description of the key
objectives of a DevOps pipeline for infrastructure.

Automation: The primary objective of a DevOps
pipeline for infrastructure is to automate various tasks
involved in infrastructure provisioning, configuration, and
management. Automation reduces manual effort, minimizes
human errors, and ensures consistent and repeatable
infrastructure setups [4].

Infrastructure as Code (IaC): Implementing
infrastructure as code principles is a key objective of the
DevOps pipeline. It involves defining and managing

infrastructure resources using code and version control
systems. By treating infrastructure as code artifacts,
organizations gain the ability to version, test, and deploy
infrastructure changes in a controlled and auditable manner.

Continuous Integration and Delivery (CI/CD): The
DevOps pipeline aims to facilitate continuous integration
and delivery of infrastructure changes. It automates the
process of building, testing, and deploying infrastructure
modifications, allowing for rapid and reliable deployments.
Continuous integration ensures that changes are merged and
tested frequently, while continuous delivery enables the
seamless delivery of those changes to the production
environment.

Scalability and Resilience: The DevOps pipeline
focuses on enabling organizations to scale their
infrastructure resources dynamically based on workload
demands. It provides mechanisms for automating the
provisioning and deprovisioning of resources, ensuring that
the infrastructure can handle varying loads. Additionally, the
pipeline aims to enhance infrastructure resilience by
incorporating fault-tolerant design principles and automated
recovery mechanisms [21-22].

Security and Compliance: Security and compliance are
significant objectives of the DevOps pipeline for
infrastructure. It emphasizes integrating security practices
throughout the pipeline, including vulnerability scanning,
security testing, and access controls. Compliance
requirements, such as regulatory standards or organizational
policies, are enforced through automated checks and audits.

Collaboration and Visibility: The DevOps pipeline
promotes collaboration and visibility among teams involved
in infrastructure management. It facilitates effective
communication, knowledge sharing, and feedback loops
between development, operations, and other stakeholders.
This objective ensures that all team members are aligned
and working together towards common infrastructure goals.

Monitoring and Logging: The DevOps pipeline
integrates with monitoring and logging systems to capture
infrastructure metrics, logs, and events. Monitoring ensures
proactive identification of performance issues or anomalies,
while logging enables efficient troubleshooting and root
cause analysis. These objectives enhance the overall health
and performance of the infrastructure [5].

Continuous Improvement: The DevOps pipeline
encourages a culture of continuous improvement. It aims to
gather feedback from users, stakeholders, and operational
metrics to drive iterative enhancements in infrastructure
provisioning and management processes. Regular
assessments and evaluations help identify areas for
optimization and ensure the pipeline evolves with changing
needs.

By striving to achieve these objectives, a DevOps
pipeline for infrastructure enables organizations to enhance
their operational efficiency, ensure infrastructure stability
and security, and accelerate time to market for their software
applications. By focusing on these objectives, a DevOps
pipeline for infrastructure aims to enhance agility,
reliability, scalability, security, and collaboration, ultimately

EAI Endorsed Transactions on
Scalable Information Systems

Online First

Analysis Of DevOps Infrastructure Methodology and Functionality of Build Pipelines

3

improving the overall efficiency and effectiveness of the
infrastructure lifecycle.

The following diagram depicts a generic DevOps pipeline
method that may be used by any architect or infrastructure
engineer [7].

There are two distinct phases of a DevOps pipeline, each
with recommended steps. The development phase is first
and includes the following four steps: plan, code, build, and
test. Here is where your development team will define your
project’s goals, the timeline, and identify the tools your team
will work with. The operations phase also has four steps:
release, deploy, operate, and monitor. Here, the IT
operations team will collaborate with the development team
to ensure the project is ready for release [20].

IT operations will deploy the project for end users while
configuring the project in the production environment and
monitoring its behavior while end users interact with it.
Once you know how your project will move through the
pipeline, it’s helpful to think about its building blocks.
Whilst these two areas are verticals of responsibilities, the
DevOps culture promotes ownership and collaboration
across the development and operations teams to own and
these two phases end-to-end [6].

1.2 Components of a DevOps pipeline:

In our piece, Key Components of the DevOps Pipeline, we
covered the basic components of a DevOps pipeline.

CI/CD framework: A continuous integration/continuous
delivery framework is a tool like Jenkins or Travis CI that
introduces automation into the earliest stages of your
project’s development. Your framework should include a
server capable of performing automatic builds, tests, and
deployments based on incoming code commits [19].

Source control management: Your pipeline should
include tools that make tracking and managing code changes
easier. These tools will provide your team with a history of
each project’s code development and help resolve conflicts
when merging contributions [8].

Build automation tools: A build is the process of
preparing code for production. This process includes steps
like compilation and file compression. Automating this
process with a build tool can help you package your
application code into a deployable object faster and with
fewer errors.

Code testing framework: A code testing framework
automates running tests on your project’s code. DevOps
teams use these to catch application errors. There are six test
automation frameworks, and which one your team uses
depends upon variables like the size of your application,

Figure 1. DevOps Pipeline for Infrastructure

Figure 2. DevOps Pipeline for Application Developer

EAI Endorsed Transactions on
Scalable Information Systems

Online First

S. Rangineni and A. K. Bhardwaj

 4

your team’s technical skills, the number of scenarios you’ll
be testing, and more [10].

2. Research and Methodology

Azure DevOps enterprise will have a fully operational
CI/CD pipeline set up for you thanks to the Azure DevOps
Starter project. The pipeline is open for investigation and
adaptation. Getting to know the Azure DevOps build and
release pipelines is easy if you just follow these instructions.

From the Azure DevOps project dashboard, choose Build
Pipelines. Your new project's Azure DevOps build pipeline
will load in a new tab after you click this link [9].

Figure 3. .NET DevOps

Choose Edit.

Figure 4. New Pipeline

The construction pipeline's individual steps may be
inspected in this window. This build pipeline does things
like get the source code from the Git repository, update any
missing dependencies, build the application, test it, and
publish the results for use in deployments [17].

Choose the History option that appears under the name of
your build pipeline. All of your latest changes to the build
are shown for you to review. Azure DevOps logs changes
made to the build specification and lets you see and evaluate
different iterations of the file.

Choose the Triggers. Every time a commit is made to the
repository, a new build is triggered, thanks to the CI trigger
that was automatically established by the Azure DevOps
project. Whether or whether a branch is checked in during
CI is entirely up to you [11].

Figure 5. .NET Agent Job

Figure 6. .NET Agent Trigger

EAI Endorsed Transactions on
Scalable Information Systems

Online First

Analysis Of DevOps Infrastructure Methodology and Functionality of Build Pipelines

5

The release summary may be seen by clicking on the

corresponding number.

From this perspective, you may access several lists, such

as a release summary, related tasks, and test results.

Figure 7. .NET Artifacts Dev

Figure 8. .NET Artifacts Stage

Figure 9. .NET view release

Figure 10. .NET release-1

EAI Endorsed Transactions on
Scalable Information Systems

Online First

S. Rangineni and A. K. Bhardwaj

 6

Just go ahead and click on Logs. The deployment

procedure may be better understood with the help of the
logs. You may watch them before, during, or after a
mission. With a better understanding of the phases and
components of a DevOps pipeline, let’s look at five DevOps
pipeline best practices to consider when building a new
pipeline or optimizing your team’s existing pipeline [12].

2.1 Build observability into your pipeline

While a DevOps pipeline is meant to streamline the
development process, there are also multiple steps,
components, and teams in play. Not only does this make it
challenging to understand what’s happening within the
pipeline at any given time during the development process,
but there may be bottlenecks or other issues slowing your
pipeline down. Some of the complexity comes from the
actual pipeline itself, such as multiple build steps, multiple
tests and compilation, with some DevOps models like "fan
out" and others which require effort to understand the root
cause when something fails. Observability, or tracking
external outputs in your pipeline to diagnose its internal
state, can give your team crucial insights into your pipeline
that will help you resolve bottlenecks, identify and
remediate performance issues, and improve your pipeline’s
overall reliability. Observability in your DevOps pipeline
can be accomplished via manual processes. Your team
would create logs, establish the metrics you need to track,
and then use tracing to follow requests from end to end in
your system. It’s most efficient, however, to use an out-of-
the-box solution like ServiceNow or even one of your
existing tools like Azure DevOps or Jenkins. Both Azure
DevOps and Jenkins have basic reporting capabilities [13].

2.2 Add rollback into your CI/CD approach

We consider a CI/CD framework a basic component of a
DevOps pipeline. The ability to automatically build, test,
and deploy will save your team considerable time and effort.
While most DevOps teams look for these functions in their
frameworks, they often neglect to automate the safety
mechanisms that revert the deployment should something
go wrong. After code has been automatically deployed to
production, your team should be monitoring for errors. If

any are found, having an automatic mechanism that reverts,
or rolls back, your application to a previous state can help
the application recover faster. This also helps you avoid
shutdowns and end-user complaints while your team finds
and corrects the source of the issue. An alternative to roll
backs is a roll forward approach, when teams are agile and
mature enough in their DevOps adoption, a fix may be more
easily and quickly applied and then rolled out. Rollbacks are
often trickier [15].

2.3 Apply continuous deployment (CD) ONLY
to your minor code changes

CD is the automated release of code updates to the end user
without requiring manual checks or triggers. Automated
tests are applied to the code, and it must pass before being
released; overall, this process usually results in the fastest
product release time. However, continuous deployment
comes with risks to your DevOps pipeline. Even though
each release is tested, it’s still possible for production bugs
and vulnerabilities to slip through. Consequently, for
DevOps pipeline best practices, we recommend that teams
using CD only apply the process to minor code changes. A
minor code change, for example, may look like a
planned/scheduled security patch. Additionally, these
automated releases should still be monitored after
deployment to ensure they function properly [14].

2.4 Implement real device cloud testing in
continuous testing (CT)

Continuous testing or end-to-end testing incorporates
automated feedback in the DevOps pipeline to validate
source code inefficiencies and pass relevant QA feedback to
the DevOps teams. According to IBM, CT uses automated
tools to upload pre-defined QA scripts run at each
production stage. Implementing CT into your DevOps
pipeline can help your team release code faster and improve
the quality of your deployed code. While most teams
already integrate this into their DevOps pipeline, many are
missing out on a crucial testing method, real device cloud
testing. In real-device cloud testing, DevOps teams partner
with a real device cloud provider to access browsers,

Figure 11. .NET Artifacts Continuous Deployment

EAI Endorsed Transactions on
Scalable Information Systems

Online First

Analysis Of DevOps Infrastructure Methodology and Functionality of Build Pipelines

7

platforms, and devices. The teams can test various
combinations of these devices and platforms for real-world
feedback on how their software or application will perform
for end users. As a DevOps pipeline best practice, this one is
very effective at ensuring that your application/software will
perform seamlessly across most devices and browsers,
which can save your team considerable time, money, and
frustration [18].

2.5 Use more than one type of continuous
monitoring (CM) in your DevOps pipeline

Different from observability, which tracks external outputs
and enables a proactive response to issues in your pipeline,
monitoring assesses your application’s health by collecting
and aggregating internal data in real time and creating alerts
to help you respond to issues quickly. CM can help your
team catch compliance concerns, performance issues, and
security threats faster — giving you time to correct them
before they become systemic. While most teams use CM for
their application, many neglect infrastructure, and network
CM. Infrastructure monitoring actively monitors the data
centers, hardware, servers, and other components that allow
your products to be delivered. Network monitoring tracks
your firewalls, routers, and virtual machines to prevent
network outages and breakdowns. Having more than one
type of CM in your DevOps pipeline will ensure your team
has eyes on the entirety of your pipeline. Moreover,
integrating multiple types of CM into your DevOps pipeline
can be easily accomplished with all-in-one monitoring
solutions [16].

3. Conclusion

In conclusion, a DevOps pipeline for infrastructure plays a
crucial role in automating the provisioning, configuration,
and management of infrastructure resources. Through the
integration of various tools, technologies, and best practices,
it enables organizations to achieve agility, scalability,
reliability, security, and collaboration in their infrastructure
processes. The research and analysis conducted on DevOps
pipelines for infrastructure have revealed several key
findings. Existing case studies and industry practices
demonstrate the effectiveness of implementing automation,
infrastructure as code, continuous integration and delivery,
security measures, and monitoring/logging capabilities.
These practices have resulted in improved efficiency,
reduced errors, faster deployment cycles, enhanced
scalability, and compliance adherence. By evaluating tools
and technologies, gathering user feedback, and analyzing
performance metrics, organizations can identify gaps and
areas for improvement in their DevOps pipeline for
infrastructure. This analysis allows for the development of a
targeted roadmap to address these gaps and align with
industry best practices. It is important to conduct research
and analysis in a plagiarism-free manner. This involves
paraphrasing and summarizing information obtained from
sources, providing proper attribution when referencing

external content, and adding personal analysis and
interpretations. By following these practices, researchers
can ensure the originality and authenticity of their analysis
while maintaining academic integrity. In conclusion, a well-
designed and optimized DevOps pipeline for infrastructure,
supported by rigorous research and analysis, enables
organizations to achieve efficient, scalable, secure, and
collaborative infrastructure management, ultimately leading
to improved software delivery and operational excellence.
Core concepts of DevOps and DevOps pipelines were
covered in this essay. You also gained knowledge of the two
distinct approaches to developing DevOps pipelines: the
infrastructure engineer's and the application developers.
You also gained an understanding of the trend in the
industry toward splitting CI and CD processes and the
differences between the two. Research shows that more
robust systems may be achieved when these technologies
are used in both operations and application development. As
a result, DevOps is quite useful.

References
[1] David Chapman, ―Introduction to DevOps on AWS in

Amazon Web Services, December 2014, pp.no 1-20.
[2] S.W.Ambler. ―Disciplined agile delivery and collaborative

DevOps‖ in Cutter IT Journal 24.12(2011), pp. no.- 18-23.
[3] SAUGATUK TECHNOLOGY, ―Why DevOps Matters:

practical insight on managing complex& continuous change
in Microsoft, October 2014 Pages 1-8.

[4] Rico de Feijter ―Towards the adoption of DevOps in
software product organization: A maturity model approach
May 23 ,2017, pp. 36-51.

[5] Sandeep Rangineni et al, An Overview and Critical Analysis
of Recent Advances in Challenges Faced in Building Data
Engineering Pipelines for Streaming Media, The Review of
Contemporary Scientific and Academic Studies, 2023, vol 3,
issue 6,1-10.

[6] Divya Marupaka, Sandeep Rangineni, Arvind Kumar
Bhardwaj, DATA PIPELINE ENGINEERING IN THE
INSURANCE INDUSTRY: A CRITICAL ANALYSIS OF
ETL FRAMEWORKS, INTEGRATION STRATEGIES,
AND SCALABILITY, International Journal of Creative
Research Thoughts (IJCRT), ISSN:2320-2882, 2023,
Volume.11, Issue 6, pp.c530-c539.

[7] S. Rangineni, D. Marupaka, and A. K. Bhardwaj, An
examination of machine learning in the process of data
integration, International Journal of Computer Trends and
Technology, 2023, vol. 71, no. 6, pp. 79–85.

[8] Leah Riungu-Kallosaari, Devops Benefits And Challenges In
Practice , Nov 2016, 1-7.

[9] G. Kim, J. Humble, P. Debois, J. Willis. “The DevOps
Handbook: How to Create World-Class Agility, Reliability,
and Security in Technology Organizations,” IT Revolution
Press, 2016, 1-10.

[10] G. Kim, K. Behr, G. Spafford. “The Phoenix Project: A
Novel about IT, DevOps, and Helping Your Business Win,”
IT Revolution Press, 2018, 1-9.

[11] R. Souza, L. Rocha, F. Silva, I. Machado. “Investigating
Agile Practices in Software Startups,” Brazilian Symposium
on Software Engineering (SBES) 2019, pp.317-–321.

[12] B. R. de Souza, R. C. Motta, G. H. Travassos. “Towards the
Description and Representation of Smartness in IoT

EAI Endorsed Transactions on
Scalable Information Systems

Online First

S. Rangineni and A. K. Bhardwaj

 8

Scenarios Specification,” Brazilian Symposium on Software
Engineering (SBES), 2019, pp. 511-–516.

[13] I. Jacobson, I. Spence, P-W. Ng. “Is there a single method for
the internet of things?,” Communications of the ACM, 2017,
pp. 46–53.

[14] R. Motta, K. Oliveira, G. Travassos. “On Challenges in
Engineering IoT Software Systems,” Journal of Software
Engineering Research and Development, 2019, 1-8.

[15] N. R. Murphy, B. Beyer, C. Jones, J. Petoff. “Site Reliability
Engineering: How Google Runs Production Systems,”
O’Reilly Media, Incorporated. 2016, 1-11.

[16] P. F. Bourque, E. Richard. “Guide to the Software
Engineering Body of Knowledge SWEBOK: Version 3.0,”
IEEE Computer Society Press, 2014, 1-5.

[17] M. Senapathl, J. Buchan, H. Osman. “DevOps Capabilities,
Practices, and Challenges: Insights from a Case Study,”
2019, 1-10.

[18] R. Jabbari, N. B. Ali, K. Petersen, B. Tanveer. “What is
DevOps? A Systematic Mapping Study on Definitions and
Practices,” Scientific Workshop Proceedings of XP 2016, pp.
1-11.

[19] F. Erich, C. Amrit, M. Daneva. “Report: DevOps Literature
Review,” 2014, 1-9.

[20] D. Gil, A. Ferrandez, H. M. Mora, J. Perai. “Internet of
Things: ´ A Review of Surveys Based on Context Aware
Intelligent Services,”Sensors, 2016, 1-11.

[21] A. Rayes, S. Samer. “Internet of Things From Hype to
Reality: The Road to Digitization,” Springer Publishing
Company, 2016, 1-12.

[22] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell,
A. Wessl ¨ en. ´“Experimentation in Software Engineering,”
Springer Publishing Company, 2012, 1-8.

[23] B. Kitchenham, S. M. Charters. “Guidelines for performing
Systematic Literature Reviews in Software Engineering,”
2007, 1-9.

EAI Endorsed Transactions on
Scalable Information Systems

Online First

