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Abstract

Data imputation of missing values is one of the critical issues for data engineering, such as air quality
modeling. It is challenging to handle missing pollutant values because they are collected at irregular and
different times. Accurate estimation of those missing values is critical for the air pollution prediction task.
Effective forecasting is a significant part of air quality modeling for a robust early warning system. This
study developed a neural network model, a Temporal Convolutional Network (TCN) with an imputation

block (TCN-I), to simultaneously perform data imputation and forecasting tasks. As pollution sensor data
suffer from different types of missing values whose causes are varied, TCN attempts to impute those missing
values in this study and perform prediction tasks in a single model. The results prove that the TCN-I model
outperforms the baseline models.
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1. Introduction

High urbanization demands a high quality of life,
which ultimately gives rise to traffic emissions and coal
emissions. These are becoming significant contributors
to increasing air pollution. Around seven million
people die worldwide due to hazardous pollutant
concentrations every year. Ozone, sulfur dioxide,
carbon monoxide, and particulate matter are the major
contributors to pollution. However, particulate matter
PM2.5 is the critical parameter among them [1].
Particulate matter, PM2.5, became a national crisis
worldwide [2] due to its severe harmful impact on
both human health and the atmospheric environment.
Identifying the air pollution concentration level and
forecasting its values are the necessary steps of air
pollution management. The governments of polluted
countries like China and India have also issued several
policies to take the required steps to mitigate its
negative impact [3].

Air pollution forecasting has been regarded as an
important research topic for researchers. It has a
significant r ole i n d isaster p revention a nd ecological
decision-making activities. Air pollution forecasting
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based on historical data demands various methods
to provide accurate results [4]. Though time series
forecasting is based on past information, a high-
quality dataset is required. However, air pollution data
concentration varies due to meteorological parameters’
impact [5, 6] or may contain missing attributes due to
sensor shutdown, natural disasters, or system crashes
[7]. So air pollution forecasting method should analyze
the climate variables sensitivities and make sure that
the source data does not contain missing values.
Otherwise, it may mislead into inappropriate decisions.
Accurate air pollution forecasting results have a vital
role in the early warning system and play a crucial role
in environmental and human health protection.

Air pollution modeling is a complex method, as
it depends upon several factors like meteorological
parameters and traffic emissions. So, the relationship
among the parameters should be analyzed before
conducting air pollution modeling to identify the
required input. Past research studies analyzed from
their experimental studies that PM2.5 pollutant is
mainly affected by temperature [8, 9], wind direction
[10], rainfall [11], wind speed [5, 6], humidity [12, 13],
and so on. However, most of the air quality modeling
tasks ignore weather conditions for PM2.5 forecasting,
which degrades the model performance. This research
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gap motivates researchers to analyze the meteorological
factors sensitivity for air quality modeling.

Air pollution modeling is classified into physical-
based modeling and data-driven modeling. Physical
modeling demands a thorough understanding of
environmental science and chemical reactions, whereas
data-driven techniques depend upon the dataset’s
hidden characteristics. Though the physical models [14]
are more complex, data-driven approaches [15] are
emerging to solve air quality modeling issues in this era
of big data.

Recently deep learning-based approaches have
increased the demand to handle a vast amount of
data. Hence, accuracy can be improved with the
excellent quality of the dataset. Nevertheless, due to
irregular sampling, natural disaster pollution data
may be corrupted, becoming challenging to explore.
Sometimes sensor data become critical to analysis due
to its manual measurement in most monitoring sites.
These unsolved critical issues may bias forecasting
results [3, 7, 16].

Hence, the research study developed a neural
network model with a deep learning based imputation
approach, which can analyze the impact of weather
conditions on air pollution and handle the corrupted
data simultaneously. The main contributions of this
research paper are summarized below,

* In this study, we constructed a TCN-based
imputation block that can impute the missing
values to better the data quality in the data
preprocessing step.

* A new approach is developed to perform PM2.5
forecasting and data imputation in a single run
minimizing the training cost. The proposed TCN-
I model with dilated causal convolution can
effectively perform sequential modeling tasks
with huge historical information.

* The proposed model can analyze the climate
variables’ sensitivity to identify the required
input features for better forecasting results.

2. Literature survey

2.1. Air quality forecasting

Samal et al. [17] proposed both Seasonal Autore-
gressive Integrated Moving Average (SARIMA) and
FbPROPHET model to forecast SO2, NO2, RSPM, and
SPM pollutants using historical pollution information
from Central Pollution Control Board. The authors
found from their accuracy metric comparison table that
though both SARIMA and FbPROPHET have effective
air pollution forecasting performance, the FbPROPHET
model on log transformation is superior to the SARIMA

model. However, the models could not handle the mul-
tivariate dataset.

Lagesse et al. [18] developed statistical and deep
learning prediction models for large office buildings.
The authors used various environmental variables as
the predictor. The developed models included Multiple
Linear Regression (MLR), Distributed Lag Model
(DLM), Least Absolute Shrinkage Selector Operator
(LASSO), Simple Artificial Neural Networks (ANN),
and Long-Short Term Memory (LSTM). The LSTM
model outperformed PM2.5 prediction by learning
the temporal pattern of predictors. The model is
trained and tested for a single building, the model’s
applicability for other sites and buildings is limited.

S. Freeman et al. [19] presents a deep learning model,
i.e., Recurrent Neural Network with LSTM model, to
predict the hourly concentration of ozone. The authors
handled the missing values by first-order differencing of
neighboring periods. Among 25 available features, they
utilized five features and the LSTM model to improve
the prediction accuracy. A decision tree was used to
identify the proper input variables. The authors found
that removing, minimizing the features, and optimizing
the parameters can improve LSTM forecasting model
performance. However, the study did not analyze the
impact of missing values and their imputation on the
overall performance of pollutant forecasting accuracy.

Samal et al. [3] identified the correlation between
meteorological factors and air pollutants and selected
proper input variables to get better PM2.5 forecasting
results under weather conditions. The authors experi-
mented with both Odisha, India, and Beijing, China air
pollution datasets. The Convolutional LSTM model is
utilized for feature extraction and temporal modeling
and Sparse Denoising Autoencoder for fine-tuning pur-
poses. The authors compared the proposed model’s per-
formance with Support Vector Regression (SVR), ANN
[16], Convolutional Neural Network (CNN) [20, 21],
LSTM [7, 21], Bidirectional LSTM (BILSTM) [20] and
Bidirectional Gated Recurrent Unit (BIGRU) [3] model.
The results show that the Convolutional LSTM-SDAE
(CLS) model solves most of the multivariate time series
problems and has better performance than the other
models. However, the model uses the KNN imputation
technique, which does not work well for large datasets.

Ge et al. [22] developed the Deep Bidirectional and
Unidirectional Long Short-Term Memory (DBU-LSTM)
model based on the unidirectional and bidirectional
properties of RNN. The univariate time series-based
prediction models are not efficient enough to analyze
the dataset features” hidden correlation, affecting the
prediction results. The bidirectional property of the
model can easily capture the bidirectional temporal
and spatial dependencies from the sequential dataset.
The study describes the spatial similarity between
different regions. The embedding method is proposed
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to minimize the dimensionality of the data. The
DBU-LSTM model was evaluated with a real-time
air quality dataset of Beijing, which outperforms the
unidirectional LSTM model. However, the model did
not identify the impact of air pollutant influencing
factors and their source, which can negatively affect the
model’s performance.

Yeo et al. [23] proposed a Convolutional Neural
Network (CNN) model with a Gated Recurrent Unit
(GRU) network to perform deep learning based
spatiotemporal PM2.5 forecasting. GRU has similar
properties to LSTM but without an output gate. It can
work on a single point and also on a sequential dataset,
so the authors trained the model with meteorological
factors and available past PM2.5 data. They could
predict the PM2.5 values for the 25 NIER stations
in Seoul for 2018. The proposed approach used
geographical correlation based on nearby monitoring
stations to improve the PM2.5 forecasting accuracy.
However, the model performance is limited to PM2.5
pollutants. It became challenging to forecast other
pollutants such as PM10 and Ozone due to their
different characteristics.

Chen et al. [24] proposed an integrated dual LSTM
model based on sequence-to-sequence technology,
which is used to get prediction values of each
component individually. In the second step, a multi-
factor forecasting model is developed using LSTM with
an attention mechanism. The proposed method used
both the weather and spatial features of neighboring
sites. Finally, the XGBoosting tree is utilized to integrate
these two models, named the integrated dual LSTM
model. The model has higher accuracy than Support
Vector Regression (SVR), Ridge regression, XGBoost,
SLSTM, NLSTM, and single-factor and multi-factor
models, but it still has drawbacks. The model gives
prediction values with some outliers.

Xie et al. [25] analyzed spatial characteristics of
PM2.5 monitoring stations and developed CNN’s-GRU
model to extract spatial features of multi-scale data in a
high dimension automatically to develop an advanced
PM2.5 prediction framework. The proposed model
takes multiple two-dimensional matrices developed
with pollutant and climate variables of different
monitoring stations in the Wuxi urban area. CNN
structures are intended to extract and fuse the data
automatically, and then the GRU network is used to
capture long-term data variations. The experimental
results illustrated that the CNN-GRU model has better
forecasting accuracy than Auto-Regressive Integrated
Moving Average (ARIMA), LSTM, and GRU networks.
This research study fails to include other temporal
features to handle temporal dynamics and ignores the
seasonal impact on air quality.

Gilik et al. [26] constructed a CNN+LSTM-based
method to forecast hourly pollutant concentration for
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several locations efficiently. The authors proposed three
methods for performing air quality modeling according
to input and output relationships using spatial and
temporal features. The first method takes univariate
input and provides univariate output; the second
method considers multivariate input and generates
univariate output. The third method uses multivariate
input and gives multivariate output. The proposed
methods forecast air pollutant concentrations for
multiple locations. The CNN layer is used to extract
the relationship between spatial features, whereas the
LSTM layer extracts temporal characteristics from the
time-series dataset. The study has some limitations as
the dataset used has many missing values, so its size for
training the model is limited.

Samal et al. [27] implemented both deep learning
techniques and a geostatistical technique to perform
regional forecasting of the study area. The authors
developed a CNN-BIGRU-ANN deep learning model
and used its prediction results for the available moni-
toring stations. They then considered these prediction
results as input for the ordinary kriging interpolation
approach to perform long-term regional forecasting.
Though the proposed model has comparatively better
results than baseline models, it did not consider the
impact of climate variables and data imputation issues
of the PM2.5 time series dataset.

2.2. Air quality data imputation

Quinteros et al. [28] proposed the use of the multiple
imputation method as a tool to reconstruct the
missing values of air quality for a mid-size city
Temuco, in Chile. The authors stated that multiple
imputation techniques could effectively impute the
missing attributes of the dataset, for instance, the k-
nearest neighbor (KNN) imputation technique. KNN
imputation technique reconstructs the missing data
accurately while considering spatial covariates but not
the entire dataset. The authors found that the lower
performance of multiple imputation techniques may be
due to incorporated imputation errors. The study has
not considered the background values of air pollution,
which is the limitation of the study.

Pena et al. [29] investigated the pattern of air quality
which affects the pollution concentration in Cuenca.
The authors tried to repair the continuous missing
values of the air quality dataset. They carried out
the imputation of missing values of the pollutant
time series dataset using Lasso and Ridge regression.
These models are evaluated to identify the number
of input and output parameters that can be utilized
to impute the missing values. The models were based
on multivariate linear regression with regularization.
Though the model could effectively impute the extreme
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missing values, the model could not recover the large
gap missing values efficiently.

Yen et al. [30] aimed to evaluate the interpolation
performance of linear regression, SVR, ANN and LSTM
model. They obtained the air quality dataset for Taiwan
City. The authors presented model-based interpolation
techniques to impute the pollutant’s missing values.
The authors stated that the linear regression and
SVR model perform better interpolation during high
pollution season with minimal cost. On the other hand,
deep learning-based ANN and LSTM networks perform
well for the whole year. So the researcher needs to
choose suitable interpolation techniques based on their
preference and requirements.

Wijesekara et al. [31] discussed the six univariate
imputation techniques to analyze how they deal
with the missing values. They discussed mean,
spline, simple moving average, exponentially weighted
moving average, and Kalman smoothing models. The
comparative analysis shows that the mean imputation
works well for a small range of missing values.
The imputation performance decreases for spline
interpolation with the increase of missing values. The
authors proved that the Kalman smoothing technique is
the best solution among all the compared models when
missing values are random (MCAR) type.

Libasin et al. [32] reviewed several single imputation
techniques and multiple imputation techniques. They
mentioned that single imputation techniques usually
ignore the ambiguity and ignore the variance of the
data. In contrast, machine learning-based multiple
imputation techniques impute the missing values with
the best possible estimates. So they suggested applying
machine learning based imputation techniques to
handle the air pollution attributes.

However, the discussed literature studies either focus
on data imputation or forecasting but can not solve both
issues simultaneously in a single process. Therefore,
this research study constructed a model that can
perform both the data imputation and forecasting
tasks in a single model, which provides more accurate
prediction results. In addition, the study compared the
performance of the proposed model with the baseline
SARIMA, FbPROPHET, ANN, SVR, CNN, LSTM, GRU,
BILSTM, and BIGRU model to identify the effectiveness
of the proposed model as compared to others.

3. Problem statement

Several time series data generated from the X sensor
stations can be represented as, V = {v,v,, v3,...v7}] €
RT*X with T time steps. Each vector v, € RX represents
the X sensors’ air pollution level at time ¢. Each sensor
X gives both meteorological parameters information
with air pollution concentration level. In reality, each
air pollution sensor generates missing attributes due
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to sensor failure or may be due to some natural
disasters. So the collected dataset may have corrupted
data. To deal with these missing values, a masking
vector is required to identify whether the data has
corrupted values or not. Therefore, an imputation block
is required to attribute those missing sensor values.

In this research study, air pollution prediction model
with an imputation block aims to learn a function f(.)
to map a T step of historical air pollution dataset to
the next subsequent step of air pollution state, which
can be described as, f([vy, vy, v3....vT]) = v141. This a
multivariate regression problem, that tries to minimize
the loss function for accurate forecasting results.

4. Data collection

In the past decades, China has undergone urbanization,
which demands energy consumption and industrializa-
tion. Residential energy is one of the major contributors
to PM2.5 in China [33], which has the highest impact
on premature death in China. Land traffic is another
major contributor to PM2.5 pollution in China. Mor-
tality attributable to PM2.5 in China is much higher
than road accidents and other death causes. Chronic
health and premature death mortality are uncertain
due to increased pollution levels because of increased
industrialization, and traffic emissions.

Due to rapid economic growth in China [34], the
air pollution level in Beijing city became prominent.
Beijing is one the most developed cities in China
and has been accompanied by intense air pollution
concentration. Keeping these aspects of air pollution
into consideration, Beijing is considered the study area.

The air pollution dataset for Beijing [35] is collected
for experimental purposes. The dataset [36] contains
pollutant and meteorological parameters features from
the year 2013 to 2017. The daily 24-h average PM2.5
pollutant concentration is used to forecast its values in
the next 14 days.

The detailed description of the dataset is presented in
Table 1.

Table 1. Dataset description

UCI Machine learning

repository dataset Description
Characteristics Multivariate
Time span 60 minutes
Location Gucheng, Beijing
Sampling period 01703/2013

to 28/02/2017
Number of parameters 18

Number of monitoring locations 12
Total Number of instances 420768
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5. Proposed methodology framework

The proposed architecture is presented in Figure 1.
Once the data is collected, the data preprocessing step
is taken to get better quality data. In the first step of the
data preprocessing, the model identifies the essential
input features and then imputes the missing values
of the dataset using TCN based imputation block.
After data preprocessing, the TCN model performs
time series forecasting of PM2.5 pollutant. Each part
of the data preprocessing step and proposed TCN
with imputation block (TCN-I) architecture is described
below.

5.1. Data preprocessing step

Input parameter selection. It is essential to identify the
required input features in the data preprocessing step
before the air quality modeling step. The objective
of feature selection is to remove the irrelevant input
features and keep only the necessary inputs. This
research study calculated the Pearson Correlation
Coefficient (R) to identify the temporal correlation
between climate variables and PM2.5 pollutants to find
out the vital input features for PM2.5 modeling as
shown in Table 2.

Suppose a and b are the time series vector for PM2.5
and climate variables, then R can be computed as,

n n n
n Z ambm_ Z Am Z bm
m=1 m= m=

R =

n n n n

n Lo =(£ anlyfn £ 5,2 (% b,
m=1 m=1 m=1 m=1

(1)

If the R value is between 0 and 1, then the variables
a and b have a positive correlation. If the value lies
between -1 to 0, then there exists a negative correlation
between the two variables.

Table 2 shows that the PM2.5 pollutant has a positive
correlation with wind direction and dew point and a
negative correlation with other parameters. It can be
observed from Table 2 that all the parameters are poorly
correlated with PM2.5 pollutants, so all the variables
can be taken as input features directly.

Handling missing values. PM2.5 forecasting models
based on data-driven techniques have excellent per-
formance in environmental data engineering. A large
number of models have been proposed to perform
PM2.5 forecasting. Air quality modeling studies focus
on improving prediction accuracy. Air quality modeling
based on sensor data is complex due to its charac-
teristics. Firstly sensor data are multivariate datasets,
and second, they face missing data values. Various
methods have been developed to handle those missing
values. However, conducting data imputation and data
forecasting tasks individually may lead to unnecessary
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prediction errors. Solving the data imputation and data
forecasting is a two-step process where it is difficult to
recognize the missing data patterns, which generates a
bias in forecasting results.

In real-time air pollution forecasting tasks, it is
challenging to perform data imputations. It is costly
due to both individual training processes. Hence
looking into this issue, TCN is used to perform both
data imputation and data prediction tasks, which can
easily handle the long-term temporal dependencies that
exist in the dataset without causing data exploding
and data vanishing issues. As the TCN model can
effectively handle huge past information and identify
the long-term temporal dependencies, TCN-based data
imputation block can easily handle the unevenly
spaced missing value in sequential data to achieve the
objective.

One easy option to deal with the missing values
before the data prediction task is to ignore those miss-
ing values. The other method is to work on the data
imputation approach to deal with those values. Several
univariate and multivariate imputation methods exist,
which can easily impute the missing value but fail
to perform the data prediction task. Among all the
data imputation tasks, linear, mean, median interpo-
lation, and multivariate imputation by chained equa-
tions (MICE) [37] methods are statistical imputation
techniques. Miss forest [38], K nearest neighbor (KNN)
(39, 40],

Expectation-Maximization (EM) algorithm [41], and
matrix factorization are machine learning-based impu-
tation approach.

As time-series dataset has long-term dependencies,
several deep learning imputation techniques are also
proposed to capture this while conducting data
imputation, such as Deep learning model based on GRU
(GRU-D) [42], Multiple Imputation Using Denoising
Autoencoders (MIDA) [43], Multi-directional Temporal
Convolutional Artificial Neural Network (MTCAN)
[16], Temporal Convolutional Denoising Autoencoder
(TCDA) [7], etc. However, the recurrent-based methods
require a considerable amount of memory and training
time as they follow backpropagation through time to
train the model. So this research study developed a
TCN-based data imputation block, which can provide
data imputation and handle a substantial multivariate
dataset and its long-term dependencies to perform
forecasting with less memory and training time
requirement.

Once, the missing values of PM2.5 pollutants are
imputed, the Z score normalization approach is
adopted to remove the outliers from the dataset.
Sometimes few variables have relatively greater values
and a wider range of values, negatively affecting
prediction results. To solve this issue scope of
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TCN 1mputation results

I-‘ I I I

Figure 1. Proposed TCN-I architecture.

the variables should be adjusted through Zscore 5.2. Time series forecasting
normalization.

Zscore normalization can be computed as below, [44], After input feature selection and TCN based data
imputation, the TCN network performs temporal
B modeling to generate the PM2.5 prediction results. The
x=2"t (2)  detailed structure of the TCN block is described in the
below subsections.

where X is represents the Z-score standardized value

and y represents the concentration value of the element, Temporal convolutional network. - Compared to LSTM and
# and o denote the mean and standard deviation, ~GRU, the TCN model [45] has a better memory for

respectively. sequential modeling tasks and performs large-scale
parallel processing. It has improved in the following
ways,
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Table 2. Correlation Coefficient values.

R PM2.5 Wind Wmd' Atmospheric Pressure Dew point
speed direction temperature

PM2.5 1 -0.27 0.38 -0.08 -0.02 0.14

Wind 027 1 0.43 0.21 0.21 41

speed

Wind 038  -043 1 0.06 -0.07 0.20

direction

Atmospheric g oo 551 (06 1 -0.86 0.90

temperature

Pressure -0.02 0.21 -0.07 -0.86 1 -0.80

Dew point 0.14 -0.33  0.20 0.90 -0.80 1

¢ TCN has causal convolution, which is utilized to
better handling the sequential dataset.

e TCN utilizes dilated causal convolution and
residual mapping concepts to remember a huge
amount of historical information [46].

Causal convolution. Causal convolution mainly assumes
that the predicted output depends upon only the
current layer elements and past layers’ results, not
the future inputs. The standard convolution output
depends upon the future input at any instant of time;
it may or may not rely upon past information, which is
irrelevant for sequential modeling tasks. However, the
causal convolution relies entirely on the historical time
series dataset.

To make sure that the output has the same length as
the input, TCN utilizes one dimensional fully connected
network [47].

Dilated convolution. The reverse training issue of deep
learning networks can be solved by using Dilated
convolution. A simple causal convolution looks at the
historical information linearly, challenging to analyze
huge historical details to apply for a sequential task. To
solve the issue, TCN used dilated convolution [48].

Dilated convolution is a causal convolution, where
a filter is applied over an area larger than its length
by skipping some input values with a certain step to
effectively allow the network to have a vast receptive
field with just a few layers. The Dilated Causal
Convolution with dilation factor 4 is illustrated in
Figure 2.

The convolution operation for sequence a for the
element b can be presented as [16],

k-1

F(b)=) f(ma,, 3)

=0

=

Similarly, the dilated convolution operation for the
element b can be represented as,

k-1

F(b) =) f(may (4)

=0

=

where f(n) presented the n'" number of filter of its
corresponding layer, d denotes the dilation factor, k
denotes the filter size and b — d.n denotes the directions
of the past. when d value becomes 1 then the dilated
causal convolution is converted into a standard causal
convolution.

Receptive mapping. It is very critical to achieve good
prediction accuracy with a suitable filter size. So TCN
adopted residual mapping, a jumper connection for
residual convolution. The residual block has a shortcut
jumper connection to conduct a residual mapping
from input sequence y to the transformation f(y). The
residual mapping operation can be defined as [7],

O=¢(F@+v) (5)

Where ¢ represents a nonlinear activation function.

The utilized TCN block does not have a recurrent
connection; thus, it does not use the backpropagation
through time to train. They can be trained in parallel for
a faster training process and optimize GPU usage. The
TCN model does not exhibit the exploding gradients
and vanishing gradients issues and can learn from past
data without any problems.

6. Experimental setting

Hyperparameter setting is an essential step in training
the deep learning models. All the deep learning models
are developed using the Google Colab environment.
This research study adopted 80 % of data as training,
10 % as the validation set, and the remaining 10
% as a test dataset to train the model. The trial
and error method [49-51] is utilized to identify the
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Figure 2. Dilated Causal Convolution with dilation factor 4 and filter size (k)=3.

hyperparameter setting. The proposed model uses two
layers of TCN, where the first layer of TCN has 64
filters and the second TCN layer has 128 filters, with
a dilated factor of size 4. The proposed model uses
three dense layers, each of them having 50 nodes. This
research study utilized RMSProp as an optimizer and
Mean Square Error (MAE) as a loss function.

The learning rate is a hyperparameter for parameter
optimization of the model. It identifies the step size
at each iteration towards minimizing the loss function.
Usually, its values lie between the interval (0,1). The
amount of the weights is updated while training is
known as step size or learning rate. We have used
the learning rate value as 0.02. Activation functions
are the mathematical functions used to determine the
output of the neuron. Relu is adopted as an activation
function for the experiment. Epoch is set as 2000. The
batch size is set as 16. The experimental settings of
baseline models are presented in Table 3. Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), and
Mean Absolute Percentage Error (MAPE) are used as
evaluation metrics to compare the performance of all
the baseline models and the proposed model. The error
metrics can be computed as,

RMSE:,%EZ@p@P (6)
t=1

1 v R
MAE =~ |z~ 2| (7)
t=1
n N
Z 2t—%t
— 2t
MAPE = = x 10 (8)

O EA

where z;, 2, are the original observation and
forecasting value at t. n presents the total number of
samples.

RMSE represents the square root of Mean Square
Error (MSE) values. It is used to measure the standard
deviation of residuals. MSE is the average of the squared
difference b etweent he o bservationa nd predicted
values in the dataset. It is used to compute the variance
of the residuals. As the name suggests, MAE is the
mean of the absolute error, i.e. mean of the difference
between predicted and actual values. MAPE represents
the average of the percentage errors.

7. Comparison of forecasting models

Before training the proposed model, the data prepro-
cessing step is conducted. The correlation coefficient is
computed in the data preprocessing step to identify the
required input features to train the model, as shown
in Table 2. Different combinations of meteorological
parameters with PM2.5 pollutants are trained with the
proposed TCN-I model, and the forecasting results are
illustrated in Figure 3-10. It can be easily understood
from the forecasting results that the PM2.5 predicted
values are more accurate when trained with all the
meteorological features, as shown in Figure 10.

To further compare the forecasting performance
of the proposed TCN-I model with different climate
variables, RMSE, MAE, and MAPE values are computed
as shown in Table 4. The comparative analysis,
demonstrated in Table 4 proves that the proposed
model had better accuracy when trained with the
combination of all features, i.e., with all the input
meteorological parameters and PM2.5 pollutant due to
the lowest error metrics values. With the variety of all
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Table 3. Hyperparameter setting

Convolution layer=2, Filter size=128, Kernel size=2, Activation function=Relu,

CNN
= RMSProp,Loss function=MAE

Maxpooling operation with pool size 2, Dropout=0.2, Epochs=2000, Optimizer

LSTM layer=2, First LSTM layer has 100 LSTM unit, Second layer has 50

LSTM

LSTM unit, Activation function=Relu, Maxpooling operation with pool size

2, Dropout =0.2, Epochs=2000, Optimizer=RMSProp, Loss function=MAE

GRU layer=2, First GRU layer has 100 GRU unit, Second layer has 50 GRU

GRU

unit, Activation function=Relu,Maxpooling operation with pool size 2,

Dropout =0.2, Epochs=2000, Optimizer=RMSProp, Loss function=MAE

BILSTM layer=2, First BILSTM layer has 100 LSTM unit, Second layer has

BILSTM

50 LSTM unit, Activation function=Relu, Maxpooling operation with pool

size 2, Dropout =0.2, Epochs=2000, Optimizer=RMSProp, Loss function=

MAE

BIGRU layer=2, First BIGRU layer has 100 GRU unit, Second layer has 50

BIGRU

GRU unit, Activation function=Relu,Maxpooling operation with pool size 2,

Dropout =0.2, Epochs=2000, Optimizer=RMSProp, Loss function=MAE

input features, RMSE was reduced to 7, MAE to 6, and
MAPE to 11. So all the meteorological parameters are
considered to perform PM2.5 forecasting.

In this section, the forecasting performance of the
proposed TCN-I model is compared with statistical
models like SARIMA and FbPROPHET, machine

== Predicted
- Actual

PM2.5 (in pg/m3)

13
Time (in days)

Figure 3. PM2.5 prediction result with temperature parameter.
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200
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Figure 4. PM2.5 prediction result with pressure parameter.

O EA

—e~ Predicted
.= pctual

20

PM2.5 (in pg/m3)

100

3 8 10 2
Time (in days)

Figure 5. PM2.5 prediction result with dew point parameter.
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Figure 6. PM2.5 prediction result with wind speed parameter.

learning models like SVR and ANN, deep learning
models like CNN, LSTM, GRU, BILSTM, and BIGRU
networks. The experiment is conducted with the
benchmark dataset collected from the UCI machine
learning repository. The baseline models are described
as below,
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Figure 7. PM2.5 prediction result with wind direction parameter. Figure 10. PM2.5 prediction result with all features.

o= Predicted

0 e * ANN [16, 53] model interconnects the nodes and
- finds the interaction among them through the
neuron and works like a human brain to generate
outputs.

* One dimensional CNN [16] is used to analyze a

one-dimensional time series dataset. It can reduce
the complexity of huge datasets by reducing their
dimensionality. Weight sharing and data sparsity
are two important features of CNN to handle a
vast dataset [52].

PM2.5 (in pg/m3)

IS

3
Time (in days)

Figure 8. PM2.5 prediction result with rainfall parameter. * LSTM network and GRU are two significant
categories of Recurrent Neural Network (RNN)
networks. They are usually used to handle
the long-term dependencies of past historical
information to perform temporal modeling with
the help of their gating mechanism [52].

—e= Predicted
—a— nctual

Bidirectional LSTM (BILSTM) [21, 54] and
Bidirectional GRU (BIGRU) [16, 21, 55] are two
variants of LSTM and GRU structure respectively,
w0 which can analyze the dataset in both forward
» and backward direction to identify the long-short
term dependencies of the dataset very effectively
to perform time series forecasting.

PM2.5 (in pg/m3)
°

IS

13 5
Time (in days)

Figure 9. PM25 prediction result without meteorological Table 5 shows the comparison of prediction error
parameter. metrics of the proposed TCN-I model and baseline

models for the prediction horizon of 14 days. Table 5

* Seasonal Autoregressive Integrated Moving Aver- Table 4. PM2.5 forecasting with different climate variables.
age (SARIMA) [16] is a statistical forecasting
model and based on seasonal trends. Variables RMSE MAE MAPE
Temperature+PM2.5 16 12 19
* FbPROPHET [16, 17, 37] is a recently developed Pressure+PM2.5 19 15 17
prediction model, which is mainly based on trend, Dewpoint+PM2.5 15 13 20
seasonality, and holidays. WS+PM2.5 25 20 23
Rainfall+PM2.5 23 17 19
* SVR is a regression part of the Support Vector PM2.5 45 40 65
Machine model primarily used to perform WD+PM2.5 23 18 23
All features 7 6 11

regression tasks [52].
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indicates that the LSTM model has the worst forecasting
performance among all the models, and RMSE is 137.
Statistical SARIMA and FbPROPHET model has better
performance than machine learning based ANN and
SVR models in terms of RMSE. Though the statistical
models, i.e., SARIMA and FbPROPHET, have better
prediction performance, these univariate models can
not handle the multivariate properties and uncertainty
of a huge dataset. RMSE values of deep learning-based
CNN, GRU, BILSTM, BIGRU and the proposed TCN-
I models are 95, 97, 98, 91, and 7. It was evident that
the proposed TCN-I model has the lowest error metrics
values (RMSE, MAE, and MAPE) as the predicted values
are nearly equal to the original values for the proposed
model. The TCN-I model has 94% better accurate
forecasting performance than the LSTM model in terms
of RMSE.

To further analyze and compare the forecasting effect
of the proposed TCN-I and baseline models, scatter plot
results are presented in Figure 11-20. The X-axis in
the figures r epresents the timestamp in d ays, and the
Y-axis represents the PM2.5 concentration values. The
red color line shows the actual PM2.5 values, whereas
the green color line represents the predicted PM2.5
values. Figure 20 shows that the PM2.5 predicted values
of TCN-I and actual values are almost the same and
have less difference between them than other baseline
models.

Figure 11-20 shows that the BILSTM model has
better PM2.5 prediction results than the LSTM model.
BILSTM can process the data in forward and backward
directions and analyze the hidden temporal pattern
more effectively than the LSTM model. Therefore, the
BILSTM model forecasting curve is much closer to the
original values than the LSTM model. In addition to
that, it can be seen from the figures that the GRU model
has better forecasting results than the LSTM model,
as the GRU model’s 14 steps ahead predicted values
and observed values have less difference than the LSTM
model. Figure 11-20 shows that all models’ predicted
values do not follow the fluctuations of actual PM2.5
values, except the developed model TCN-I. Therefore
TCN-I has the best forecasting performance over the 14
days.

8. Comparison of imputation performance

In this section, the proposed model’s imputation per-
formance is compared with other baseline imputa-
tion approaches. The TCN-I model’s imputation perfor-
mance is compared with the cubic, linear, spline inter-
polation, mean, median, KNN, MICE, and LSTM impu-
tation techniques with the TCN model for forecasting
tasks. The experimental results are presented in Table
6-8. The PM2.5 forecasting performance is compared
with random missing values at a missing rate ranging
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Figure 11. PM2.5 prediction result of SARIMA model.
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Figure 12. PM2.5 prediction result of FOPROPHET model.
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Figure 13. PM2.5 prediction result of ANN model.
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Figure 14. PM2.5 prediction result of SVR model.
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Figure 15. PM2.5 prediction result of CNN model.
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Figure 16. PM2.5 prediction result of LSTM model.
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Figure 17. PM2.5 prediction result of BILSTM model.
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Figure 18. PM2.5 prediction result of GRU model.
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Figure 19. PM2.5 prediction result of BIGRU model.
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Figure 20. PM2.5 prediction result of TCN-I model.

from 20% to 50%. The proposed model outperforms
the other models in both cases when the missing rate
is low and high due to its lowest RMSE, MAE, and
MAPE values. Lowering the error metrics values better
the model performance. The TCN-I model works better
at a high missing rate than the other baseline models.
Suppose the information of the observed data decreases,
the disappeared rate increases. To handle this situation,
data imputation quality should be high. The results

Table 5. Prediction error metrics comparison over 14 days.

Models RMSE MAE MAPE

SARIMA 94 69 109

FbPROPHET 98 78 147

ANN 107 78 90

SVR 103 77 132

CNN 95 70 145

LSTM 137 93 71

GRU 97 74 71

BILSTM 98 76 132

BIGRU 91 79 104

TCN-I 7 6 11
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Table 6. Prediction error metrics (RMSE) with random missing
values.

Model/Missing rate(%) 20 30 40 50

Linear-TCN 91 86 85 71
MICE-TCN 73 77 68 69
Spline-TCN 49 114 121 71
LSTM-TCN 134 98 110 80
Mean-TCN 119 130 119 129
Cubic-TCN 117 79 135 110
Median-TCN 67 121 67 59
KNN-TCN 63 76 62 73
TCN-I 26 28 27 29

Table 7. Prediction error metrics (MAE) with random missing
values.

Model/Missing rate(%) 20 30 40 50

Linear-TCN 63 69 68 57
MICE-TCN 59 67 48 52
Spline-TCN 41 81 105 72
LSTM-TCN 98 74 110 66
Mean-TCN 91 95 87 91
Cubic-TCN 91 62 113 91
Median-TCN 52 85 54 43
KNN-TCN 53 54 40 58
TCN-I 21 22 21 23

Table 8. Prediction error metrics (MAPE) with random missing
values.

Model/Missing rate(%) 20 30 40 50

Linear-TCN 143 79 85 105
MICE-TCN 125 121 109 110
Spline-TCN 13 23 45 20
LSTM-TCN 115 114 186 144
Mean-TCN 98 98 149 98
Cubic-TCN 40 28 46 36
Median-TCN 71 94 94 58
KNN-TCN 67 67 68 79
TCN-I 38 24 25 45

show that the TCN-I model provides better imputa-
tion quality. The results also illustrated that the TCN-
I model with the imputation block indirectly helps to
improve the forecasting results.

The government of China has carried out some
initiative plans, and emphasis has been given to
day-to-day activities in urban cities to minimize the
pollutants’ concentration level [3]. Intensive air quality
measurements are required for proper air pollution
control, where air pollution prediction results play
a crucial role. The prediction results can be utilized
for traffic mo nitoring st ationsor industrialization

D EA

locations, which are the primary source of pollutants to
take preventive steps against future pollution levels.

9. Conclusion

In this research study, we reformulate the TCN
approach to perform the data imputation and predic-
tion task. The proposed TCN-I model has an extra
imputation block to handle the missing values. The
proposed TCN-I prediction model can identify the
appropriate input parameters in the data preprocessing
step to achieve the PM2.5 forecasting task. After input
feature selection, the model imputes the missing values
for a better quality dataset using a TCN-based imputa-
tion block. Then the preprocessed data is used as input
for the proposed model with dilated causal convolution,
having a dilation factor of 4 to handle huge historical
information. Hence, the TCN-I network can analyze
the hidden long-term dependencies within the dataset
to get forecasting results. The model can effectively
manage the multivariate dataset, handle the missing
values, and perform forecasting tasks effectively.

Research experiments revealed that incorporating
various meteorological factors significantly enhances
PM2.5 forecasting accuracy by 84%. This highlights
the substantial impact of these variables on prediction
outcomes. Additionally, our proposed TCN-I model,
which utilizes Temporal Convolutional Network (TCN)
technology for data imputation, demonstrated a
remarkable 78% improvement in forecasting accuracy
compared to traditional mean imputation methods.

In the future, the model can be extended to
multiple sites to analyze the interaction among different
air pollution monitoring stations and improve the
forecasting results. Further, the model performs a site-
specific p rediction t ask. S o u tilizing t he m odel for
regional forecasting tasks can be more useful in the
future.
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