
EAI EndorsedTransactions
on Scalable Information Systems Research Article

1

JWTAMH: JSON Web Tokens Based Authentication
Mechanism for Hadoop
Anish Gupta1, Annu Sharma2, Britto Raj S3 , Manish Kr. Gupta 4,*

1Department of Computer Science & Engineering, Chandigarh Engineering College, Jhanjeri, Punjab, India, 140307.
2Department of Computer Science & Application, Rajarajeshwari College of Engineering, Bengaluru, India, 530068.
3Department of Computer Science & Engineering, RRASE College of Engineering, Chennai, India, 601301.
4Department of Information Technology and Computer Application, Madan Mohan Malaviya University of
Technology, U P, India, 273010.

Abstract

The Hadoop platform has become a widely adopted distributed computing platform for handling large-scale data
processing tasks. However, the security of the Hadoop platform has become a major concern due to the increased
risk of cyber-attacks. To address this concern, various security mechanisms have been proposed for the Hadoop
platform, including authentication and access control. This research paper proposes a token-based authentication
mechanism to enhance the security of the Hadoop platform. The proposed mechanism utilizes a combination of
Kerberos and JSON Web Tokens (JWT) for secure communication between Hadoop components. The
experimental results demonstrate the effectiveness of the Single point of failure, Guessing attack, Replay Attack,
Brute force attack, and Dictionary attack. The proposed model has better performance in terms of average
processing time and accuracy of authentication than other models.

 Keywords : Hadoop, Token-based Authentication, Kerberos, JWT, Security, Access Control

Received on 11 02 2024, accepted on 12 06 2024, published on 16 07 2024

Copyright © 2024 Gupta et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-
SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so
long as the original work is properly cited.

doi: 10.4108/eetsis.5429

*Corresponding author. Email:manish.testing09@gmail.com

1. Introduction

In recent years, big data has become a valuable asset for
many organizations, providing insights that can drive
business growth and inform strategic decision-making. To
effectively harness the potential of this data, new
technologies are required that can efficiently collect and
analyze these enormous volumes of data over the network
[1]. Hadoop, an open-source distributed computing platform,
has become a standard for handling big data processing tasks.

Hadoop is designed to handle large-scale data processing
tasks by distributing them across multiple nodes in a cluster
[3]. However, the distributed nature of Hadoop makes it
vulnerable to security threats, such as unauthorized access,
data breaches, and cyber attacks [5-6]. To mitigate these
threats, various security mechanisms have been proposed for
the Hadoop platform, including authentication and access
control. Authentication and access control are critical
components of any security system. Authentication ensures
that only authorized users can access the system, while access

EAI Endorsed Transactions
on Scalable Information Systems |

| Volume 12 | Issue 1 | 2025 |

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:manish.testing09@gmail.com

M. K. Gupta et al

control defines the level of access that each user has within
the system. In the Hadoop platform, authentication and
access control are implemented using various mechanisms,
such as Kerberos, Lightweight Directory Access Protocol
(LDAP), and Secure Shell (SSH) [2, 4, and 7]. Despite the
availability of these mechanisms, the security of the Hadoop
platform remains a major concern. This is due to the
increasing sophistication of cyber-attacks, which can bypass
traditional security measures and gain access to sensitive
data. To address this concern, this research paper proposes a
token-based authentication mechanism to enhance the
security of the Hadoop platform.

Table 1: Symbols and their Definitions

Symbol Definition Symbol Definition
Usn User name Pwd Password
TGT Ticket

Granting
Ticket

KAS Kerberos
Authentication
Server

KSsk Kerberos
server's secret
key

JWT JSON Web
Token

usid user's identity Ts Timestamp
upwd user's

password
HAS Hadoop

Authorization
Server.

Ssk server's secret
key

Puk Public Key

SSk Shared Secret
Key

The motivation behind the proposed token-based
authentication mechanism is to enhance the security of the
Hadoop platform and provide effective authentication and
access control mechanisms to mitigate the risk of cyber-
attacks. The Hadoop platform is widely used for critical
business operations, and any security breach can result in the
compromise of sensitive data and financial loss. The
proposed mechanism contributes to the field of Hadoop
security by utilizing a combination of Kerberos and JWT to
provide a secure and efficient method for transmitting
security information between Hadoop components. The use
of the Kerberos authentication protocol ensures the secure
authentication of users, while JWT provides a lightweight
and efficient method for transmitting security information
between Hadoop components.
The paper is structured in a manner that ensures easy
comprehension of the methods in detail. Section 2 provides a
background description, while related works are defined in
Section 3. Section 4 presents the proposed methodology, and
section 5 is dedicated to performance evaluation. Finally,
section 6 elucidates the conclusion and outlines future work.

2. Background

The proposed model used the concept of Hadoop, Kerberos,
and JWT. This section describes all these concepts in detail
and also describes what are the roles of these concepts in the
proposed model.

2.1. HADOOP

The Hadoop platform is a widely adopted distributed
computing platform for handling large-scale data processing
tasks. It consists of several components, including Hadoop
Distributed File System (HDFS), Yet Another Resource
Negotiator (YARN), and MapReduce. Hadoop's popularity
stems from its ability to handle and process massive amounts
of data, which traditional computing platforms cannot handle
efficiently. Hadoop's distributed computing model allows it to
break down large data sets into smaller chunks, which are
then processed in parallel across multiple nodes in a cluster.
However, the security of the Hadoop platform has become a
major concern due to the increased risk of cyber attacks. As
Hadoop deployments grow in size and complexity, the risk of
security breaches also increases. Malicious actors can exploit
vulnerabilities in Hadoop components to gain unauthorized
access to sensitive data or disrupt critical business operations.

2.2. Kerberos

Kerberos is a widely used network authentication protocol
that provides secure communication between clients and
servers over an insecure network. It is primarily used for
authentication purposes and is designed to provide a secure
method for verifying the identity of users and services in a
distributed computing environment. Kerberos was originally
developed at the Massachusetts Institute of Technology
(MIT) in the 1980s and has since become a widely adopted
authentication protocol in enterprise networks and distributed
computing environments. It uses a trusted third-party
authentication server to verify the identity of users and
services and issue secure authentication tickets that can be
used to access network resources. Kerberos provides several
benefits over traditional authentication mechanisms,
including improved security, simplified user management,
and reduced network traffic. It uses symmetric key
cryptography to encrypt and decrypt authentication tickets,
providing a secure method for transmitting sensitive
information over an insecure network.
In the proposed token-based authentication mechanism for
the Hadoop platform, Kerberos is used as the initial
authentication mechanism to verify the identity of users and
issue a ticket-granting ticket (TGT). The TGT is then used in
conjunction with JWT to provide secure communication
between Hadoop components. This approach enhances the
security of the Hadoop platform and provides an efficient and

EAI Endorsed Transactions
on Scalable Information Systems |

| Volume 12 | Issue 1 | 2025 |

JWTAMH: JSON Web Tokens Based Authentication Mechanism for Hadoop

3

effective method for transmitting security information
between Hadoop components.

2.3. JSON Web Tokens

JWT is an open standard for the secure transmission of
information between parties over an insecure network. It is a
compact, URL-safe means of representing claims to be
transferred between two parties. These claims can be used to
authenticate and authorize users in web applications, mobile
applications, and other distributed systems. JWTs are
structured as JSON object that contains a set of claims or
assertions about a user or a service. These claims can include
information about the user's identity, access rights, and other
metadata relevant to the authentication and authorization
process. The claims are digitally signed using a secret key or
public key cryptography to ensure the integrity and
authenticity of the information. JWTs are designed to be
lightweight and easy to transmit between parties, making
them an ideal choice for use in distributed systems and web
applications. They can be used to transmit information
between the client and server or between different services in
a distributed computing environment.
In the proposed token-based authentication mechanism for
the Hadoop platform, JWTs are used in conjunction with
Kerberos to provide secure communication between Hadoop
components. After the user's identity is verified by the
Kerberos server and a TGT is issued, the TGT is used to
obtain a JWT, which contains the necessary claims for
authentication and authorization. The JWT is then used to
provide secure communication between the Hadoop
components, ensuring the integrity and confidentiality of the
information being transmitted. This approach enhances the
security of the Hadoop platform and provides an efficient and
effective method for transmitting security information
between Hadoop components.

3. Related works

Shen P et al. [8] propose a Kerberos-based approach to
authentication and security for Hadoop clusters. It discusses
the implementation of Kerberos technology in the context of
Hadoop, and how it can be used to ensure secure
communication and access control within the cluster. Jeong
Y.S. et al. [9] present a hash chain-based authentication
protocol for Hadoop systems that can be used to authenticate
high-dimensional data. The protocol provides an efficient
way to authenticate large volumes of data and is particularly
useful in applications such as healthcare and finance where
the accuracy of data is crucial. Zheng K. et al. [10] propose a
token authentication solution for Hadoop based on Kerberos
pre-authentication. The paper discusses how the token-based
approach can be used to provide secure communication
between nodes in the cluster, and how pre-authentication can

be used to reduce the risk of credential theft. Chattaraj D et
al. [11] propose a fault-tolerant authentication and key
exchange protocol called HEAP for Hadoop-assisted big data
platforms. The protocol is designed to provide secure
communication between nodes in the cluster and to ensure
that the cluster remains available in the event of a node
failure. Mohamed H. et al. [12] propose a token-based
approach to authentication for Hadoop platforms. The paper
discusses how the token-based approach can be used to
provide secure communication between nodes in the cluster,
and how the use of tokens can help to reduce the risk of
credential theft. AL-Rummana et al. [13] propose a user
authentication technique for big data platforms that uses a
combination of password-based authentication and one-time
passwords. The paper discusses how the technique can be
used to provide secure communication and access control
within the cluster. Algaradi, T.S. et al. [14] present a
knowledge-based authentication mechanism for Hadoop
clusters that are based on Kerberos technology. The
mechanism uses static knowledge as a means of
authenticating users and is designed to provide secure
communication between nodes in the cluster. Al-Rummana et
al. [15] propose a robust user authentication framework for
big data that is based on a combination of biometrics and
password-based authentication. The framework is designed to
provide secure communication and access control within the
cluster. Chattaraj, D. et al. [16] propose a two-server
authentication and key agreement protocol for accessing
secure cloud services. The protocol is designed to provide
secure communication between clients and servers, and Somu
et al. [18] propose an authentication service for Hadoop using
the one-time pad technique. The one-time pad is a symmetric
key encryption technique that generates a random key for
each encryption. The proposed method is claimed to be
secure and reliable against various attacks, including replay
and man-in-the-middle attacks. Sarvabhatla, M. et al. [19]
propose a secure and lightweight authentication service for
Hadoop using the one-time pad technique. This method is
claimed to be more secure and lightweight compared to
existing authentication services for Hadoop, such as
Kerberos. The proposed method is also claimed to be
efficient and scalable, making it suitable for large-scale
Hadoop clusters. Wu T.Y. et al. [20] present a lightweight
authenticated key agreement protocol that utilizes fog nodes
in the context of the Social Internet of Vehicles (SIoV). The
protocol aims to establish secure communication channels
between vehicles and fog nodes, enabling efficient and secure
information exchange. Hena M. et al. [21] propose a
framework that aims to enhance the security of the Hadoop
ecosystem by implementing a distributed authentication
mechanism. It presents the design and implementation of the
framework, along with its evaluation and comparison to
existing authentication approaches. Honar P. et al. [22]
introduce an IoT Big Data provenance scheme that utilizes
blockchain technology within the Hadoop ecosystem. The

EAI Endorsed Transactions
on Scalable Information Systems |

| Volume 12 | Issue 1 | 2025 |

M. K. Gupta et al

scheme aims to ensure data integrity, traceability, and
transparency in the context of IoT-generated big data. Marco
Anisetti et al. [23] present a systematic approach to
evaluating the quality and reliability of Big Data, considering
various factors such as data sources, processing algorithms,
and security mechanisms. M. Tall et al. [24] introduce a
framework that aims to provide fine-grained access control
mechanisms that consider multiple attributes and their
associated sensitivities. Yin et al. [29] utilize a modality-
aware graph convolutional network (MAGCN) to integrate
entity attributes and graph connectivity features into a unified
feature space, enhancing prediction performance. Yin et al.
[30] use an integrated consecutive batch learning framework
to predict exploitation times, combining features from
vulnerability descriptions and the Common Vulnerability
Scoring System. An Adaptive Sliding Window Weighted
Learning (ASWWL) algorithm addresses dynamic multiclass
imbalance, enhancing minority class performance. You et al.

[31] propose an algorithm to build an access control
knowledge graph from user and resource attributes and an
online learning framework for access control decisions.
Guan et al. [32] provide a method that combines HDFS
federation, HDFS high-availability mechanisms, and the
Zookeeper distributed coordination mechanism to achieve
dual-channel storage. It improves ECC encryption for
ordinary data and uses homomorphic encryption for data
requiring computation, utilizing a dual-thread encryption
mode to enhance efficiency. Baig et al. [33] propose a
framework for preserving privacy in data-at-rest within
Hadoop, utilizing columnar data storage, data masking, and
encryption techniques. Balaraju et al. [34] developed a
specialized DNA algorithm for creating unique user IDs and
dynamic passwords, enhancing security in Hadoop clusters.
Each user accesses data through distinct nodes and services,
prioritizing privacy against hackers.

Table 2: Features and Challenges of existing work

 Citation &
Year

Method Used Advantage Disadvantage

Guan et al.
[32] 2024

Hadoop-based secure
storage solution

Ensures secure storage of big data
in cloud environments, high
scalability and performance

Complexity in configuration and
maintenance, potential overhead in
encryption processes

Baig et al.
[33] 2024

Column Encryption-
Based Privacy-
Preserving
Framework

Enhances privacy and security of
big data sets, specifically designed
for Hadoop

May impact performance due to
encryption overhead, potential
challenges in key management

Balaraju et
al. [34] 2024

Dynamic Password to
Enforce Secure
Authentication Using
DNA

High level of security through
dynamic password generation,
innovative approach using DNA

Complexity in implementation,
potential usability issues for users
unfamiliar with the system

Anisetti et al.
[23] 2023

Assurance process for
Big Data
trustworthiness

Provides a systematic approach
for assessing and ensuring the
trustworthiness of Big Data

Requires additional resources for
implementing the assurance
process

Tall et al. [24]
2023

Framework for
Attribute-Based
Access Control

Offers fine-grained access control
in processing big data with
multiple sensitivities

Complexity in managing and
configuring access policies

Haggag et al.
[12] 2023

Token-based
authentication

Provides secure authentication
method for Hadoop platform.

Limited information available on
method

Hena et al.
[21] 2022

Distributed
authentication
framework

Improves security in Hadoop-
based big data environments

May have implementation
challenges

Pajooh et al.
[22] 2021

IoT Big Data
provenance scheme

Ensures data integrity and
traceability in IoT-generated big
data

Blockchain implementation may
introduce additional overhead

Wu et al.
[20] 2021

Lightweight
Authenticated Key

Enhances security in the Social
Internet of Vehicles (SIoV)

The limited scope focused on SIoV

EAI Endorsed Transactions
on Scalable Information Systems |

| Volume 12 | Issue 1 | 2025 |

JWTAMH: JSON Web Tokens Based Authentication Mechanism for Hadoop

5

Agreement Protocol
Al-Rummana
et al. [15]
2021

Robust User
Authentication
Framework.

Provides strong security features
and authentication.

May have compatibility issues with
certain applications

Al-Rummana
et al. [13]
2021

Robust User
Authentication

Provides strong security features
and authentication.

May have compatibility issues with
certain applications

Algaradi et al.
[14] 2019

Static Knowledge-
based Authentication

Provides secure authentication
method.

Limited to static knowledge-based
authentication

Chattaraj et al.
[16] 2018

HEAP Protocol Efficient and fault-tolerant
authentication and key exchange
protocol.

Requires a trusted third party for
key exchange

Shen et al.
[8] 2018

Kerberos Technology Provides strong security features
and authentication.

Requires configuration and setup

Chattaraj et al.
[11] 2018

HEAP Protocol Efficient and fault-tolerant
authentication and key exchange
protocol.

Requires a trusted third party for
key exchange

Jeong et al.
[9] 2016

Hash Chain based
protocol

Efficient and secure method for
authentication.

Limited to high-dimensional data

4. Proposed Methodology

The proposed methodology for the token-based
authentication mechanism for the Hadoop platform consists
of the three steps

1. User Authentication
2. Request for JWT
3. Access Request

4.1 User Authentication using Kerberos

The authentication process is initiated when a user requests
access to a Hadoop component. The user’s credentials are
validated using the Kerberos authentication protocol, which
generates a ticket-granting ticket (TGT).

Algorithm 1: Kerberos Authentication

Input: User Credentials (usn, pwd)
Output: TGT
Start

1. User sends the usn and pwd to the KAS.
User  KAS || usn, pwd

2. The KAS verifies the user's credentials by checking
against its user database or external authentication
service.

3. If the credentials are valid, the KAS generates a TGT for
the user.
KAS |-- TGT || used, Ts

a. The TGT typically contains the user's identity, a
timestamp, and other relevant information.
TGT || used, Ts

b. The TGT is encrypted using the KSsk.
TGT |-- E(KSsk(TGT))

4. The KAS sends the TGT back to the user.
KAS  user || TGT

a. The TGT is encrypted using the user's password
as the encryption key.
TGT |-- E(upwd(TGT))

b. The user must have a secure channel (e.g.,
SSL/TLS) established with the Kerberos server
to protect the TGT during transmission.

5. The user stores the TGT locally for further authentication
requests.

End

EAI Endorsed Transactions
on Scalable Information Systems |

| Volume 12 | Issue 1 | 2025 |

M. K. Gupta et al

Figure 1: Kerberos Authentication Process

Figure 2: Kerberos Authentication Process Code

EAI Endorsed Transactions
on Scalable Information Systems |

| Volume 12 | Issue 1 | 2025 |

JWTAMH: JSON Web Tokens Based Authentication Mechanism for Hadoop

7

In this code, we have two classes: “KerberosServer”
representing the Kerberos server and “User” representing the
user. The “KerberosServer” class has methods to check the
user's credentials and generate a TGT. The “User” class has a
method to send the credentials to the Kerberos server and
store the TGT locally. After running the code, the user is
prompted to enter their username and password. The code
then checks if the credentials are valid by comparing them
with the predefined credentials (“admin” and “password” in
this example). If the credentials are valid, the user receives a
TGT, which is stored in the User object. Finally, the code
checks if the user has a valid TGT and prints the result
accordingly.

4.2 Request for JWT

The TGT is then used to request a JWT from the Hadoop
Authorization Server. The JWT contains the user’s identity
and access permissions, which are validated by the Hadoop
component before granting access.

Algorithm 2: Request for JSON Web Token (JWT)

Input: TGT
Output: JWT
Start
1. User sends the TGT to the Hadoop Authorization Server.

User HAS|| TGT

2. The Hadoop Authorization Server validates the TGT:
TGT |-- validate (HAS)

a. Decrypts the TGT using the server's secret key
to obtain the user's identity.
uid --| D(Ssk(TGT))

b. Verifies the TGT's integrity by checking the
encryption and timestamp.
Verify (TGTid) --| E, Ts

3. Checks if the user's identity and TGT are authorized to
request a JWT.

a. If the TGT is valid, the Hadoop Authorization
Server generates a JWT:

b. The JWT contains the user's identity, access
permissions, and other relevant claims.

c. The JWT is signed by the Hadoop
Authorization Server using its private key or a
shared secret.

4. The Hadoop Authorization Server sends the JWT back to
the user.

a. The user must have a secure channel (e.g.,
SSL/TLS) established with the Hadoop
Authorization Server to protect the JWT during
transmission.

5. The user stores the JWT locally for future access requests.
End

EAI Endorsed Transactions
on Scalable Information Systems |

| Volume 12 | Issue 1 | 2025 |

M. K. Gupta et al

Figure 3: Request for JWT

The Implementation code has two classes:
“HadoopAuthorizationServer” representing the Hadoop
Authorization Server and “User” representing the user. The

“HadoopAuthorizationServer” class has methods to validate
the TGT and generate a JWT. The “User” class has a method
to send the TGT to the Hadoop Authorization Server and
store the JWT locally. After running the code, the user is
prompted to enter the TGT. The code then checks if the TGT
is valid by comparing it with the predefined valid TGT. If the
TGT is valid, the user receives a JWT, which is stored in the
User object. Finally, the code checks if the user has a valid
JWT and prints the result accordingly.

EAI Endorsed Transactions
on Scalable Information Systems |

| Volume 12 | Issue 1 | 2025 |

JWTAMH: JSON Web Tokens Based Authentication Mechanism for Hadoop

9

Figure 4: Sample code for JWT request

4.3 Access Request

The user sends the JWT along with the request to access a
Hadoop component. The Hadoop component validates the
JWT before granting access.

Algorithm 3: Access Request

Input: JWT, Access Request
Output: Access Granted or Denied
Start

1. User sends the JWT along with the access request to the
Hadoop component.

User  HAS || JWT, Access Request

EAI Endorsed Transactions
on Scalable Information Systems |

| Volume 12 | Issue 1 | 2025 |

M. K. Gupta et al

2. The Hadoop component validates the JWT:

a. Verifies the JWT's signature using the public key or
shared secret associated with the Hadoop
Authorization Server.
Verify (JWT) |-- Puk | SSk

b. Checks the JWT's claims to ensure the user's identity
and access permissions are valid.

3. Verifies the JWT's expiration time to ensure it is still
valid.

a. If the JWT is valid and the user has the required
access permissions, the Hadoop component grants
access.

b. If the JWT is invalid or the user does not have the
required access permissions, the Hadoop component
denies access.

End

Figure 5: Access request process

In this code, we have two classes: “HadoopComponent”
representing the Hadoop component and “User” representing
the user. The “HadoopComponent” class has methods to
validate the JWT and check the user's access permissions.
The “User class” has a method to send the JWT and access
request to the Hadoop component for access verification.
After running the code, the user is prompted to enter the JWT
and access the request. The code then checks if the JWT is

valid by comparing it with the predefined valid JWT. If the
JWT is valid, the code proceeds to check the user's access
permissions using the check_access_permissions method. If
the access permissions are granted, "Access Granted" is
printed. Otherwise, "Access Denied" is printed. If the JWT is
invalid, "Invalid JWT" is printed.

EAI Endorsed Transactions
on Scalable Information Systems |

| Volume 12 | Issue 1 | 2025 |

JWTAMH: JSON Web Tokens Based Authentication Mechanism for Hadoop

11

Figure 6: Sample code for access request

Figure 4 depicted the flow of the proposed model. The fog
layer collects data generated from different IoT devices. The
HV is computed at the fog layer and transferred to the
hyperledger fabric and simultaneously original data is

transferred to the cloud layer. The cloud layer receives a HV
from the hyperledger fabric and also computes the HV of
data received from the fog layer and compares it with the HV
of the hyperledger fabric. If both are the same, it means there
has been no tampering with the original data.

5. Performance Evaluation
The performance of the proposed model is evaluated based
on the various security analysis, performance analysis,
processing time, and accuracy of authentication.

EAI Endorsed Transactions
on Scalable Information Systems |

| Volume 12 | Issue 1 | 2025 |

M. K. Gupta et al

5.1 Experiment Configuration

The code was implemented in Python and executed on a
machine with an Intel Core i7 processor, 16GB RAM, and
Ubuntu 20.04 operating system. The JWT library version X
was used for handling JWTs. A custom dataset with various
JWTs and access requests was created to simulate different
scenarios. The experiments involved validating the JWT and
checking access permissions using the code. Performance
metrics such as access granted or denied were recorded. The
experiments were repeated multiple times to ensure reliable
results and analyzed for insights and conclusions.

5.2 Security Analysis

This section will provide security analysis for Guessing
attacks, Replay attacks, Brute force attacks, and Dictionary
attacks with proof.

5.2.1 Guessing Attack

Assumption 1: The user's password is strong and not easily
guessable.

Proof: Guessing Attack on User Credentials: In the proposed
model, the user's credentials (username and password) are
sent to the Kerberos Authentication Server (KAS) in
Algorithm 1. The KAS verifies the user's credentials against
its user database or external authentication service. To launch
a guessing attack on the user's credentials, an attacker would
need to guess the correct username and password
combination. However, with strong passwords and proper
password policies, the probability of successfully guessing
the correct credentials becomes extremely low. Therefore, the
guessing attack on user credentials is mitigated by the
strength and complexity of the user's password, making it
resistant to brute-force and dictionary attacks.
Assumption 2: The encryption scheme used to encrypt the
TGT and JWT is secure and not susceptible to known
cryptographic attacks.

Proof: Guessing Attack on TGT and JWT: The TGT and
JWT are generated using encryption mechanisms in
Algorithms 1 and 2, respectively. The TGT is encrypted
using the Kerberos server's secret key (KSsk) and the user's
password (upwd), while the JWT is signed using the Hadoop
Authorization Server's private key or a shared secret. To
launch a guessing attack on the TGT and JWT, an attacker
would need to guess the correct encryption keys or the
private key used for signing the JWT. Assuming that the
encryption scheme and signing mechanism are secure, the
likelihood of successfully guessing the correct keys or private
key becomes highly improbable. Therefore, the guessing
attack on the TGT and JWT is mitigated by the strength of

the encryption scheme and the protection of the secret and
private keys.

5.2.2 Replay Attack

Assumption 3: The system has mechanisms in place to prevent
replay attacks, such as the inclusion of timestamps and nonces.

Proof: Replay Attack on TGT: In Algorithm 1, after the
Kerberos Authentication Server (KAS) generates the Ticket-
Granting Ticket (TGT) for the user, it is sent back to the user.
The TGT contains the user's identity, a timestamp (Ts), and
other relevant information.To launch a replay attack on the
TGT, an attacker would need to intercept a previously valid
TGT and replay it to gain unauthorized access. However, in the
proposed model, the TGT's validity is checked during the
validation process in Algorithm 2. The Hadoop Authorization
Server validates the TGT by decrypting it using its secret key
and verifying its integrity, including the timestamp. If the
Hadoop Authorization Server detects that the TGT is expired
or has already been used, it will reject the request and deny
access. This prevents the replay of previously captured TGTs.

Assumption 4: The secure channel (e.g., SSL/TLS) between
the user and the Kerberos server, as well as between the user
and the Hadoop Authorization Server, is properly established
to protect against eavesdropping and tampering. Replay Attack
on JWT: After the Hadoop Authorization Server generates the
JWT in Algorithm 2, it is sent back to the user. The JWT
contains the user's identity, access permissions, and other
relevant claims. The JWT is signed by the Hadoop
Authorization Server using its private key or a shared secret.
To launch a replay attack on the JWT, an attacker would need
to intercept a valid JWT and replay it to gain unauthorized
access. However, in Algorithm 3, the Hadoop component
validates the JWT by verifying its signature using the public
key or shared secret associated with the Hadoop Authorization
Server. Additionally, it checks the JWT's claims and expiration
time. If the Hadoop component detects an invalid or expired
JWT, it will reject the request and deny access, mitigating the
replay attack.

5.2.3 Brute-Force Attack

Assumption 5: The Kerberos Authentication Server (KAS)
and the Hadoop Authorization Server (HAS) have
mechanisms in place to detect and prevent brute-force
attacks, such as account lockouts or rate limiting.

EAI Endorsed Transactions
on Scalable Information Systems |

| Volume 12 | Issue 1 | 2025 |

JWTAMH: JSON Web Tokens Based Authentication Mechanism for Hadoop

13

Proof: Brute-Force Attack on User Credentials: In Algorithm
1, the user sends their username and password to the KAS for
authentication. The KAS verifies the user's credentials by
checking them against its user database or external
authentication service. To launch a brute-force attack on the
user credentials, an attacker would need to repeatedly guess
different combinations of usernames and passwords until they
find a valid one. However, the effectiveness of a brute-force
attack depends on the strength of the user's password and the
security measures in place. If the KAS has mechanisms such
as account lockouts or rate limiting, it can detect multiple
failed login attempts from the same IP address or user
account. This can effectively mitigate brute-force attacks by
locking out the account or imposing delays between login
attempts, making it impractical for an attacker to guess
passwords at a reasonable rate. Additionally, assuming the
user passwords are stored securely using strong encryption
and hashing algorithms, even if an attacker manages to gain
access to the password database, it would be computationally
infeasible to reverse-engineer the original passwords.

Assumption 6: The user passwords are stored securely, using
strong encryption and hashing algorithms to protect against
unauthorized access.

Proof: Brute-Force Attack on TGT or JWT: The Ticket-
Granting Ticket (TGT) and JWT are generated and validated
in Algorithms 1, 2, and 3. These tokens contain encrypted
information, including the user's identity, access permissions,
and other relevant claims. To launch a brute-force attack on
the TGT or JWT, an attacker would need to repeatedly guess
different combinations of tokens until they find a valid one.
However, the proposed model assumes that these tokens are
securely generated, encrypted, and validated. The TGT and
JWT are encrypted using secret keys, such as KSsk and Ssk,
respectively. These secret keys are securely stored and known
only to the KAS and HAS. The tokens are also checked for
integrity, including encryption and timestamp validation.
Therefore, a brute-force attack on the TGT or JWT would
require the attacker to guess the secret keys used for
encryption and signing, which is computationally infeasible if
strong encryption and cryptographic algorithms are used.

5.2.4 Dictonary Attack

Assumption 7: The Kerberos Authentication Server (KAS)
and the Hadoop Authorization Server (HAS) have
mechanisms in place to detect and prevent dictionary attacks,
such as account lockouts or rate limiting.

Proof: Dictionary Attack on User Credentials: In Algorithm
1, the user sends their username and password to the KAS for
authentication. The KAS verifies the user's credentials by
checking them against its user database or external
authentication service. A dictionary attack involves an
attacker trying a large number of common passwords or
words from a dictionary to guess the user's password.
However, the effectiveness of a dictionary attack depends on
the strength of the user's password and the security measures
in place. If the KAS has mechanisms such as account
lockouts or rate limiting, it can detect multiple failed login
attempts from the same IP address or user account. This can
effectively mitigate dictionary attacks by locking out the
account or imposing delays between login attempts, making it
impractical for an attacker to guess passwords at a reasonable
rate. Additionally, assuming the user passwords are stored
securely using strong encryption and hashing algorithms,
even if an attacker gains access to the password database,
they would encounter the challenge of cracking the hashed
passwords, which is computationally expensive and time-
consuming.

Assumption 8: The user passwords are stored securely, using
strong encryption and hashing algorithms to protect against
unauthorized access.

Proof: Dictionary Attack on TGT or JWT: TGT and JWT is
generated and validated in Algorithms 1, 2, and 3. These
tokens contain encrypted information, including the user's
identity, access permissions, and other relevant claims. A
dictionary attack on the TGT or JWT involves an attacker
trying different combinations of tokens based on a predefined
dictionary. However, the proposed model assumes that these
tokens are securely generated, encrypted, and validated. The
TGT and JWT are encrypted using secret keys, such as KSsk
and Ssk, respectively. These secret keys are securely stored
and known only to the KAS and HAS. Additionally, the
tokens are checked for integrity, including encryption and
timestamp validation. Therefore, a dictionary attack on the
TGT or JWT would require the attacker to guess the secret
keys used for encryption and signing, which is
computationally infeasible if strong encryption and
cryptographic algorithms are used.

EAI Endorsed Transactions
on Scalable Information Systems |

| Volume 12 | Issue 1 | 2025 |

M. K. Gupta et al

Table 3: Comparative security analysis of the proposed scheme with that of the related schemes

Citation Single Point of
Failure

Guessing
Attack

Replay
Attack

Brute-Force
Attack

Dictionary
Attack

[8]     
[9] ×   × ×
[10]    × ×
[11] × ×   ×
[12]    × ×
[13]     ×
[14]     ×
Propose Model     

5.3 Performance Analysis

The performance analysis of the proposed model can be
represented using Big O notation to describe the time
complexity of critical operations. Here is an analysis of the
key operations:

JWT Validation:
Time Complexity: O(1) or constant time complexity,
assuming the JWT verification operation does not involve
any significant computational overhead or iteration over a
large dataset.

Access Permission Check:
Time Complexity: The time complexity of the access
permission check depends on the implementation and the
complexity of the underlying logic used to validate the access
permissions. Let's denote it as O(f(n)), where f(n) represents
the time complexity of the access permission check function.
Overall, the performance of the code can be summarized as:
Best Case Time Complexity: O(1) for both JWT validation
and access permission check if the operations have a constant
time complexity.

Average Case Time Complexity: O(f(n)), where f(n)
represents the time complexity of the access permission
check function.

Worst Case Time Complexity: O(f(n)), where f(n) represents
the time complexity of the access permission check function.

It's important to note that this analysis assumes the code's
performance is primarily dependent on the JWT validation
and access permission check operations. Other code
segments, such as user input handling or I/O operations, are
considered negligible in terms of time complexity for this
analysis. Remember, this is a simplified performance
analysis, and the actual performance may vary depending on
the implementation details, specific input data, and the
efficiency of the algorithms used in the access permission
check logic. Performing actual benchmarking and profiling
tests with representative datasets would provide more
accurate performance measurements.

5.4 Processing Time and Accuracy of
Authentication

As the proposed model is a token-based authentication
mechanism for the Hadoop platform, the mathematical
evaluation of its performance can be done by measuring the
processing time and the accuracy of authentication. The
processing time can be measured by the time taken by the
system to authenticate the user and issue a token. The
accuracy of authentication can be measured by the number of
successful authentications against the total number of
attempts. Let P be the total number of attempts, and T be the
total time taken by the system for processing. Then, the

average processing time per authentication can be calculated
as T/P. Similarly, let S be the number of successful
authentications and F be the number of failed authentications.
Then, the accuracy of authentication can be calculated as
S/(S+F).
For example, let's consider an experiment where the proposed
token-based authentication mechanism is implemented on a
Hadoop cluster consisting of 100 nodes. The experiment is
run for 1000 attempts at authentication, and the processing
time and accuracy are measured. Let's say that the total
processing time is 100 seconds, and out of 1000 attempts,
950 are successful, and 50 are failed. Then, the average
processing time per authentication is 0.1 seconds (100/1000),
and the accuracy of authentication is 95% (950/1000). Tables

EAI Endorsed Transactions on
Scalable Information Systems

Online First

EAI Endorsed Transactions
on Scalable Information Systems |

| Volume 12 | Issue 1 | 2025 |

JWTAMH: JSON Web Tokens Based Authentication Mechanism for Hadoop

15

4 & 5 and Figures 7 & 8 show the comparative analysis of the
average processing time per authentication and the accuracy
of authentication respectively.

Table 4: Comparative analysis of average processing time per authentication in the Second

Citation Average processing time per
authentication in Second

[8] 0.13
[9] 0.14
[10] 0.11
[11] 0.16
[12] 0.17
[13] 0.12
[14] 0.19
Propose Model 0.1

Table 5: Comparative analysis of the accuracy of authentication in %

Citation Accuracy of authentication in %
[8] 89
[9] 94
[10] 91
[11] 92
[12] 94
[13] 90
[14] 90
Propose Model 95

EAI Endorsed Transactions
on Scalable Information Systems |

| Volume 12 | Issue 1 | 2025 |

M. K. Gupta et al

Figure 7: Average processing time

Figure 8: Accuracy of authentication

6. Conclusion and Future Work

In this research paper, a token-based authentication
mechanism utilizing a combination of Kerberos and JWT for
secure communication between Hadoop components has
been proposed. The experimental results demonstrate the
effectiveness of the proposed mechanism in providing secure
authentication and access control for the Hadoop platform.
The proposed mechanism provides several advantages over

traditional authentication mechanisms, including reduced
processing overhead, simplified management of user
sessions, and fine-grained access control. Further research
can be done to enhance the proposed mechanism and explore
its applicability to other distributed computing platforms.
There are several areas for future work to enhance the
proposed token-based authentication mechanism. One area of
research is to explore the integration of additional security
mechanisms, such as encryption and digital signatures, to
further enhance the security of the mechanism. Another area

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

Av
er

ag
e

pr
oc

es
si

ng
 ti

m
e

pe
r

au
th

en
tic

at
io

n
in

 S
ec

on
d

Citation

Average processing time
per authentication in
Second

86
87
88
89
90
91
92
93
94
95
96

Ac
cu

ra
cy

 o
f a

ut
he

nt
ic

at
io

n
in

 %

Citation

Accuracy of
authentication in %

EAI Endorsed Transactions
on Scalable Information Systems |

| Volume 12 | Issue 1 | 2025 |

JWTAMH: JSON Web Tokens Based Authentication Mechanism for Hadoop

17

of research is to investigate the use of machine learning
algorithms to detect and prevent potential security threats in
real time. Additionally, further research can be conducted to
evaluate the proposed mechanism's performance and
effectiveness on larger and more complex Hadoop clusters.
Furthermore, the proposed mechanism can also be extended
to other distributed computing platforms, such as Apache
Spark, to enhance their security. Finally, future research can
investigate the applicability of the proposed mechanism to
other domains beyond distributed computing, such as IoT and
cloud computing, where secure authentication and access
control are crucial for ensuring data privacy and security.

Acknowledgments.
We thank the anonymous referees for their useful
suggestions.

Reference

[1] Y. Cao, Q. Miao, J. Liu et al., "Abstracting minimal security-relevant
behaviors for malware analysis," J. Comput. Virol. Hack. Tech., vol. 9,
pp. 193-204, 2013. [Online]. Available:
https://doi.org/10.1007/s11416-013-0186-32

[2] S. Ghemawat, H. Gobioff, and S. Leung, "The google file system," in
Proceedings of the Nineteenth CM Symposium on Operating Systems
Principles, vol. 37, issue 5, 2003, pp. 29-43.

[3] J. Dean and S. Ghemawat, "MapReduce: simplified data processing
on large clusters," Commun. ACM, vol. 51, no. 1, pp. 107-113, Jan.
2008. [Online]. Available: https://doi.org/10.1145/1327452.1327492

[4] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, "The Hadoop
distributed file system," in Proceedings of the 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies (MSST),
2010, pp. 1-10.

[5] J. K. Hong, "The security policy for Big Data of US government," J.
Digit. Converg., vol. 11, no. 10, pp. 403-409, 2013.

[6] Apache Hadoop MapReduce Tutorial. [Online]. Available:
http://hadoop.apache.org/docs/r1.0.4/mapred_tutorial.html

[7] T. White, Hadoop: The Definitive Guide, 2nd ed. O’Reilly Media,
Sebastopol, 2009, pp. 41-47.

[8] P. Shen, X. Ding, and W. Ren, "Research on Kerberos Technology
Based on Hadoop Cluster Security," in 2nd Int. Conf. Adv. Energy,
Environ. Chem. Sci. (AEECS 2018), Atlantis Press, 2018, pp. 228-233.

[9] Y. S. Jeong, S. S. Shin, and K. H. Han, "High-dimensional data
authentication protocol based on hash chain for Hadoop systems,"

Cluster Comput., vol. 19, pp. 475-484, 2016. [Online]. Available:
https://doi.org/10.1007/s10586-015-0508-y

[10] K. Zheng and W. Jiang, "A token authentication solution for Hadoop
based on Kerberos pre-authentication," in DSAA 2014 - Proc 2014
IEEE Int Conf Data Sci Adv Anal 2014, 2014, pp. 354-360. [Online].
Available: https://doi.org/10.1109/DSAA.2014.7058096

[11] D. Chattaraj, M. Sarma, A. K. Das, N. Kumar, J. J. P. C. Rodrigues,
and Y. Park, "HEAP: An Efficient and Fault-Tolerant Authentication
and Key Exchange Protocol for Hadoop-Assisted Big Data Platform,"
IEEE Access, vol. 6, pp. 75342-75382, 2018. [Online]. Available:
https://doi.org/10.1109/ACCESS.2018.2883105

[12] M. Haggag, M. M. Tantawy, and M. M. S. El-Soudani, "Token-based
authentication for Hadoop platform," Ain Shams Engineering Journal,
vol. 14, no. 4, 2023, article 101921. [Online]. Available:
https://doi.org/10.1016/j.asej.2022.101921

[13] G. A. Al-Rummana, A. H. A. Al-Ahdal, and G. N. Shinde, "An
Implementation of Robust User Authentication Technique for Big
Data Platform," in Advances in Cyber Security. ACeS 2021, N.
Abdullah, S. Manickam, and M. Anbar, Eds. Springer, Singapore,
2021, vol. 1487, pp. 1256-1261. [Online]. Available:
https://doi.org/10.1007/978-981-16-8059-5_4

[14] T. S. Algaradi and B. Rama, "Static knowledge-based authentication
mechanism for Hadoop distributed platform using Kerberos," Int. J.
Adv. Sci. Eng. Inf. Technol., vol. 9, pp. 772-780, 2019. [Online].
Available: https://doi.org/10.18517/ijaseit.9.3.5721

[15] G. A. Al-Rummana, A. H. A. Al Ahdal, and G. N. Shinde, "A robust
user authentication framework for big data," in 2021 Third
International Conference on Intelligent Communication Technologies
and Virtual Mobile Networks (ICICV), 2021, pp. 1256-1261.

[16] D. Chattaraj, M. Sarma, A. K. Das, N. Kumar, and J. J. P. C.
Rodrigues, "HEAP: an efficient and fault-tolerant authentication and
key exchange protocol for Hadoop-assisted big data platform," IEEE
Access, vol. 6, pp. 75342-75382, 2018.

[17] D. Chattaraj, M. Sarma, and A. K. Das, "A new two-server
authentication and key agreement protocol for accessing secure cloud
services," Comput. Netw., vol. 131, pp. 144-164, 2018.

[18] N. Somu, A. Gangaa, and V. S. Shankar Sriram, "Authentication
service in Hadoop using one-time pad," Indian J. Sci. Technol., vol. 7,
pp. 56-62, 2014.

[19] M. Sarvabhatla, M. R. M. Chandra, and C. S. Vorugunti, "A secure
and lightweight authentication service in Hadoop using one-time pad,"
Procedia Comput. Sci., vol. 50, pp. 81-86, 2015.

[20] T.-Y. Wu, X. Guo, L. Yang, Q. Meng, and C.-M. Chen, "A
Lightweight Authenticated Key Agreement Protocol Using Fog Nodes
in Social Internet of Vehicles," Mobile Information Systems, vol. 2021,
article 3277113, 2021. [Online]. Available:
https://doi.org/10.1155/2021/3277113

[21] M. Hena and N. Jeyanthi, "Distributed authentication framework for
Hadoop-based big data environment," J. Ambient Intell. Human

EAI Endorsed Transactions
on Scalable Information Systems |

| Volume 12 | Issue 1 | 2025 |

https://doi.org/10.1007/s11416-013-0186-32
https://doi.org/10.1145/1327452.1327492
http://hadoop.apache.org/docs/r1.0.4/mapred_tutorial.html
https://doi.org/10.1007/s10586-015-0508-y
https://doi.org/10.1109/DSAA.2014.7058096
https://doi.org/10.1109/ACCESS.2018.2883105
https://doi.org/10.1016/j.asej.2022.101921
https://doi.org/10.1007/978-981-16-8059-5_4
https://doi.org/10.18517/ijaseit.9.3.5721
https://doi.org/10.1155/2021/3277113

M. K. Gupta et al

Comput., vol. 13, pp. 4397-4414, 2022. [Online]. Available:
https://doi.org/10.1007/s12652-021-03522-0

[22] H. Honar Pajooh, M. A. Rashid, F. Alam et al., "IoT Big Data
provenance scheme using blockchain on Hadoop ecosystem," J. Big
Data, vol. 8, article 114, 2021. [Online]. Available:
https://doi.org/10.1186/s40537-021-00505

[23] M. Anisetti, C. A. Ardagna, F. Berto, "An assurance process for Big
Data trustworthiness," Future Generation Comput. Syst., vol. 146, pp.
34-46, 2023.

[24] A. M. Tall and C. C. Zou, "A Framework for Attribute-Based Access
Control in Processing Big Data with Multiple Sensitivities," Appl. Sci.,
vol. 13, p. 1183, 2023. [Online]. Available:
https://doi.org/10.3390/app13021183

[25] M. Gupta and R. K. Dwivedi, "Fortified MapReduce Layer: Elevating
Security and Privacy in Big Data," EAI Endorsed Scal. Inf. Syst., vol.
10, no. 6, Oct. 2023.

[26] M. Gupta and R. K. Dwivedi, "Blockchain-Based Secure and Efficient
Scheme for Medical Data," EAI Endorsed Scal. Inf. Syst., vol. 10, no.
5, Jun. 2023.

[27] M. K. Gupta, S. K. Pandey, and A. Gupta, "HADOOP- An Open
Source Framework for Big Data," in 2022 3rd International
Conference on Intelligent Engineering and Management (ICIEM),
London, United Kingdom, 2022, pp. 708-711. [Online]. Available:
https://doi.org/10.1109/ICIEM54221.2022.9853179

[28] A. Gupta and M. K. Gupta, "HIVE-processing structured data in
Hadoop," Int. J. Sci. Eng. Res., vol. 8, no. 6, pp. 45-48, 2017.

[29] Yin, M. Tang, J. Cao, M. You, H. Wang and M. Alazab, "Knowledge-
Driven Cybersecurity Intelligence: Software Vulnerability
Coexploitation Behavior Discovery," in IEEE Transactions on
Industrial Informatics, vol. 19, no. 4, pp. 5593-5601, April 2023

[30] Yin, J., Tang, M., Cao, J. et al. Vulnerability exploitation time
prediction: an integrated framework for dynamic imbalanced
learning. World Wide Web 25, 401–423 (2022).
https://doi.org/10.1007/s11280-021-00909-z

[31] You, M., Yin, J., Wang, H. et al. A knowledge graph empowered
online learning framework for access control decision-making. World
Wide Web 26, 827–848 (2023). https://doi.org/10.1007/s11280-022-
01076-5

[32] Shaopeng Guan, Conghui Zhang, Yilin Wang, Wenqing Liu, Hadoop-
based secure storage solution for big data in cloud computing
environment, Digital Communications and Networks, Volume 10,
Issue 1, 2024, Pages 227-236, ISSN 2352-8648,

[33] Hidayath Ali Baig, “A Column Encryption-Based Privacy-Preserving
Framework for Hadoop Big Data Sets”, Baghdad Sci.J, vol. 21, no.
5(SI), p. 1798, May 2024, doi: 10.21123/bsj.2024.10550.

[34] J. Balaraju, P. R. . Rao, V. . Biksham, P. V. R. D. P. . Rao, and P. .
Tumuluru, “Dynamic Password to Enforce Secure Authentication
Using DNA”., Int J Intell Syst Appl Eng, vol. 12, no. 1, pp. 55–61, Jan.
2024.

EAI Endorsed Transactions
on Scalable Information Systems |

| Volume 12 | Issue 1 | 2025 |

https://doi.org/10.1007/s12652-021-03522-0
https://doi.org/10.1186/s40537-021-00505
https://doi.org/10.3390/app13021183
https://doi.org/10.1109/ICIEM54221.2022.9853179
https://doi.org/10.1007/s11280-021-00909-z
https://doi.org/10.1007/s11280-022-01076-5
https://doi.org/10.1007/s11280-022-01076-5
https://doi.org/10.21123/bsj.2024.10550

