
EAI Endorsed Transactions
on Scalable Information Systems Research Article

1

Design and Comparison of 24-bit Three Operand Adders
using Parallel Prefix method for Efficient Computations
S. Usha1* and M. Kanthimathi2

1Associate Professor, Sri Sairam Engineering College, Scholar, Anna University, Chennai, India
2 Professor, Sri Sairam Engineering College, Supervisor, Anna University, Chennai, India

Abstract

Binary Three-operand adder serves as a foundation block used within security and Pseudo Random-Bit Generator (PRBG)
systems. Binary Three-operand adder was designed using Carry Save Adder but this consumes more delay. Therefore, a
Parallel Prefix Adder (PPA) method can be utilized for faster operation. The canonical types of PPA result in a lesser path
delay of approximately O (log2 n). These adders can be designed for 8, 16, 24 or n bits. But this work is focused on
developing a 24-bit three-operand adder that takes three 24-bit binary numbers as input and generates a 24-bit sum output
and a carry using five different PPA methods The proposed summing circuits are operationalized with Hardware-
Description-Language (HDL) using Verilog, and then subjected to synthesis using Field -Programmable Gate- Array
(FPGA) Vertex 5. On comparing the proposed adders, it shows that the delay and the size occupied are significantly less in
the Sklansky PPA. These faster three-operand adders can be utilized for three-operand multiplication in image processing
applications and Internet of Things (IoT) security systems.

Keywords: PPA, Three-Operand Adder, Modular Arithmetic, FPGA

Received on 11 November 2023, accepted on 23 January 2024, published on 01 February 2024

Copyright © 2024 S. Usha et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-SA
4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the
original work is properly cited.

doi: 10.4108/eetsis.5004

*Corresponding author. Email: usha.ece@sairam.edu.in

1. Introduction

Developing cryptographic algorithms in hardware is crucial
to attaining optimal system achievement and ensuring the
security of systems. Many cryptographic algorithms rely on
modular arithmetic for various math operations like modulo
exponentiation, residue addition, and modular product.
Therefore, the efficacy of cryptanalysis methods depends
on how well these congruential arithmetic operations are
implemented. One notable approach for efficiently
performing residue multiplication operations is the
Montgomery method, which heavily depends on a three-
operand binary addition technique [1].

This algorithm has shown outstanding efficiency in
executing these crucial cryptographic operations. At the
moment, technological progress is taking place at an
exceptionally rapid speed over a very short period. The

circuits that are now being designed include billions of
components yet need very little space, move very quickly,
and use very little power. Therefore, considering area,
speed, and power is essential to designing every circuit. It
is necessary to build a circuit with low space limitations
and low delay limits to meet the requirements of the
present trend.

The arithmetic units are the primary building elements
of any processing unit, and they are responsible for
carrying out a variety of arithmetic operations. The
addition process is particularly crucial in this context
among all the mathematical operations. In the literature
survey of adder designs, various adder algorithms starting
from Ripple Carry Adder to Approximate Adder have
been researched. All of these additions will only be able
to handle a total of two operand inputs; but to support
three operand inputs, there is a need to recreate the
building block as a component with support for the carry
chain approach.

EAI Endorsed Transactions on
Scalable Information Systems

Volume 11 | Issue 3 |2024

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:usha.ece@sairam.edu.in

S. Usha and M. Kanthimathi

2

Either one adder that handles three inputs or two adders
that handle two binary inputs each may be used to perform
the addition of three operands. When it comes to adding
three operands used in cryptography algorithms and various
bit-generation approaches, the PPA is an efficient
mechanism pertaining to size and speed. To minimize
latency on the critical path, like a two-operand PPA, the
PPA algorithm can also be utilized for the summation of
three-operand inputs. It not only makes a difference in O
(log2 n) in terms of the delay on the critical path, but it also
makes a difference in the order of O in terms of the area (n
log2 n).

As a result, it is vital to build an effective structure in a
Very Large Integrated Circuit designed for the rapid three-
operand addition of binary numbers with the fewest gates
required by the hardware. Therefore, in this paper, a new
faster, size optimized PPA technique is proposed for three
operands binary addition. For analyzing PPA, in terms of
performance, five different approaches, utilizing
conventional PPA including Sklansky PPA were employed
for adding three 24-bit numbers.

To achieve the addition of three operands, a pre-compute
of the bitwise addition is done and then carry-prefix
computing logic is performed. This technique consumes a
significant power, but this will take an amount less size
while simultaneously cutting down on the propagation
delay when compared to the PPA two-operand adder.
Besides, the recommended adder structure is enacted using
the Verilog-HDL, followed by synthesis on Vertex 5
FPGA, and finally, it is implemented on Xilinx for
functional validation.

The work is structured as stated: Section 2 provides a
review of the literature and the developments made
previously are presented. The applications and techniques
of the suggested 24-bit three-input adders of various types
are described in Section 3. Validation of the results and
implementation is presented in Section 4. Finally, Section 5
concludes the work.

2. Literature Review

Ravi Payal et al. [2] introduced a carry-look-ahead adder
design where the generation of a carry network is structured
using prefix trees, resulting in the development of two
distinct types of PPA given by Kogge-Stone and Ladner-
Fischer. This adder is widely employed in industries for
meeting performance targets. In [3], the authors stated that
the area requirements and circuit complexity are reduced in
the classical PPA structures. A very low latency additional
circuitry is given in [4]. A new scheme that offers a
reduction in component count and fewer logic levels is
proposed in [5].
 Jackson et al. [6] introduced innovative adder designs that
achieve reduced complexity across all addition stages. A
multiplication algorithm based on redundant binary
representation, applicable to both unsigned and signed
integers, as discussed in [7]. To decrease the power
consumed by the multiplier, an adapted full-adder approach
is employed [8]. Additionally, [9] employed a new

configuration of the Wallace-tree multiplier, incorporating
PPA in the final stage. To compress partial products, three
innovative 4:2-type compressors were suggested and
integrated into multipliers [10].
 Amir Fathi et al. [11] devised ultrahigh-speed
compressors to demonstrate enhanced speed performance
and power-delay product efficiency. In [12], a novel digit-
serial structure for executing the multiplication of three
operands featuring a low-complexity implementation was
achieved by leveraging a newly developed Karatsuba
algorithm [13] which can be used in cryptography
applications.
 In [14], a fresh method for a three-operand multiplier is
given, featuring a basic two-level radix-4 recoding
technique to minimize costs and latency compared to other
techniques. An elliptic curve cryptographic processor that
supports 256-bit point multiplication is proposed in [15].
Montgomery modular multiplier that uses a configurable
carry save adder is proposed to attain higher speed and
significant area-time product improvement is developed in
[16].
 The literature review highlights the necessity for a high-
speed, simple design adder to expedite operations, serving
as a foundational component in various arithmetic circuits.
This study aims to address this particular challenge.

3. Applications and Techniques

Binary three-operand addition is one of the important math
operations and this has been utilized in modular arithmetic
architecture and Linear Congruential Generator based
methods. The use of adder approaches will always appear
in two operand addition. Furthermore, the proposed effort
of this application concentrated on Three Operand Binary
Multiplication. It is necessary to build a circuit with low
area constraints and low delay limits to meet the
requirements of the present trend.
 The numerous arithmetic operations are carried out by a
variety of arithmetic units, which are important building
elements of any processing unit. Multiplication operation is
one of the most essential mathematical procedures. In the
literary analysis of multiplier designs, many different
methods for multiplying are investigated. These algorithms
include the Binary, Booth, Array, Dadda and Wallace tree
multipliers.
 The tree multiplier by Wallace is beneficial in
comparison to other kinds of multipliers. All this
multiplication is carried out with only two operand inputs
here. However, three-operand multiplication is necessary
for a greater number of applications and algorithms. In this
case, it is decided to utilize a Wallace Tree Multiplier for
Three operand Multiplications. To perform this, a Cascaded
Method Architecture is chosen to construct a three-operand
Wallace Tree Multiplication, which is given in Fig.1.

EAI Endorsed Transactions on
Scalable Information Systems

Online First

Design and Comparison of 24-bit Three Operand Adders using Parallel Prefix method for Efficient Computations

3

Wallace Tree Multiplier

A B
8 8

16- Bit PPA

Wallace Tree Multiplier

C

16

8

24-Bit PPA

24

Figure 1. Three Operand Cascaded Multiplier based on
Wallace Tree

The cascaded Multiplier established on Wallace Tree with
three operands is given in Fig 1. It will be created with two
operands for the Wallace Tree Multiplier, making it a
cascaded method. The first Wallace Tree Multiplier will
output 16 bits from a PPA, and when the second Wallace
Tree Multiplier receives these 16 bits as input, it will
perform multi-bit multiplication and the final output is 24
bits from a PPA. This application of three-operand Wallace
tree multiplication may be used in Image Processing, Signal
Processing, Arithmetic operations, microprocessors,
Controller, and so on.

This work suggests a 24-bit three-operand binary
adder method as a way to minimize the complexity of
three-operand-multiplier applications. During
multiplication, the first step is producing partial products,
the function of a Wallace-tree multiplier is similar to any
other multiplier. In the second step of the process, the
Wallace-tree multiplier combines the partial products from
the preceding three rows. After that, the newly formed sum
along with carry, is added to the subsequent row of partial
products. Repetition of this adding procedure is continued
until the completion of the formation of the final items. For
this method of adding rows together, both half and full
adders are used. Therefore, the function that adders perform
in the production of final product terms is a very significant
one.

The functioning of the multiplication is going to be
impacted in some way by the speed of the addition. The
PPA adder structure that was used in the development of
the Wallace-tree multiplier plays a vital part in the method
of enriching the performance of the multiplication
operation. In this particular piece of research, the three-
operand adder is designed using five major PPAs. The
widely used PPAs are - the Kogge-stone, Brent-Kung, Han-
Carlson, Ladner-Fischer and Sklansky. The architecture of
these mentioned PPA is the same; with the primary
differentiator being the arrangement of the prefix network
which can use black and grey cells, and the connections
between them.

3.1. Techniques

To achieve the addition of three operands required by
modular operations, the adder mechanism is detailed in this
part. The adder that uses prefix computation in parallel is a
PPA. This PPA is an efficient circuit and gives the best
performance when compared with the other adders.

Figure 2. Traditional PPA for two operands addition

To find the sum of three binary input operands,
three operands PPA use four steps instead of three steps
as in traditional prefix adders as given in Figure 2. The
intended three-operand adder with four steps is shown in
Figure 3. These structures use full adders in bit-addition
logic, XOR and AND gates, propagate logic, generate
logic, and XOR gates are used in the final sum logic.

Figure 3. Steps involved in Three-Operand Addition

The sequential order of four steps is provided with their
expressions.

Step-1: Addition of three bits :

 Sum’ i = Ai ⨁ Bi ⨁ Ci
Carry i = Ai . Bi + Bi .Ci + Ci .Ai. (1)

EAI Endorsed Transactions on
Scalable Information Systems

Online First

S. Usha and M. Kanthimathi

4

Step-2: Propagate and Generate generation step:

Gen i: 1 =Geni=Sum’i .Carryi-1
Proi:1 = Pro i =Sum’ i ⨁ Carryi-1 ,

 Gen0:0=Gen 0=Sum’0.Cin
 Pro0:0= Pro0=Sum’0⨁ Cin (2)

Step-3: Group Propagate and Generate generation step:

Gen i:j= Geni:k + Proi:k .Genk-1:j

 Pro i:j = Proi:k .Prok-1:j (3)

Step-4: Final Sum step:

Sumi= (Proi⨁ Geni-1:0), Sum0=Pro0, Cout=Genn:0 (4)

 The novel adder method involves the execution of
the addition operation on three n-bit operands in a total of
four separate steps as mentioned in the equations. During
the initial step (bit-addition logic), n full adders are used to
conduct the bit-wise summation of three operands of n-bits.
Each full adder is responsible for computing the sum (Sumi
) and carry (Carry i) outputs for the addition. The logical
equations for calculating the sum (Sumi) and carry (Carry i)
signals are stated in Step 1, and Figure 4 depicts the gates
used in the first step, base logic, final sum logic, and cells
for group generate and propagate. Step 2 depicts the
implementation of Step 1's logical expressions.

Pi Gi-1:0

Si

Gi:k Gk-1:j Pi:k Pk-1:j

Gi:j Pi:j
Gi:j

Gi:k Gk-1:j Pi:k

biCi

Pi Gi

F

biCi ai

Cyi-1 S i

Figure 4. Logic Gate Diagram of bit-addition, base,

sum logic, black and grey cell.

The “sum” (Sumi) output bit from the current active
full adder and the "carry" from the right-most neighbor
(base logic) are combined to form the generate (Geni),
propagate (Proi) bits in the first step. With the following
logical phrase, the Geni and Proi signals can be calculated as
the "squared saltire-cell," where n represents the used
saltire-cells initially.

Geni:i=Geni=Sum’i . Carryi-1
Proi:i=Proi=Sum’i ⨁ Carryi-1 (5)

In the presented adder method, the carry-input which

is given externally, denoted by Cin, is taken into account
while performing the addition of three n-bit inputs. During
the process of calculating Gen0 (Sum'0 • Cin) in the first
saltire-cell of the logic, this extra carry-input signal, which
is denoted by Cin, is used as input to the base step. The next
step is the carry calculation stage, also known as the
"generate and propagate logic" (PG) stage, and it is used to
calculate the carry bit in advance. This stage is a mixture of
grey, and black cells. The expression that computes the
generates Geni: j, propagate Proi: j is given below, which
depicts the gate diagram of a grey and black cells logic.

 Geni:j = Geni:k+Proi:k .Genk-1:j
 Proi:j =Proi:k . Prok-1:j (6)

The number of calculations in the suggested adder is

as given in (log2 n+1), and hence, the latency of the planned
adder is mostly driven by this chain of carry inputs. The last
step is given as sum logic where the “sum (Sumi)” bits are
derived from the generate Geni: j and propagate Proi using
the formula, Sumi = (Proi ⊕ Geni−1:0). The carry output
signal (Cout) is simply retrieved from the Genn:0.

The following example shown in Figure 5 gives the
working of a 3-bit three operand Kogge-stone adder where
the inputs are 4,3 and 7 in decimal with a carry input as 1
and the results are obtained as per the technique used and
Cout is zero for this case.

Figure 5. Block diagram of a 3 bit three operand

Kogge stone PPA

3.2. Proposed 24-Bit Three Operand Adder
Using Kogge-Stone PPA

The Kogge-Stone PPA is particularly useful in high-speed
applications, even though it needs a large amount of space

EAI Endorsed Transactions on
Scalable Information Systems

Online First

Design and Comparison of 24-bit Three Operand Adders using Parallel Prefix method for Efficient Computations

5

and additional power. The structure has a latency that may
be given as log2 n, The number of nodes is [n(log2 n)-n+1].
The plan of this adder will be difficult to understand due to
the high number of connections that are required. Figure 6
shows the construction of 24-bit Three-operand Kogge-
stone adder. This structure has 58 black cells and 23 grey
cells.

F F F F F F

c0 b0 a0cn-1 bn-1 an-1

H H H H H H

CinS 0cy 0S n-3Cy n-1

01234567891011121314151617181920212223n (n-1)

C0C1C2C3C4C5C6C7C8C9C10C11C12C13C14C15C16C17C18C19C20C21C22C23n (n-1)

S0S1S2SnCout

P0P1P2Pn

Figure 6. Structure of Proposed Three Operand
24-bit Kogge Stone Adder

3.3. Proposed 24-Bit Three Operand Adder
Using Brent Kung PPA

Figure 7 depicts the structure of the Proposed Three
Operand 24-bit Brent Kung Adder. This adder maintains
the maximum depth while having fewer computing nodes,
which accounts for the higher delay. When compared to the
complexity of the interconnections in a Kogge-stone adder,
the grey and black logic cells are less. The latency of the
structure may be expressed as [2(log2 n)-2], while the
number of calculation nodes is [2n-2-log2 n].

F F F F F F

c0 b0 a0cn-1 bn-1 an-1

H H H H H H

CinS 0cy 0S n-3Cy n-1

01234567891011121314151617181920212223n (n-1)

C0C1C2C3C4C5C6C7C8C9C10C11C12C13C14C15C16C17C18C19C20C21C22C23n (n-1)

S0S1S2SnCout

P0P1P2Pn

Figure 7. Structure of Proposed Three Operand
24-bit Brent Kung Adder

This adder comprises 20 and 23 black and grey cells

respectively indicating that its overall area is much less than
that of Kogge stone and Sklansky adders. When compared
with the Kogge-stone adder, this adder's structure is far
more straightforward. Also, the amount of fan out for this
structure is much reduced in comparison to the Sklansky
adder.

3.4. Proposed 24-Bit Three Operand Adder
Using Sklansky PPA

The layout of a carry prefix network has a low logic depth,
but this comes at the expense of a somewhat large fan out
for some of the compute nodes. The structure has n/2 log2 n
computation nodes, which results in a latency that may be
expressed as log2n. Along the critical route, the adder fan
outgrows66 dramatically from the inputs to the outputs,
which causes a significant rise in the amount of delay. The
adder’s performance deteriorates as the bits grow. Figure 8
illustrates the construction of a 24-bit Three Operand
Sklansky adder, which is comprised of 29 and 23 black and
grey cells. This indicates that its size is also smaller
compared with a Kogge-stone adder; nevertheless, the
electrical effort of the compute node increases, thereby
increasing the adder's latency.

F F F F F F

c0 b0 a0cn-1 bn-1 an-1

H H H H H H

CinS 0cy 0S n-3Cy n-1

01234567891011121314151617181920212223n (n-1)

C0C1C2C3C4C5C6C7C8C9C10C11C12C13C14C15C16C17C18C19C20C21C22C23n (n-1)

0

S0S1S2SnCout

P0P1P2Pn

Figure 8. Structure of Proposed Three Operand

24-bit Sklansky Adder

3.5. Proposed 24-Bit Three Operand Ladner
Fischer PPA

The Ladner Fischer adder design was constructed from the
design of Sklansky adder, whose delay is (log 2 n)+1. The
number of nodes is [(n/2)log2 n]. Figure 9 illustrates the
construction of a 24-bit Ladner-Fischer type three operand
adder which is similar to that of the Three Operand Brent-
Kung adder has 20 and 23 black and grey cells.

F F F F F F

c0 b0 a0cn-1 bn-1 an-1

H H H H H H

CinS 0cy 0S n-3Cy n-1

01234567891011121314151617181920212223n (n-1)

C0C1C2C3C4C5C6C7C8C9C10C11C12C13C14C15C16C17C18C19C20C21C22C23n (n-1)

S0S1S2SnCout

P0P1P2Pn

Figure 9. Structure of Proposed Three Operand 24-bit
Ladner Fischer Adder

EAI Endorsed Transactions on
Scalable Information Systems

Online First

S. Usha and M. Kanthimathi

6

3.6. Proposed 24-Bit Three Operand Adder
using Han Carlson PPA

The blend of Kogge-stone and Brent-Kung adder is the
Han-carlson adder which is a hybrid design. The second
block is divided into five phases, like the Brent Kung Adder
and the levels that follow it resemble a Kogge-Stone Adder.
The latency of the structure may be expressed as (log2 n)+1,
and it has computation nodes that are [(n/2)log2 n]. Figure
10 depicts the construction of a 24-bit three-operand Han
Carlson adder. It is made up of 29 and 23 black and grey
cells respectively, which suggests that its size and
interlinked complexity are lower than that of a Kogge-stone
adder. However, its radix is higher, resulting in a longer
delay.

F F F F F F

c0 b0 a0cn-1 bn-1 an-1

H H H H H H

CinS 0cy 0S n-3Cy n-1

01234567891011121314151617181920212223n (n-1)

C0C1C2C3C4C5C6C7C8C9C10C11C12C13C14C15C16C17C18C19C20C21C22C23n (n-1)

S0S1S2SnCout

P0P1P2Pn

Figure 10. Structure of Proposed Three Operand
24-bit Han Carlson Adder

4. Results and Implementation

In this study, five different three-operand PPA structures
are constructed with input sizes of 24 bits using Verilog
HDL, Figure 9 displays the simulation for the
recommended three-operand-adder and Register Transfer
Level (RTL) Schematic of 24-bit Three-Operand Han-
Carlson PPA is depicted in Figure 11. The RTL schematic
of the 24-bit Three operand Han Carlson adder is shown in
Figure 12.

Figure 11. Simulation result of 24-bit Three Operand
PPA

Figure 12. 24-bit Three-Operand Han-Carlson PPAs

 Register Transfer Level Schematic

The outputs of the three-operand PPA synthesis are
compared, and the results are given in Table 1 in terms of
size (in the number of Lookup tables), delay (in
nanoseconds), power (in watts), Fan out, and also in the bar
chart as shown in Figure 13. It is found that the operand
24bit Sklansky PPA has lower latency than other adders.
Also, the number of Lookup tables occupied is minimized
than the existing structures. The delay is 15% and the size
occupied is 60% less in the Sklansky PPA when compared
with the other adders. So, in applications that require a
faster operation and area optimization that involves the 24-
bit addition of three operands, Sklansky PPA is preferred
over other 24-bit three-operand adders. The fanout of the
Sklansky PPA is also higher.

Table 1. Comparisons of 24-Bit Three Operand PPA

Synthesized Results using Xilinx Vertex-5 FPGA

 Comparisons of 24-bit Three Operand Parallel Prefix Addition

Kogge-
Stone

Brent-
Kung

Sklansky Ladner-
Fischer

Han-
Carlson

LUT 113 80 77 80 83
Occupied
Slice
Register

37 22 24 23 24

IOB 97 97 97 97 97
Delay (ns) 7.676 8.868 7.531 8.182 8.366
Power(W) 3.516 3.516 3.516 3.516 3.516
Fanout 1.56 1.39 1.55 1.43 1.39

Figure 13. Performance comparison of five different
24-bit Three Operand PPA

5. Conclusion and Future Work

A high-speed efficient adder approach and Very Large-
Scale Integrated design of it were proposed in this study to
execute addition and to facilitate calculations in residual
arithmetic efficiently, which was utilized in applications
such as PRBG and cryptography encryption. To calculate
the sum of three operands for a larger bit width, the

EAI Endorsed Transactions on
Scalable Information Systems

Online First

Design and Comparison of 24-bit Three Operand Adders using Parallel Prefix method for Efficient Computations

7

suggested three-operand adder method was a PPA-based
three-operand adder that made use of four-stage structures.
Since the adder was the limiting element in digital signal
processing applications and cryptographic implementations,
an optimized carry path could be enabled by these PPAs
based on three operand adders.

The novel aspect of this recommended design was
the reduction of running time and size in the propagate and
generate logic and the first stage of the bit-addition step,
which ultimately resulted in lessening of the overall path
delay. These suggested architectures were built on Xilinx
for functional validation and synthesized using Vertex 5
FPGA. In addition, it was reported that the Sklansky PPA
took up less space, used less power and had a reduced delay
compared with other three-operand adders. The future
research possibilities of this study are to develop 32, 64 or
higher-order three-operand adders and to design a three-
operand multiplier that can be used for image multiplication
and provide hardware security systems in IoT applications.

References

[1] Amit, K, Rakesh, P. High-Speed Area Efficient VLSI
Architecture of Three Operand Binary Adder. IEEE
Transactions on Circuits and Systems. 2020; Vol. 67; pp.
3944-3953.

[2] Ravi, P, Mahima, G. Design and Implementation of
Parallel prefix adder for improving the performance of
Carry Lookahead adder. International Journal of
Engineering Research and Technology. 2015: Vol. 04:
pp.566-571.

[3] Chandrika, B, Poorna, K. Implementation and Estimation
of Delay, Power and Area for Parallel Prefix Adders.
International Journal for Modern Trends in Science and
Technology. 2016: Vol. 02, pp. 41-45.

[4] Han, T, Carlson, A. Fast area-efficient VLSI adders.
IEEE 8th Symp. Computer Arithmetic. (ARITH). 1987:
pp. 49–56.

[5] Ling, H.: High-speed binary adder. IBM J. Res.
Develop. 1981; Vol. 25, pp. 156–166 .

[6] Jackson, R, Talwar, S.: High-speed binary addition.
Conf. Rec. 38th Asilomar Conf. Signals, Syst. Computer.
2004; Vol. 2, pp. 1350–1353.

[7] Takagi, Yajima.: High-Speed VLSI Multiplication
Algorithm with a Redundant Binary Addition Tree.
IEEE Transactions on Computers. 1985; Vol. C-34, pp.
789-796.

[8] Kokila, B, Nithish, K.: Low Power Wallace Tree
Multiplier Using Modified Full Adder. 3rd International
Conference of Signal Processing. 2015; pp.1-4 .

[9] Yamini, D, Krishna, S.: Design and analysis of High-
Speed Wallace Tree multiplier using parallel prefix adders
for VLSI Circuit Designs. International Conference on
Computing, Communication and Networking Technology.
2020; pp.1-6.

[10] Pei, Haoran, Yi, Zhou, Hang, He, Yajuan.: Design of
 ultra-low power consumption approximate 4-2
 compressors based on the compensation characteristic.
 IEEE Transactions on Circuits and Systems. 2020; Vol. 1,
 pp. 1–10.

[11] Amir, F, Behbood, M, Sarkis, A.: Very Fast, High
Performance 5-2 and 7-2 Compressors in CMOS
Process for Rapid Parallel Accumulations. IEEE
Transactions on Very Large-Scale Integration (VLSI)
Systems, 2020; Vol. 28, pp.1-10.

[12] Chiou, L, Shyan, M, Lee, Y.: New Digit Serial Three
Operand Multiplier over Binary Extension Fields for
High-Performance Applications. IEEE International
Conference on Computational Intelligence and
Applications. pp.498-502 (2017).

[13] Chiou, L, Chia, F, Shyan, M, Lee, Y.: Efficient
Implementation of Karatsuba Algorithm Based Three
Operand Multiplication Over Binary Extension Field.
IEEE Access 2018;Vol.6, pp.38234-38242.

[14] McIlhenny, R, Ercegovac, D.: On the implementation of a
three-operand multiplier. Thirty-First Asilomar
Conference on Signals, Systems and Computers. 1997;
Vol. 2, pp. 1168-1172.

[15] Islam, M, Hossain, M, Hasan, K, Shahjalal, M, Jang, M.:
FPGA implementation of a high-speed area-efficient
processor for elliptic curve point multiplication over a
prime field. IEEE Access, 2019; Vol. 7, pp. 178811–
178826.

[16] Kuang, S, Wu, K, Lu, R.: Low-cost high-performance
VLSI architecture for Montgomery modular
multiplication. IEEE Transactions on Very Large-
Scale Integration (VLSI) Systems. 2016; Vol. 24, pp.
434–443.

EAI Endorsed Transactions on
Scalable Information Systems

Online First

