
EAI Endorsed Transactions
on Scalable Information Systems Research Article

E-GVD: Efficient Software Vulnerability Detection
Techniques Based on Graph Neural Network

Haiye Wang2, Zhiguo Qu1,2,∗ and Le Sun1,2

1Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of Information
Science and Technology, Nanjing, 210044, Jiangsu, China
2School of Computer Science, Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu,
China

Abstract

INTRODUCTION: Vulnerability detection is crucial for preventing severe security incidents like hacker
attacks, data breaches, and network paralysis. Traditional methods, however, face challenges such as low
efficiency and insufficient detail in identifying code vulnerabilities.
OBJECTIVES: This paper introduces E-GVD, an advanced method for source code vulnerability detection,
aiming to address the limitations of existing methods. The objective is to enhance the accuracy of function-
level vulnerability detection and provide detailed, understandable insights into the vulnerabilities.
METHODS: E-GVD combines Graph Neural Networks (GNNs), which are adept at handling graph-structured
data, with residual connections and advanced Programming Language (PL) pre-trained models.
RESULTS: Experiments conducted on the real-world vulnerability dataset CodeXGLUE show that E-GVD
significantly outperforms existing baseline methods in detecting vulnerabilities. It achieves a maximum
accuracy gain of 4.98%, indicating its effectiveness over traditional methods.
CONCLUSION: E-GVD not only improves the accuracy of vulnerability detection but also contributes by
providing fine-grained explanations. These explanations are made possible through an interpretable Machine
Learning (ML) model, which aids developers in quickly and efficiently repairing vulnerabilities, thereby
enhancing overall software security.

Received on 07 February 2024; accepted on 20 March 2024; published on 21 March 2024

Keywords: vulnerability detection, graph neural network, pre-trained model, interpretable machine learning

Copyright © 2024 H. Wang et al., licensed to EAI. This is an open access article distributed under the terms of the CC
BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any
medium so long as the original work is properly cited.

doi:10.4108/eetsis.5056

1. Introduction
Cyberspace security is increasingly becoming a focal
point of global concern, with a burgeoning body of
research emerging to tackle cyber threats [1–4]. In
recent years, the surge in software vulnerabilities has
significantly impacted software development and main-
tenance. To combat this, machine learning (ML) [5]
and deep learning (DL) [6] have been applied to vul-
nerability detection, treating it as a binary classifica-
tion task. Traditional methods depended on manual
feature extraction, which is inefficient for the con-
stantly evolving code libraries. In contrast, DL, espe-
cially graph-based DL techniques using graph neural

∗Corresponding author. Email: 002359@nuist.edu.cn

networks (GNNs), has shown promise by learning from
code structures to detect vulnerabilities. However, these
techniques still face challenges in the preprocessing
of source code and in providing detailed, actionable
insights. The high heterogeneity and dynamism of code
require complex and dynamic preprocessing processes.
This not only increases the workload before model
training but may also affect the model generalizability
and accuracy. Moreover, although existing technologies
can identify potential vulnerabilities, they rarely pro-
vide sufficient information to explain the specific rea-
sons behind the vulnerabilities or offer targeted repair
suggestions, limiting their practical utility in the actual
development process.

To overcome these limitations, we introduce E-GVD,
an advanced GNN-based methodology that interprets

1
EAI Endorsed Transactions

on Scalable Information Systems |
| Volume 11 | Issue 6 | 2024 |

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:<002359@nuist.edu.cn>

H. Wang, Z. Qu and L. Sun

programming languages by converting source code into
graph structures, with tokens as nodes and their rela-
tions as edges. Utilizing the GraphCodeBERT model for
code representation and graph convolutional network
(GCN) layers for deep learning, E-GVD enhances vul-
nerability detection. It employs various pooling strate-
gies for graph embedding and leverages GNNExplainer
for interpretable, fine-grained analysis, pinpointing
specific vulnerability locations, thus offering a practical
and transparent solution for software security.

The main contributions and work of this paper are
summarized as follows.

First, we introduce E-GVD, a more sophisticated
GNN-based vulnerability detection method integrated
with the interpretability technology of GNNExplainer.
The model conducts vulnerability detection at a coarse-
grained, function level. Additionally, it offers detailed
explanations for the predictions. These explanations
are provided through an optimized model framework
combined with the interpretability of machine learning.

Second, in coarse-grained vulnerability detection, we
incorporate the consideration of local programming
logic. This is achieved by efficiently transforming the
source code into a graph representation, thereby reduc-
ing hardware resource consumption. Furthermore, we
employ advanced programming language (PL) pre-
trained methods and residual connections, whose syn-
ergy significantly enhances the capability of the model
in vulnerability detection.

Third, through simulation experiments, we have
demonstrated the effectiveness of E-GVD in both vul-
nerability detection and interpretability. Compared to
existing technologies, E-GVD exhibits higher efficiency
and accuracy when processing real-world vulnerability
data samples. It provides in-depth explanations for vul-
nerability detection, aiding in the precise localization of
vulnerabilities.

2. Related Work

2.1. Vulnerability Detection Based on Deep Learning
Deep learning (DL) is being extensively used in various
fields [7–11]. Since 2020, significant advancements have
been made in DL-based vulnerability detection. In
2020, Wang et al. [12] proposed FUNDED, leveraging
a multi-relation gated graph neural network (GGNN)
for enhanced detection performance. In 2021, Li et al.
[13] introduced the concepts of SyVCs and SeVCs and
proposed a DL-based system framework called SySeVR
for detecting C/C++ source code vulnerabilities. In
2022, Rathore et al. [14] explored the vulnerability
of Android malware detection models to adversarial
samples and introduced the ACE strategy. In 2023, Jiang
et al. [15] combined long short-term memory network
(LSTM) with convolutional neural network (CNN) in

VDDL for detecting various types of vulnerabilities in
smart contracts.

However, these algorithms can mostly only predict
whether the source code at the block or function level
is vulnerable, and cannot provide more comprehensive
location information related to the vulnerability. In
view of this issue, we attempt to integrate interpretable
techniques, which have been widely applied in various
domains [16, 17], on top of function-level vulnerability
detection methods, thereby providing information
related to vulnerability code lines while ensuring the
performance of vulnerability detection.

2.2. Graph Neural Networks
Graph Neural Networks (GNNs) have advanced signifi-
cantly with deep learning, showing remarkable perfor-
mance in diverse fields [18–20]. GNN-based models for
vulnerability detection fall into graph classification and
regression categories. In 2020, Cui et al. [21] used code
similarity to detect vulnerabilities based on Weighted
Feature Graphs (WFGs). In 2021, Cao et al. [22] pro-
posed a model using Bidirectional Graph Neural Net-
work (BGNN) to detect vulnerabilities that leverages
"back edges" to differentiate vulnerable from normal
code.In 2022, Yin et al. [23] introduced MAGCN, which
formulates vulnerability coexploitation behavior dis-
covery as a link prediction problem between vulner-
ability entities. In 2023, Wang et al. [24] proposed a
vulnerability detection method named VulGraB, based
on graph embedding and bidirectional gated graph
neural network (BiGGNN).

Although graph representations effectively convey
the logic and structure of source code, the complex
preprocessing steps in existing methods are both time-
consuming and challenging to implement when dealing
with large volumes of open-source code. Our work
leverages advanced pre-trained models to streamline
this process, effectively initializing node feature vectors
to obtain high-quality code embeddings.

3. The Proposed Algorithm E-GVD
3.1. Problem Definition
For coarse-grained vulnerability detection methods,
we create a graph gi(V ,X ,A) ∈ G for each provided
source code function ci , consisting of V as the set of
m nodes and X ∈ Rm×d as the node feature matrix.
Each node vj in V is represented by a d-dimensional
real-valued vector xj ∈ Rd , while A ∈ {0, 1}m×m denotes
the adjacency matrix, where Av,u is 1 if nodes v and
u share an edge, otherwise it is 0. The vulnerability
detection model aims to learn a mapping function f :
G → Y to ascertain whether a given source code is
vulnerable to attacks. For the interpretable model based
on results, we attempt to derive location information for

2
EAI Endorsed Transactions

on Scalable Information Systems |
| Volume 11 | Issue 6 | 2024 |

E-GVD: Efficient Software Vulnerability Detection Techniques Based on Graph Neural Network

Figure 1. E-GVD Vulnerability Detection Model, the model has three steps: Step 1 Code Representation, Step 2 Train GNN Modelv
and Step 3 Forecast Classification.

vulnerable lines of code through induced subgraphs in
the output and interpretation results, so that developers
can fix vulnerabilities and improve the native security
of the code.

3.2. Vulnerability Detection Model Based on Graph
Neural Networks
In this section, the input is function source code,
aimed at assessing the susceptibility of a given
function to attacks. The model initially utilizes PL pre-
trained models to enhance understanding of function
source code. It then transforms the code into a
graph by constructing nodes and edges based on the
linear sequence of tokens. Subsequently, the model
employs a two-layer GCN with residual connections
for deep learning, updating node vector representations
by iteratively aggregating vectors from neighboring
nodes. Finally, vulnerability detection for function
source code is achieved through learning the overall
graph embedding vector using a graph-level readout
layer. This process encompasses three stages: code
representation learning of source code, implementation
of the GNN model, and function-level vulnerability
detection using global graph embeddings. The diagram
of the E-GVD vulnerability detection model is shown as
Figure 1.

Step 1: Learning Source Code Representation
E-GVD treats each individual source code function as

a token sequence to preserve its local logical structure,

which is then transformed into a graph structure. In
this graph, each unique token is represented as a node,
and the edges between nodes are defined by token co-
occurrences within a fixed-size sliding window. The
resultant graph can be represented by an adjacency
matrix A, where the matrix elements are valued based
on whether nodes co-occur within the sliding window
if the node v and node u co-occur in the sliding window
and v , u, then Av,u=1, otherwise Av,u=0). An example
of the graph construction is illustrated in Figure 2. As
the size of such graphs is significantly smaller than the
actual length of the source code, it effectively reduces
the GPU memory requirements. To provide a deeper
understanding of the code, the embedding layer of the
pre-trained GraphCodeBERT model is used to initialize
the feature vectors of the nodes.

Figure 2. The graph construction method of E-GVD, exemplified
with a sliding window size of 3.

Step 2: Implementation of the GNN Model

3
EAI Endorsed Transactions

on Scalable Information Systems |
| Volume 11 | Issue 6 | 2024 |

H. Wang, Z. Qu and L. Sun

E-GVD employs a dual-layer GCN as its core
architecture. The principal operation of GCN is the
aggregation of neighborhood features. Formally, GCN
is represented as:

h
(k+1)
v = φ

∑
u∈Nv

av,uW
(k)h

(k)
u

 ,∀v ∈ V . (1)

Here, h(k+1)
v represents the vector representation of

node v at the k-th iteration/layer, h
(0)
v denotes the

feature vector of node v, Nv refers to the neighbor set
of node v, av,u is the edge constant between nodes v
and u in the Laplacian re-normalized adjacency matrix
D−

1
2 AD

1
2 , wherein D is the diagonal node degree matrix

of A, W (k) is the weight matrix, and φ is the non-linear
activation function, such as ReLU .

To augment the expressive and learning capabilities
of the model, dual-layer graph convolution operations
are utilized to progressively extract and integrate
feature information of nodes within the graph. Through
the aggregation of information between layers, GCN
effectively captures complex relationships in the
graph structure. Furthermore, residual connections are
incorporated to integrate information learned in lower
layers into higher layers. By combining multi-layer
structures with residual connections, E-GVD enhances
its capability for learning graph data features. The
hidden size for different GCN layers is standardized,
allowing the residual connections to adapt to the GCN
layers. Thus, let redefine Equation (1) as

h
(k+1)
v = h

(k)
v + φ

∑
u∈Nv

av,uW
(k)h

(k)
u

 . (2)

Following the dual-layer GCN with residual connec-
tions, a soft attention mechanism layer is embedded
to weight the features extracted by the GCN layers.
This mechanism dynamically weights the input fea-
tures, enabling the model to focus on significant node
features.

Step 3: Global Graph Embedding
After the iterative learning and updating process in

the dual-layer GCN architecture, the information from
nodes and edges is locally aggregated and transmitted
to adjacent nodes and edges. To enable classification or
prediction across the entire graph structure, we develop
a graph-level readout layer. Essentially, the primary
task of the readout layer is to integrate information
from all nodes and edges, forming a comprehensive
embedding representation of the entire graph. E-GVD
achieves this by combining sum pooling and max
pooling in the construction of the graph-level readout
layer, thereby converting node-level features into

graph-level embedding representations. The generated
graph embeddings are defined as follows:

ev = σ
(
w⊤h

(K)
v + b

)
⊙ φ

(
Wh

(K)
v + b

)
,∀v ∈ V , (3)

eg =
∑
v∈V

ev ⊙MAXPOOL {ev}v∈V . (4)

Here, ev represents the final vector representation

of node v, σ
(
w⊤h

(K)
v + b

)
acts as the soft attention

mechanism on the nodes, h
(K)
v denotes the vector

representation of the node v at the last K layer, and eg
signifies the graph embedding generated by the inner
product of sum pooling and max pooling.

Subsequently, the generated graph embeddings are
passed to a fully connected layer, which integrates and
refines key features. Finally, classification is performed
through a softmax layer to predict the vulnerability of a
given source code function to potential attacks, defined
as follows:

ŷg = sof tmax
(
W 1eg + b1

)
. (5)

For ease of understanding and implementation,
let summarize the training process of the E-GVD
vulnerability detection model using Algorithm 1
(pseudocode).

Algorithm 1 The Training Process Algorithm of
Vulnerability Detection Model

Input: Dtrain: the train dataset; Y : the labels of Dtrain;
Output: the trained model M;

1: for dataloader Ddl in Dtrain do
2: g(V ,X ,A)← BUILD_GRAPH(Ddl)
3: H (0) ← X
4: for k=0,1,...,K-1 do
5: H (k+1) ← H (k) + GCN

(
A,H (k)

)
6: end for
7: ev ← σ

(
w⊤h

(K)
v + b

)
⊙ φ

(
Wh

(K)
v + b

)
8: eg ←

∑
v∈V ev ⊙MAXPOOL {ev}v∈V

9: ydl ← sof tmax
(
W 1eg + b1

)
10: end for

3.3. Result-based Interpretable Model
To provide a deeper explanation of the predictions
made by the GNN-based vulnerability detection model
on function source code, this section integrates
GNNExplainer [25], a ML-based interpretability model.
The architecture of GNNExplainer is closely aligned
with the GNN model; it employs a perturbation-based
approach to emphasize the nodes and edges crucial
for model predictions. The aim is to minimize the
difference between the main GNN prediction and the

4
EAI Endorsed Transactions

on Scalable Information Systems |
| Volume 11 | Issue 6 | 2024 |

E-GVD: Efficient Software Vulnerability Detection Techniques Based on Graph Neural Network

target output, and maximize the similarity between
the generated explanation and the factual basis,
thereby providing an interpretation of the predictions.
Formally, the output explanation of GNNExplainer is
(GS , XS), where GS is the output explanatory subgraph,
and XS is the relevant features of GS . GNNExplainer
takes the trained GNN model, the graph structure G
of the function source code, and the prediction result
ŷ for that function as the input, with the goal of finding
a subgraph GS in the entire graph G such that the
discrepancy in prediction scores between the entire
graph G and the minimal graph GS is minimized when
input into the model. Figure 3 is used to illustrate how
GNNExplainer works.

Figure 3. E-GVD Result-based Interpretable Model, the model
is centered around the GNNExplainer.

According to [25], when performing graph classifica-
tion, GNNExplainer optimizes conditional entropy by
calculating the mask of the union of adjacency matrices
of all nodes in the graph. The resulting subgraph GS
can be directly used as the explanation for prediction
ŷ. For vulnerable source code functions, GS represents
the subgraph containing the statement that causes the
vulnerability, while for non-vulnerable source code
functions, GS represents the subgraph containing the
important statements that make the function stable.

To facilitate understanding and illustration, let use
Algorithm 2 (pseudocode) to outline the implemen-
tation process of the E-GVD explanation generation
algorithm.

4. The Experiment and Analysis
This section will evaluate the performance of E-GVD,
so we designed the following questions:

RQ1: How does E-GVD perform compared to other
function-level vulnerability detection algorithms?

RQ2: Do the various components used by E-
GVD have advantages for vulnerability detection
performance?

Algorithm 2 The Generate Explanation Algorithm of E-
GVD
Input: Dtest : the test dataset; MGNN : the trained best GNN

model; Y : the predictions of Dtest ;
Output: the explanation subgraph Gs;

1: for each sample Dsample in Dtest do
2: g(V ,X ,A)← BUILD_GRAPH(Dsample)
3: if ysample =1 then
4: explainer ← GNNExplainer(MGNN)
5: explanation← explainer(X ,A)
6: Gs ← visualize_subgraph(explanation)
7: else
8: pass
9: end if

10: end for

Table 1. Sample count of training/validation/testing sets.

SubDataset Examples

Train Dataset 21854
Valid Dataset 2732
Test Dataset 2732

RQ3: Can the interpretable model of E-GVD provide
reasonable explanations for the vulnerability detection
results?

4.1. The Experiment Setup
Environment Configuration: This experiment was

conducted on a Win11 system with an i7-1260P central
processor and NVIDIA GeForce RTX 3090 GPU, based
on Transformer 4.4, PyTorch 1.9, and Python 3.7.

Dataset: The GNN-based vulnerability detection
model uses the CodeXGLUE [26] real benchmark
dataset to detect function-level vulnerabilities. The
dataset includes 27,318 hand-labeled vulnerable and
non-vulnerable functions, derived from security-
related commits in two widely used C programming
language open-source projects (i.e., QEMU and
FFmpeg), with diverse functions. The dataset is divided
into training/validation/testing sets at a ratio of
80%/10%/10%, and Table 1 shows the sample count
for the training/validation/testing sets.

4.2. The Experimental Results and Performance
Analysis
RQ1: How does E-GVD perform compared to other
function-level vulnerability detection algorithms?

We trained and tested E-GVD along with BiLSTM
[27], TextCNN [28], RoBERTa [29], CodeBERT [30],
GraphCodeBERT [31], and Devign [32] baseline
algorithms on the same dataset to evaluate the
performance of E-GVD to detect vulnerabilities. We
chose the best-performing parameter combination for

5
EAI Endorsed Transactions

on Scalable Information Systems |
| Volume 11 | Issue 6 | 2024 |

H. Wang, Z. Qu and L. Sun

Table 2. Accuracy of E-GVD and other baseline algorithms
(Accuracy represents the ability of the model to correctly predict
samples).

MODEL Accuracy(%)

BiLSTM 59.37
TextCNN 60.69
RoBERTa 61.05
CodeBERT 62.08

GraphCodeBERT 62.30
Devign 59.77
E-GVD 64.35

training and testing. At the same time, to fairly
compare with the baseline algorithms, the same graph
construction method and the same training protocol are
used to implement Devign in the experiment.

Table 2 presents the accuracy results of E-GVD and
other baseline algorithms on the CodeXGLUE dataset.
The experimental results show that the accuracy of E-
GVD is superior to that of all the baseline algorithms,
indicating that the E-GVD model is advanced in
vulnerability detection and can more accurately
predict the categories or labels of vulnerabilities.
Specifically, the accuracy of E-GVD can be improved
by 2.05% compared to the second-best-performing
GraphCodeBERT, and the maximum gain of the
vulnerability detection performance over the baseline
algorithms is 4.98%.

We further observe from the Table 2 that RoBERTa
performs better in vulnerability detection compared to
models based on BiLSTM and TextCNN. This is because
RoBERTa, based on the transformer architecture, can
process information in sequences in parallel, which
gives RoBERTa a superior performance in downstream
tasks of vulnerability detection. CodeBERT and Graph-
CodeBERT are improved versions of RoBERTa, the
unique encoder structure also allows CodeBERT and
GraphCodeBERT models to better capture the struc-
tural information of source code. From the Table 2, we
can see that the accuracy of CodeBERT and GraphCode-
BERT models compared to RoBERTa has increased by
1.03% and 1.25%, respectively.

Our algorithm, E-GVD, outperforms the existing
baseline algorithms, with accuracy improvements
of 2.27% and 2.05% compared to CodeBERT and
GraphCodeBERT models, respectively. Notably, the
performance of Devign on real-world datasets in our
experiments can only achieve 59.77% accuracy, and
under the same training protocol, the accuracy of E-
GVD is improved by 4.58%. In summary, our model
can effectively distinguish and classify vulnerabilities,
demonstrating advanced and robust performance in
vulnerability detection tasks.

RQ2: Do the various components used by E-
GVD have advantages for vulnerability detection
performance?

To answer RQ2, we employed pre-trained PL models
CodeBERT and GraphCodeBERT to learn the initial
graph vector representations. To investigate whether
the graph-level readout layer of E-GVD has more
advantages, we compared the graph-level readout layer
of E-GVD to the Conv pooling of Devign under
the same training protocol. We assessed the impact
of residual connections on vulnerability detection by
using them in experiments. Results are shown in
Figures 4 and 5.

Figure 4. Accuracy of different pre-trained models and different
GNN layers.

Figure 5. Accuracy of different pre-trained models and with or
without residual connections.

Figure 4 shows the accuracy of E-GVD using
different GNN layers under different pre-trained
models. Figure 5 shows the accuracy of E-GVD with
or without residual connections under different pre-
trained models. To demonstrate the advantages of the
graph-level readout layer in the algorithm, we also
provided the accuracy of Devign under different pre-
trained models.

6
EAI Endorsed Transactions

on Scalable Information Systems |
| Volume 11 | Issue 6 | 2024 |

E-GVD: Efficient Software Vulnerability Detection Techniques Based on Graph Neural Network

The experimental results show that in terms of pre-
trained models, our algorithm E-GVD generally per-
forms better when using GraphCodeBERT than when
using CodeBERT. This indicates that initializing node
feature vectors with GraphCodeBERT in downstream
vulnerability detection tasks has advantages. For the 2-
layer GCN used in the algorithm, Figure 4 shows that
E-GVD performs best under the 2-layer GCN, better
than when using 1-layer GNN, with an accuracy gain
of 1.56%. In addition, our algorithm achieves 62.21%
accuracy under 1-layer GGNN, improving the accuracy
of Devign by 2.44%. It shows that the graph-level
readout layer of E-GVD, based on the inner product of
sum pooling and max pooling, has certain advantages
over the simple Conv layer. In terms of using residual
connections, Figure 5 shows that residual connections
can increase the accuracy of E-GVD, with a maxi-
mum accuracy gain of 2.09%. This suggests that using
residual connections in our algorithm can integrate the
information learned by GCN layers and more effectively
classify the function source code for vulnerability.

RQ3: Can the interpretable model of E-GVD
provide reasonable explanations for the vulnerability
detection results?

To assess the interpretable model performance, we
evaluated if important statements leading to vulnerable
code snippets can be inferred through explanatory
subgraphs. For each input instance, an induced
subgraph is returned, which helps with explanation
results determine important nodes for predicted
labels, inferring crucial statements for vulnerable code
snippets. We analyzed the following instance with
predicted labels of 1 to evaluate the performance of the
result-based interpretable model.

Figure 6. Vulnerable example with the predicted label 1, the
vulnerable code lines identified by E-GVD are lines 1 and 2.

Figure 6 displays code example labeled as vulnerable
in the test set. This example illustrates a hard-coded
credential use vulnerability from CWE-798. In the
example shown in Figure 6, the defect line is at strcmp
(password, “Mew!") in line 2, where an attacker can use
the password to access the backend diagnostic mode
and extract the fixed password, posing an even greater
threat if distributed in binary form.

E-GVD infers the important statements leading to
vulnerable code by generating induced subgraphs
and interpreting the subgraph probabilities in the

Figure 7. Induced subgraph of Code Example.

results. If the probability of a subgraph surpasses a
threshold, it is deemed influential on the prediction.
For ease of explanation, we provided an example of
an induced subgraph. Figure 7 shows the induced
subgraph for the example. According to our manually
derived results, the code lines potentially containing
important statements are marked in red in the examples
in Figure 6. The vulnerable code lines identified by E-
GVD are lines 3, 6, 10, and 19. Based on the instance,
it is not difficult to find that E-GVD can provide
fine-grained interpretation results for function-level
vulnerability detection, demonstrating the feasibility of
result-based interpretable model and the applicability
of graph interpretability.

5. Conclusion and Future Prospect
This paper introduces E-GVD, a more sophisticated
and interpretable source code vulnerability detection
algorithm based on GNN. E-GVD initially transforms
source code into a graph structure effectively and
uses PL pre-trained models to initialize node features,
preparing the input for the DL model. It then updates
node features using a dual-layer GCN with residual
connections and generates global graph embeddings by
combining sum pooling and max pooling techniques,
enabling the detection of vulnerabilities in source code.
Additionally, E-GVD employs GNNExplainer to inter-
pret the predictions of graph classification, revealing
the locations of vulnerabilities. We achieved optimal
vulnerability detection performance and verified the
superior performance and interpretability of E-GVD
compared to other baseline methods. Future work will
concentrate on enhancing the performance of DL-based
vulnerability detection models. We will also explore
the dependencies of vulnerable line information in
interpretative results, aiming to improve model inter-
pretability comprehensively.

7
EAI Endorsed Transactions

on Scalable Information Systems |
| Volume 11 | Issue 6 | 2024 |

H. Wang, Z. Qu and L. Sun

Acknowledgement. This work was supported by the National
Natural Science Foundation of China (No. 61373131,
62071240), PAPD and CICAEET funds.

References
[1] Shu, J., Jia, X., Yang, K. and Wang, H. (2018)

Privacy-preserving task recommendation services for
crowdsourcing. IEEE Transactions on Services Computing
14(1): 235–247.

[2] Patil, D.R. and Pattewar, T.M. (2022) Majority voting
and feature selection based network intrusion detection
system. EAI Endorsed Transactions on Scalable Information
Systems 9(6): e6–e6.

[3] Ge, Y.F., Wang, H., Bertino, E., Zhan, Z.H., Cao, J.,
Zhang, Y. and Zhang, J. (2023) Evolutionary dynamic
database partitioning optimization for privacy and
utility. IEEE Transactions on Dependable and Secure
Computing .

[4] Venkateswaran, N. and Prabaharan, S.P. (2022) An
efficient neuro deep learning intrusion detection system
for mobile adhoc networks. EAI Endorsed Transactions on
Scalable Information Systems 9(6): e7–e7.

[5] Jordan, M.I. and Mitchell, T.M. (2015) Machine
learning: Trends, perspectives, and prospects. Science
349(6245): 255–260.

[6] LeCun, Y., Bengio, Y. and Hinton, G. (2015) Deep
learning. nature 521(7553): 436–444.

[7] Qu, Z., Tang, Y., Muhammad, G. and Tiwari, P. (2023)
Privacy protection in intelligent vehicle networking: A
novel federated learning algorithm based on information
fusion. Information Fusion 98: 101824.

[8] Tawhid,M.N.A., Siuly, S., Wang, K. and Wang, H. (2023)
Automatic and efficient framework for identifying
multiple neurological disorders from eeg signals. IEEE
Transactions on Technology and Society 4(1): 76–86.

[9] Singh, R., Subramani, S., Du, J., Zhang, Y., Wang, H.,
Miao, Y. and Ahmed, K. (2023) Antisocial behavior
identification from twitter feeds using traditional
machine learning algorithms and deep learning. EAI
Endorsed Transactions on Scalable Information Systems
10(4): e17–e17.

[10] Qu, Z., Liu, X. and Sun, L. (2022) Learnable antinoise-
receiver algorithm based on a quantum feedforward
neural network in optical quantum communication.
Physical Review A 105(5): 052427.

[11] Liu, F., Zhou, X., Cao, J., Wang, Z., Wang, T.,
Wang, H. and Zhang, Y. (2020) Anomaly detection
in quasi-periodic time series based on automatic
data segmentation and attentional lstm-cnn. IEEE
Transactions on Knowledge and Data Engineering 34(6):
2626–2640.

[12] Wang, H., Ye, G., Tang, Z., Tan, S.H., Huang, S.,
Fang, D., Feng, Y. et al. (2020) Combining graph-
based learning with automated data collection for code
vulnerability detection. IEEE Transactions on Information
Forensics and Security 16: 1943–1958.

[13] Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y. and Chen, Z. (2021)
Sysevr: A framework for using deep learning to detect
software vulnerabilities. IEEE Transactions on Dependable
and Secure Computing 19(4): 2244–2258.

[14] Rathore, H., Sharma, S.C., Sahay, S.K. and Sewak, M.

(2022) Are malware detection classifiers adversarially
vulnerable to actor-critic based evasion attacks? EAI
Endorsed Transactions on Scalable Information Systems
10(1).

[15] Jiang, F., Cao, Y., Xiao, J., Yi, H., Lei, G., Liu, M.,
Deng, S. et al. (2022) Vddl: A deep learning-based
vulnerability detection model for smart contracts. In
International Conference on Machine Learning for Cyber
Security (Springer): 72–86.

[16] Zhu, Z. and Wang, S. (2023) Odet: Optimized deep elm-
based transfer learning for breast cancer explainable
detection. EAI Endorsed Transactions on Scalable Informa-
tion Systems 10(2): e4–e4.

[17] Kumar, S.B. and Pande, S.D. (2024) Explainable neural
network analysis on movie success prediction. EAI
Endorsed Transactions on Scalable Information Systems .

[18] Geng, Y. (2021) Self-organizing incremental and graph
convolution neural network for english implicit dis-
course relation recognition. EAI Endorsed Transactions on
Scalable Information Systems 9(36).

[19] Qu, Z., Liu, X. and Zheng, M. (2022) Temporal-spatial
quantum graph convolutional neural network based on
schrödinger approach for traffic congestion prediction.
IEEE Transactions on Intelligent Transportation Systems .

[20] Ni, M., Song, Y., Wang, G., Feng, L., Li, Y., Yan, L.,
Li, D. et al. (2023) Mied: An improved graph neural
network for node embedding in heterogeneous graphs.
EAI Endorsed Transactions on Scalable Information Systems
10(6).

[21] Cui, L., Hao, Z., Jiao, Y., Fei, H. and Yun, X.

(2020) Vuldetector: Detecting vulnerabilities using
weighted feature graph comparison. IEEE Transactions
on Information Forensics and Security 16: 2004–2017.

[22] Cao, S., Sun, X., Bo, L., Wei, Y. and Li, B. (2021)
Bgnn4vd: Constructing bidirectional graph neural-
network for vulnerability detection. Information and
Software Technology 136: 106576.

[23] Yin, J., Tang, M., Cao, J., You, M., Wang, H. and Alazab,

M. (2022) Knowledge-driven cybersecurity intelligence:
Software vulnerability coexploitation behavior discov-
ery. IEEE transactions on industrial informatics 19(4):
5593–5601.

[24] Wang, S., Huang, C., Yu, D. and Chen, X. (2023) Vul-
grab: Graph-embedding-based code vulnerability detec-
tion with bi-directional gated graph neural network.
Software: Practice and Experience .

[25] Ying, Z., Bourgeois, D., You, J., Zitnik, M. and Leskovec,

J. (2019) Gnnexplainer: Generating explanations for
graph neural networks. Advances in neural information
processing systems 32.

[26] Microsoft, Codexglue: Defect-detection, Available
online: https://github.com/microsoft/CodeXGLUE/

tree/main/Code-Code/Defect-detection (accessed on
16 January 2024).

[27] Huang, Z., Xu, W. and Yu, K. (2015) Bidirectional
lstm-crf models for sequence tagging. arXiv preprint
arXiv:1508.01991 .

[28] Kim, Y. (2014) Convolutional neural networks for
sentence classification. arXiv preprint arXiv:1408.5882 .

8
EAI Endorsed Transactions

on Scalable Information Systems |
| Volume 11 | Issue 6 | 2024 |

https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Defect-detection
https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Defect-detection

E-GVD: Efficient Software Vulnerability Detection Techniques Based on Graph Neural Network

[29] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O. et al. (2019) Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692 .

[30] Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong,

M., Shou, L. et al. (2020) Codebert: A pre-trained model
for programming and natural languages. arXiv preprint
arXiv:2002.08155 .

[31] Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Liu,

S., Zhou, L. et al. (2020) Graphcodebert: Pre-training

code representations with data flow. arXiv preprint
arXiv:2009.08366 .

[32] Zhou, Y., Liu, S., Siow, J., Du, X. and Liu, Y. (2019)
Devign: Effective vulnerability identification by learning
comprehensive program semantics via graph neural
networks. Advances in neural information processing
systems 32.

9
EAI Endorsed Transactions

on Scalable Information Systems |
| Volume 11 | Issue 6 | 2024 |

	1 Introduction
	2 Related Work
	2.1 Vulnerability Detection Based on Deep Learning
	2.2 Graph Neural Networks

	3 The Proposed Algorithm E-GVD
	3.1 Problem Definition
	3.2 Vulnerability Detection Model Based on Graph Neural Networks
	3.3 Result-based Interpretable Model

	4 The Experiment and Analysis
	4.1 The Experiment Setup
	4.2 The Experimental Results and Performance Analysis

	5 Conclusion and Future Prospect

