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Abstract 

Binary Three-operand adder serves as a foundation block used within security and Pseudo Random-Bit Generator (PRBG) 
systems. Binary Three-operand adder was designed using Carry Save Adder but this consumes more delay.  Therefore, a 
Parallel Prefix Adder (PPA) method can be utilized for faster operation. The canonical types of PPA result in a lesser path 
delay of approximately   O (log2 n). These adders can be designed for 8, 16, 24 or n bits. But this work is focused on 
developing a 24-bit three-operand adder that takes three 24-bit binary numbers as input and generates a 24-bit sum output 
and a carry using five different PPA methods The proposed summing circuits are operationalized with Hardware-
Description-Language (HDL) using Verilog, and then subjected to synthesis using Field -Programmable Gate- Array 
(FPGA) Vertex 5. On comparing the proposed adders, it shows that the delay and the size occupied are significantly less in 
the Sklansky PPA. These faster three-operand adders can be utilized for three-operand multiplication in image processing 
applications and Internet of Things (IoT) security systems. 
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1. Introduction

Developing cryptographic algorithms in hardware is crucial 
to attaining optimal system achievement and ensuring the 
security of systems. Many cryptographic algorithms rely on 
modular arithmetic for various math operations like modulo 
exponentiation, residue addition, and modular product. 
Therefore, the efficacy of cryptanalysis methods depends 
on how well these congruential arithmetic operations are 
implemented. One notable approach for efficiently 
performing residue multiplication operations is the 
Montgomery method, which heavily depends on a three-
operand binary addition technique [1]. 

This algorithm has shown outstanding efficiency in 
executing these crucial cryptographic operations. At the 
moment, technological progress is taking place at an 
exceptionally rapid speed over a very short period. The 

circuits that are now being designed include billions of 
components yet need very little space, move very quickly, 
and use very little power. Therefore, considering area, 
speed, and power is essential to designing every circuit. It 
is necessary to build a circuit with low space limitations 
and low delay limits to meet the requirements of the 
present trend.  

The arithmetic units are the primary building elements 
of any processing unit, and they are responsible for 
carrying out a variety of arithmetic operations. The 
addition process is particularly crucial in this context 
among all the mathematical operations. In the literature 
survey of adder designs, various adder algorithms starting 
from Ripple Carry Adder to Approximate Adder have 
been researched. All of these additions will only be able 
to handle a total of two operand inputs; but to support 
three operand inputs, there is a need to recreate the 
building block as a component with support for the carry 
chain approach. 
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Either one adder that handles three inputs or two adders 
that handle two binary inputs each may be used to perform 
the addition of three operands. When it comes to adding 
three operands used in cryptography algorithms and various 
bit-generation approaches, the PPA is an efficient 
mechanism pertaining to size and speed. To minimize 
latency on the critical path, like a two-operand PPA, the 
PPA algorithm can also be utilized for the summation of 
three-operand inputs. It not only makes a difference in O 
(log2 n) in terms of the delay on the critical path, but it also 
makes a difference in the order of O in terms of the area (n 
log2 n). 

As a result, it is vital to build an effective structure in a 
Very Large Integrated Circuit designed for the rapid three-
operand addition of binary numbers with the fewest gates 
required by the hardware. Therefore, in this paper, a new 
faster, size optimized PPA technique is proposed for three 
operands binary addition. For analyzing PPA, in terms of 
performance, five different approaches, utilizing 
conventional PPA including Sklansky PPA were employed 
for adding three 24-bit numbers.    

To achieve the addition of three operands, a pre-compute 
of the bitwise addition is done and then carry-prefix 
computing logic is performed. This technique consumes a 
significant power, but this will take an amount less size 
while simultaneously cutting down on the propagation 
delay when compared to the PPA two-operand adder. 
Besides, the recommended adder structure is enacted using 
the Verilog-HDL, followed by synthesis on Vertex 5 
FPGA, and finally, it is implemented on Xilinx for 
functional validation.     

The work is structured as stated: Section 2 provides a 
review of the literature and the developments made 
previously are presented. The applications and techniques 
of the suggested 24-bit three-input adders of various types 
are described in Section 3. Validation of the results and 
implementation is presented in Section 4. Finally, Section 5 
concludes the work.  

2. Literature Review 

Ravi Payal et al. [2] introduced a carry-look-ahead adder 
design where the generation of a carry network is structured 
using prefix trees, resulting in the development of two 
distinct types of PPA given by Kogge-Stone and Ladner-
Fischer. This adder is widely employed in industries for 
meeting performance targets. In [3], the authors stated that 
the area requirements and circuit complexity are reduced in 
the classical PPA structures. A very low latency additional 
circuitry is given in [4]. A new scheme that offers a 
reduction in component count and fewer logic levels is 
proposed in [5]. 
  Jackson et al. [6] introduced innovative adder designs that 
achieve reduced complexity across all addition stages. A 
multiplication algorithm based on redundant binary 
representation, applicable to both unsigned and signed 
integers, as discussed in [7]. To decrease the power 
consumed by the multiplier, an adapted full-adder approach 
is employed [8]. Additionally, [9] employed a new 

configuration of the Wallace-tree multiplier, incorporating 
PPA in the final stage. To compress partial products, three 
innovative 4:2-type compressors were suggested and 
integrated into multipliers [10].  
  Amir Fathi et al. [11] devised ultrahigh-speed 
compressors to demonstrate enhanced speed performance 
and power-delay product efficiency. In [12], a novel digit-
serial structure for executing the multiplication of three 
operands featuring a low-complexity implementation was 
achieved by leveraging a newly developed Karatsuba 
algorithm [13] which can be used in cryptography 
applications.   
  In [14], a fresh method for a three-operand multiplier is 
given, featuring a basic two-level radix-4 recoding 
technique to minimize costs and latency compared to other 
techniques. An elliptic curve cryptographic processor that 
supports 256-bit point multiplication is proposed in [15]. 
Montgomery modular multiplier that uses a configurable 
carry save adder is proposed to attain higher speed and 
significant area-time product improvement is developed in 
[16]. 
   The literature review highlights the necessity for a high-
speed, simple design adder to expedite operations, serving 
as a foundational component in various arithmetic circuits. 
This study aims to address this particular challenge. 

3. Applications and Techniques 

Binary three-operand addition is one of the important math 
operations and this has been utilized in modular arithmetic 
architecture and Linear Congruential Generator based 
methods. The use of adder approaches will always appear 
in two operand addition. Furthermore, the proposed effort 
of this application concentrated on Three Operand Binary 
Multiplication. It is necessary to build a circuit with low 
area constraints and low delay limits to meet the 
requirements of the present trend.  
      The numerous arithmetic operations are carried out by a 
variety of arithmetic units, which are important building 
elements of any processing unit. Multiplication operation is 
one of the most essential mathematical procedures. In the 
literary analysis of multiplier designs, many different 
methods for multiplying are investigated. These algorithms 
include the Binary, Booth, Array, Dadda and Wallace tree 
multipliers.  
        The tree multiplier by Wallace is beneficial in 
comparison to other kinds of multipliers. All this 
multiplication is carried out with only two operand inputs 
here. However, three-operand multiplication is necessary 
for a greater number of applications and algorithms. In this 
case, it is decided to utilize a Wallace Tree Multiplier for 
Three operand Multiplications. To perform this, a Cascaded 
Method Architecture is chosen to construct a three-operand 
Wallace Tree Multiplication, which is given in Fig.1. 
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Figure 1. Three Operand Cascaded Multiplier based on 
Wallace Tree 

The cascaded Multiplier established on Wallace Tree with 
three operands is given in Fig 1. It will be created with two 
operands for the Wallace Tree Multiplier, making it a 
cascaded method. The first Wallace Tree Multiplier will 
output 16 bits from a PPA, and when the second Wallace 
Tree Multiplier receives these 16 bits as input, it will 
perform multi-bit multiplication and the final output is 24 
bits from a PPA. This application of three-operand Wallace 
tree multiplication may be used in Image Processing, Signal 
Processing, Arithmetic operations, microprocessors, 
Controller, and so on.  

This work suggests a 24-bit three-operand binary 
adder method as a way to minimize the complexity of 
three-operand-multiplier applications. During 
multiplication, the first step is producing partial products, 
the function of a Wallace-tree multiplier is similar to any 
other multiplier. In the second step of the process, the 
Wallace-tree multiplier combines the partial products from 
the preceding three rows. After that, the newly formed sum 
along with carry, is added to the subsequent row of partial 
products. Repetition of this adding procedure is continued 
until the completion of the formation of the final items. For 
this method of adding rows together, both half and full 
adders are used. Therefore, the function that adders perform 
in the production of final product terms is a very significant 
one.  

The functioning of the multiplication is going to be 
impacted in some way by the speed of the addition. The 
PPA adder structure that was used in the development of 
the Wallace-tree multiplier plays a vital part in the method 
of enriching the performance of the multiplication 
operation. In this particular piece of research, the three-
operand adder is designed using five major PPAs. The 
widely used PPAs are - the Kogge-stone, Brent-Kung, Han-
Carlson, Ladner-Fischer and Sklansky. The architecture of 
these mentioned PPA is the same; with the primary 
differentiator being the arrangement of the prefix network 
which can use black and grey cells, and the connections 
between them.  

3.1. Techniques 

To achieve the addition of three operands required by 
modular operations, the adder mechanism is detailed in this 
part. The adder that uses prefix computation in parallel is a 
PPA. This PPA is an efficient circuit and gives the best 
performance when compared with the other adders. 

 
 

Figure 2. Traditional PPA for two operands addition 
 

To find the sum of three binary input operands, 
three operands PPA use four steps instead of three steps 
as in traditional prefix adders as given in Figure 2. The 
intended three-operand adder with four steps is shown in 
Figure 3. These structures use full adders in bit-addition 
logic, XOR and AND gates, propagate logic, generate 
logic, and XOR gates are used in the final sum logic. 

 

Figure 3. Steps involved in Three-Operand Addition 
 

The sequential order of four steps is provided with their 
expressions. 

 
 

Step-1: Addition of three bits : 
      
 Sum’ i = Ai ⨁ Bi ⨁ Ci  
Carry i = Ai . Bi + Bi .Ci + Ci .Ai.                            (1)    
 

EAI Endorsed Transactions on 
Scalable Information Systems 

Online First



S. Usha and M. Kanthimathi  
 
 

4 

             
Step-2: Propagate and Generate generation step:  

Gen i: 1 =Geni=Sum’i .Carryi-1 
Proi:1 = Pro i =Sum’ i ⨁ Carryi-1 ,    

  Gen0:0=Gen 0=Sum’0.Cin 
     Pro0:0= Pro0=Sum’0⨁ Cin                                          (2) 

 
Step-3: Group Propagate and Generate generation step:  

 
Gen i:j= Geni:k + Proi:k .Genk-1:j 

                      Pro i:j = Proi:k .Prok-1:j                                                   (3)                                                  
 

Step-4: Final Sum step:                                                 
 

Sumi= (Proi⨁ Geni-1:0), Sum0=Pro0,  Cout=Genn:0     (4) 
      

 The novel adder method involves the execution of 
the addition operation on three n-bit operands in a total of 
four separate steps as mentioned in the equations. During 
the initial step (bit-addition logic), n full adders are used to 
conduct the bit-wise summation of three operands of n-bits. 
Each full adder is responsible for computing the sum (Sumi 
) and carry (Carry i) outputs for the addition. The logical 
equations for calculating the sum (Sumi) and carry (Carry i) 
signals are stated in Step 1, and Figure 4 depicts the gates 
used in the first step, base logic, final sum logic, and cells 
for group generate and propagate. Step 2 depicts the 
implementation of Step 1's logical expressions. 
 

Pi Gi-1:0

Si

Gi:k Gk-1:j Pi:k Pk-1:j

Gi:j Pi:j
Gi:j

Gi:k Gk-1:j Pi:k

biCi

Pi Gi

F

biCi ai

Cyi-1 S i

 
Figure 4. Logic Gate Diagram of bit-addition, base, 

sum logic, black and grey cell. 

The “sum” (Sumi) output bit from the current active 
full adder and the "carry" from the right-most neighbor 
(base logic) are combined to form the generate (Geni), 
propagate (Proi) bits in the first step. With the following 
logical phrase, the Geni and Proi signals can be calculated as 
the "squared saltire-cell," where n represents the used 
saltire-cells initially.  

                                                   
Geni:i=Geni=Sum’i . Carryi-1             
Proi:i=Proi=Sum’i ⨁ Carryi-1                               (5) 

 

 
 
In the presented adder method, the carry-input which 

is given externally, denoted by Cin, is taken into account 
while performing the addition of three n-bit inputs. During 
the process of calculating Gen0 (Sum'0 • Cin) in the first 
saltire-cell of the logic, this extra carry-input signal, which 
is denoted by Cin, is used as input to the base step. The next 
step is the carry calculation stage, also known as the 
"generate and propagate logic" (PG) stage, and it is used to 
calculate the carry bit in advance. This stage is a mixture of 
grey, and black cells. The expression that computes the 
generates Geni: j, propagate Proi: j is given below, which 
depicts the gate diagram of a grey and black cells logic. 
                                                                        
            Geni:j = Geni:k+Proi:k .Genk-1:j 
              Proi:j =Proi:k . Prok-1:j                                           (6) 

 
The number of calculations in the suggested adder is 

as given in (log2 n+1), and hence, the latency of the planned 
adder is mostly driven by this chain of carry inputs. The last 
step is given as sum logic where the “sum (Sumi)” bits are 
derived from the generate Geni: j and propagate Proi using 
the formula, Sumi = (Proi ⊕ Geni−1:0). The carry output 
signal (Cout) is simply retrieved from the Genn:0. 

The following example shown in Figure 5 gives the 
working of a 3-bit three operand Kogge-stone adder where 
the inputs are 4,3 and 7 in decimal with a carry input as 1 
and the results are obtained as per the technique used and 
Cout is zero for this case. 

 

 
Figure 5.  Block diagram of a 3 bit three operand 

Kogge stone PPA 

3.2. Proposed 24-Bit Three Operand Adder 
Using Kogge-Stone PPA 

The Kogge-Stone PPA is particularly useful in high-speed 
applications, even though it needs a large amount of space 
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and additional power. The structure has a latency that may 
be given as log2 n, The number of nodes is [n(log2 n)-n+1]. 
The plan of this adder will be difficult to understand due to 
the high number of connections that are required. Figure 6 
shows the construction of 24-bit Three-operand Kogge-
stone adder. This structure has 58 black cells and 23 grey 
cells. 

 

F F F F F F

c0 b0 a0cn-1 bn-1 an-1

H H H H H H

CinS 0cy 0S n-3Cy n-1

01234567891011121314151617181920212223n (n-1)

C0C1C2C3C4C5C6C7C8C9C10C11C12C13C14C15C16C17C18C19C20C21C22C23n (n-1)

S0S1S2SnCout

P0P1P2Pn

  
 

Figure 6. Structure of Proposed Three Operand  
24-bit Kogge Stone Adder 

3.3. Proposed 24-Bit Three Operand Adder 
Using Brent Kung PPA 

Figure 7 depicts the structure of the Proposed Three 
Operand 24-bit Brent Kung Adder. This adder maintains 
the maximum depth while having fewer computing nodes, 
which accounts for the higher delay. When compared to the 
complexity of the interconnections in a Kogge-stone adder, 
the grey and black logic cells are less. The latency of the 
structure may be expressed as [2(log2 n)-2], while the 
number of calculation nodes is [2n-2-log2 n].  

 
F F F F F F

c0 b0 a0cn-1 bn-1 an-1

H H H H H H

CinS 0cy 0S n-3Cy n-1

01234567891011121314151617181920212223n (n-1)

C0C1C2C3C4C5C6C7C8C9C10C11C12C13C14C15C16C17C18C19C20C21C22C23n (n-1)

S0S1S2SnCout

P0P1P2Pn

 
 

Figure 7. Structure of Proposed Three Operand  
24-bit Brent Kung Adder 

 
This adder comprises 20 and 23 black and grey cells 

respectively indicating that its overall area is much less than 
that of Kogge stone and Sklansky adders. When compared 
with the Kogge-stone adder, this adder's structure is far 
more straightforward. Also, the amount of fan out for this 
structure is much reduced in comparison to the Sklansky 
adder. 

3.4. Proposed 24-Bit Three Operand Adder 
Using Sklansky PPA 

The layout of a carry prefix network has a low logic depth, 
but this comes at the expense of a somewhat large fan out 
for some of the compute nodes. The structure has n/2 log2 n 
computation nodes, which results in a latency that may be 
expressed as log2n. Along the critical route, the adder fan 
outgrows66 dramatically from the inputs to the outputs, 
which causes a significant rise in the amount of delay. The 
adder’s performance deteriorates as the bits grow. Figure 8 
illustrates the construction of a 24-bit Three Operand 
Sklansky adder, which is comprised of 29 and 23 black and 
grey cells. This indicates that its size is also smaller 
compared with a Kogge-stone adder; nevertheless, the 
electrical effort of the compute node increases, thereby 
increasing the adder's latency. 

     

F F F F F F

c0 b0 a0cn-1 bn-1 an-1

H H H H H H

CinS 0cy 0S n-3Cy n-1

01234567891011121314151617181920212223n (n-1)

C0C1C2C3C4C5C6C7C8C9C10C11C12C13C14C15C16C17C18C19C20C21C22C23n (n-1)

0

S0S1S2SnCout

P0P1P2Pn

 
Figure 8. Structure of Proposed Three Operand  

24-bit Sklansky Adder 

3.5. Proposed 24-Bit Three Operand Ladner 
Fischer PPA 

The Ladner Fischer adder design was constructed from the 
design of Sklansky adder, whose delay is (log 2 n)+1. The 
number of nodes is [(n/2)log2 n]. Figure 9 illustrates the 
construction of a 24-bit Ladner-Fischer type three operand 
adder which is similar to that of the Three Operand Brent-
Kung adder has 20 and 23 black and grey cells. 
 

F F F F F F

c0 b0 a0cn-1 bn-1 an-1

H H H H H H

CinS 0cy 0S n-3Cy n-1

01234567891011121314151617181920212223n (n-1)

C0C1C2C3C4C5C6C7C8C9C10C11C12C13C14C15C16C17C18C19C20C21C22C23n (n-1)
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P0P1P2Pn

 
 

Figure 9. Structure of Proposed Three Operand 24-bit 
Ladner Fischer Adder 
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3.6. Proposed 24-Bit Three Operand Adder 
using Han Carlson PPA 

The blend of Kogge-stone and Brent-Kung adder is the 
Han-carlson adder which is a hybrid design. The second 
block is divided into five phases, like the Brent Kung Adder 
and the levels that follow it resemble a Kogge-Stone Adder. 
The latency of the structure may be expressed as (log2 n)+1, 
and it has computation nodes that are [(n/2)log2 n]. Figure 
10 depicts the construction of a 24-bit three-operand Han 
Carlson adder. It is made up of 29 and 23 black and grey 
cells respectively, which suggests that its size and 
interlinked complexity are lower than that of a Kogge-stone  
adder. However, its radix is higher, resulting in a longer 
delay. 

 
F F F F F F

c0 b0 a0cn-1 bn-1 an-1

H H H H H H

CinS 0cy 0S n-3Cy n-1

01234567891011121314151617181920212223n (n-1)

C0C1C2C3C4C5C6C7C8C9C10C11C12C13C14C15C16C17C18C19C20C21C22C23n (n-1)

S0S1S2SnCout

P0P1P2Pn

 
 

Figure 10. Structure of Proposed Three Operand  
24-bit Han Carlson Adder 

 
4.   Results and Implementation 
 
In this study, five different three-operand PPA structures 
are constructed with input sizes of 24 bits using Verilog 
HDL, Figure 9 displays the simulation for the 
recommended three-operand-adder and Register Transfer 
Level (RTL) Schematic of 24-bit Three-Operand Han-
Carlson PPA is depicted in Figure 11. The RTL schematic 
of the 24-bit Three operand Han Carlson adder is shown in 
Figure 12.  
 

 
 

Figure 11. Simulation result of 24-bit Three Operand 
PPA 

 
 

 
Figure 12. 24-bit Three-Operand Han-Carlson PPAs   

    Register Transfer Level Schematic 
 

The outputs of the three-operand PPA synthesis are 
compared, and the results are given in Table 1 in terms of 
size (in the number of Lookup tables), delay (in 
nanoseconds), power (in watts), Fan out, and also in the bar 
chart as shown in Figure 13. It is found that the operand 
24bit Sklansky PPA has lower latency than other adders. 
Also, the number of Lookup tables occupied is minimized 
than the existing structures. The delay is 15% and the size 
occupied is 60% less in the Sklansky PPA when compared 
with the other adders. So, in applications that require a 
faster operation and area optimization that involves the 24-
bit addition of three operands, Sklansky PPA is preferred 
over other 24-bit three-operand adders. The fanout of the 
Sklansky PPA is also higher.  

 
Table 1. Comparisons of 24-Bit Three Operand PPA 

Synthesized Results using Xilinx Vertex-5 FPGA 
 
 Comparisons of 24-bit Three Operand Parallel Prefix Addition 

Kogge-
Stone  

Brent-
Kung  

Sklansky  Ladner-
Fischer  

Han-
Carlson  

LUT 113 80 77 80 83 
Occupied 
Slice 
Register 

37 22 24 23 24 

IOB 97 97 97 97 97 
Delay (ns) 7.676 8.868 7.531 8.182 8.366 
Power(W) 3.516 3.516 3.516 3.516 3.516 
Fanout 1.56 1.39 1.55 1.43 1.39 

 

 
 

Figure 13. Performance comparison of five different 
24-bit Three Operand PPA 

 
 
5.   Conclusion and Future Work 
 
A high-speed efficient adder approach and Very Large-
Scale Integrated design of it were proposed in this study to 
execute addition and to facilitate calculations in residual 
arithmetic efficiently, which was utilized in applications 
such as PRBG and cryptography encryption. To calculate 
the sum of three operands for a larger bit width, the 
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suggested three-operand adder method was a PPA-based 
three-operand adder that made use of four-stage structures. 
Since the adder was the limiting element in digital signal 
processing applications and cryptographic implementations, 
an optimized carry path could be enabled by these PPAs 
based on three operand adders.  

The novel aspect of this recommended design was 
the reduction of running time and size in the propagate and 
generate logic and the first stage of the bit-addition step, 
which ultimately resulted in lessening of the overall path 
delay. These suggested architectures were built on Xilinx 
for functional validation and synthesized using Vertex 5 
FPGA. In addition, it was reported that the Sklansky PPA 
took up less space, used less power and had a reduced delay 
compared with other three-operand adders. The future 
research possibilities of this study are to develop 32, 64 or 
higher-order three-operand adders and to design a three-
operand multiplier that can be used for image multiplication 
and provide hardware security systems in IoT applications.  
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