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Abstract 

INTRODUCTION: The Graph Coloring Problem (GCP) involves coloring the vertices of a graph in such a way that no 
two adjacent vertices share the same color while using the minimum number of colors possible. 
OBJECTIVES: The main objective of the study is While keeping the constraint that no two neighbouring vertices have the 
same colour, the goal is to reduce the number of colours needed to colour a graph's vertices. It further investigate how 
various techniques impact the execution time as the number of nodes in the graph increases. 
METHODS: In this paper, we propose a novel method of implementing a Genetic Algorithm (GA) to address the GCP. 
RESULTS: When the solution is implemented on a highly specified Google Cloud instance, we likewise see a significant 
increase in performance. The parallel execution on Google Cloud shows significantly faster execution times than both the 
serial implementation and the parallel execution on a local workstation. This exemplifies the benefits of cloud computing 
for computational heavy jobs like GCP. 
CONCLUSION: This study illustrates that a promising solution to the Graph Coloring Problem is provided by Genetic 
Algorithms. Although the GA-based approach does not provide an optimal result, it frequently produces excellent 
approximations in a reasonable length of time for a variety of real-world situations. 

Keywords: Genetic Algorithm, serial execution, parallel execution, graph colouring 

Received on 19 December 2023, accepted on 09 March 2024, published on 15 March 2024 

Copyright © 2024 K. Mahotra et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-SA 
4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the 
original work is properly cited. 

doi: 10.4108/eetsis.5437 

*Corresponding author. Email: chaudhary.neha@jaipur.manipal.edu

1. Introduction

The Graph Coloring Problem (GCP) stands as a 
fundamental challenge in combinatorial optimization, 
with applications ranging from scheduling to network 
design. The Graph Coloring Problem (GCP) involves 
coloring the vertices of a graph in such a way that no two 
adjacent vertices share the same color while using the 
minimum number of colors possible. The GCP is known 
to be NP-hard, making it a computationally challenging 
task for large-scale graphs. As there is no known 

polynomial-time algorithm to solve it exactly. However, 
there are many heuristic algorithms that can find 
approximate solutions to the graph coloring problem. To 
address this complex optimization problem, researchers 
have explored various heuristic and metaheuristic 
approaches. One such promising technique is the Genetic 
Algorithm (GA), inspired by the process of natural 
selection and evolution. The ability of Genetic algorithms 
to handle vast search spaces and generating optimal 
solutions for the problems makes it a best fit for solving 
combinatorial problems like GCP.  
Graph coloring has many applications, including: 
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• Scheduling: Graph coloring can be used to schedule
tasks so that no two tasks that conflict with each other are
scheduled at the same time. For example, graph coloring
can be used to schedule classes at a school so that no two
students are taking classes that meet at the same time.
• Register allocation: Graph coloring can be used to
allocate registers in a compiler so that no two variables
that are used at the same time are assigned to the same
register.
• Channel assignment: Graph coloring can be used to
assign channels in a wireless network so that no two
nearby channels are used at the same time.
In this study, we suggest a novel use of GA for solving
the Graph Colouring problem. The performance of the
proposed method is evaluated by rigorously testing the
method on different graph sizes. The method has been
implemented on three different implementation settings -
serial execution, high-specified parallel execution on
Google Cloud so that the behaviour of the method can be
analysed with the increase in the graph size as well as the
effects of cloud computing resources and parallel
processing on the overall execution time.
This work includes a thorough analysis of the obtained
data, focusing on performance measures such as
execution time and scalability. In particular, we
investigate the variation of the execution time for each
implementation parameter as the number of nodes in the
graph increases. Comparing the three implementation
schemes - serial, parallel, and parallel on Google Cloud
provides us a deep insight regarding the efficiency
achieved using parallelism and cloud computing
resources.

2. Literature Review

In this paper, Dey, Arindam et al. present a genetic 
algorithm (GA) as a solution approach for the graph 
coloring problem (GCP). The authors propose a novel GA 
tailored to address the GCP efficiently [1]. Through 
rigorous experimental evaluations, the proposed GA 
demonstrates competitive performance in terms of 
solution quality and execution time. The paper contributes 
significantly to the field by introducing a GA-based 
technique for the GCP and provides valuable insights into 
the algorithm's effectiveness in handling large-scale graph 
instances. 
S. Balakrishnan et al. propose a multi-objective genetic
algorithm (MOGA) to address the graph coloring
problem. The authors recognize that the GCP involves
multiple conflicting objectives, including minimizing the
number of colors and optimizing other relevant graph
properties [2]. The MOGA optimizes these objectives
simultaneously, providing a set of solutions representing
different trade-offs between them. Experimental
evaluations on various graph instances demonstrate that
the MOGA approach produces a diverse set of high-
quality solutions. The paper demonstrates the use of
multi-objective optimization in case of GCP and

showcase the significant benefits of multiple objectives in 
GA-based solutions. 
Using a Reduced Quantum Genetic Algorithm, Ardelean 
et al. proposed a novel GA solution for the problem of 
graph colouring [3]. In their approach they propose a 
unique technique to enhance search space exploration by 
maintaining a consistent population size throughout the 
process. When compared to typical GAs, the fixed-size 
pool technique improves both convergence speed and 
solution quality.  The performance of the graph is 
evaluated by experimental assessments on benchmark 
graphs by computing time and solution quality. 
In this work, idi Mohamed Douiri et al. proposed a hybrid 
approach for solving the graph colouring problem (GCP) 
[4]. To represent graph colours, the authors suggested a 
hybrid approach that makes it possible to explore the 
solution space effectively. The performance of the 
suggested method in generating high-quality solutions 
was evaluated using advanced local guided search, with 
low computational overhead. The paper significantly 
advances the area by introducing a novel encoding 
method and showing the potential applications of real-
coded GAs for the GCP. 
A novel crossover operator based on complementing 
solutions is included in Marappan et al.'s [5] improved 
genetic algorithm for the GCP. The proposed operator 
promotes search space exploration by enabling the 
exchange of complementary genetic information among 
solutions. The novel crossover operator significantly 
increases solution diversity and convergence speed, as the 
authors' extensive testing on a variety of graph cases 
show. By comparing the algorithm's performance against 
traditional GAs, the benefits it offers in terms of 
execution time and solution quality become clear.  
X. Li et al. propose a hybrid approach that combines a
variable neighborhood search with a genetic algorithm to
address the GCP [6]. The hybrid method utilizes VNS as a
local search strategy to improve solutions generated by
the GA. By incorporating the VNS within the GA's
evolutionary framework, the algorithm effectively
explores the solution space and refines solutions locally.
Experimental evaluations on graphs demonstrate the
hybrid approach's superior performance compared to
stand-alone GAs and VNS methods. This paper offers
valuable contributions by showcasing the synergy
between VNS and GA, highlighting the potential of
hybrid approaches for the GCP, and achieving
competitive results in graph coloring tasks.
Hamed Kazemi et al. present a parallel hybrid genetic
algorithm (GA) designed to tackle the graph coloring
problem (GCP) in a distributed computing environment
[7]. The authors combine the benefits of parallel
processing and the GA's evolutionary mechanisms to
improve solution efficiency. By distributing the GA's
population across multiple computational nodes, the
parallel hybrid approach achieves faster convergence and
reduces the execution time for large-scale graph instances.
Experimental evaluations demonstrate the effectiveness of
the parallel hybrid GA in producing high-quality solutions
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in comparison to traditional serial GAs. This paper 
contributes valuable insights into harnessing the power of 
parallelism for combinatorial optimization problems like 
the GCP. 
Feng Liu et al. propose a dynamic multi-objective genetic 
algorithm for the rotating seru production problem [8]. 
The method incorporates a hybrid crossover operator that 
combines different crossover methods to balance 
exploration and exploitation in the solution space. The 
algorithm dynamically adapts its parameters during the 
evolutionary process to improve convergence and 
enhance solution diversity. The paper contributes to the 
advancement of multi-objective optimization techniques 
and highlights the benefits of dynamically adjusting GA 
parameters. 
Feng et al. evaluated different approaches of genetic 
algorithm and compared them on the basis of chromatic 
number generated by each approach. The authors 
strongly recommended the utilization of the right GA 
approach provide faster convergence with minimum 
population size. [9]. Experimental evaluations conducted 
on graphs demonstrate the efficacy of the GA operator in 
enhancing the algorithm's performance. By exploiting the 
inherent graph structure, the genetic algorithm produces 
competitive results compared to conventional GAs. This 
paper contributes valuable insights into the problem-
specific operators for the GCP, showcasing the potential 
of tailoring genetic algorithms to address optimization 
problems. 
Mohamed, et al. introduce a novel genetic algorithm-
based approach to address the optimization problems. The 
authors propose an innovative Gaining Sharing 
Knowledge scheme to solve optimization problems more 
efficiently [10]. The algorithm utilizes unique genetic 
operators tailored to the specific encoding, promoting 
effective exploration of the search space. Experimental 
evaluations on optimization demonstrate that the proposed 
approach achieves competitive results in terms of both 
solution quality and computation time. This paper 
contributes to the field by presenting a novel genetic 
algorithm GSK for the optimization. 
R. Marappan et al. discussed the robust method to solve
the NP Hard problem of graph coloring. This study
proposed a method to implement the single parent and
conflict gene mutation [11]. further it compared the time
taken for the conversion with the existing methods and
finds out the significant improvements.
Et al. discussed the results achieved after the
implementation of Evolutionary algorithms to solve the
graph coloring problem. This study compared the
traditional GA’s with the proposed method considering
the parameters like edge density, topology and size [12].
The results conclude that the EA provides better stats
while comparing it with the traditional algorithms.
Eiben et al. give a new method to solve the GCP using
parallel approach which involves HPGA [13]. This
research discussed the proposed method derived from
VOA. They used DIMACS website to compare the

proposed method and find out, it is better than the 
traditional approaches. 
In 2016 R. Marappan et al. again discussed the single 
conflict gene and proposed a new procedure to solve the 
problem [14]. It again provides significantly improved 
results when compared with the las research and the 
modern GA. 
Kong, Y et al. proposed RGCP method to solve the GCP 
which uses the method to provide real life solution for the 
problem. They also proposed the application that can be 
implemented to develop the application for timetable 
management [15]. 
Brighen et al. explains the use of distributed approach to 
solve the GCP for the larger graphs derived from VGCP 
[16]. They proposed a new algorithm “DistG”. Among all 
the supersets it starts coloring from second superset, and 
provides some promising results.  

3. Methodology

In order to assign frequencies to different nodes, we will 
utilize a Genetic Algorithm (GA). GA is a type of 
metaheuristic, that draws inspiration from natural 
selection and belongs to the broader category of 
evolutionary algorithms (EA). By employing bio-inspired 
operators like mutation, crossover, and selection, genetic 
algorithms are widely employed to produce excellent 
solutions for optimization and search problems. 
Cross Over in Genetic Algorithm: 

Figure 1: Sample Graph 

In the context of the graph coloring problem and the given 
sequence, it appears that a genetic algorithm (GA) is 
being used to find a valid and optimized coloring for the 
graph. The goal is to assign colors to nodes (vertices) in 
such a way that no two adjacent nodes have the same 
color while minimizing the total number of colors used. 
The given sequence represents different color assignments 
for the nodes of the graph. Each number represents a color 
assigned to an individual node. The sequence is structured 
as follows (Flow chart of the prosses given in figure 2): 

• The graph has 6 nodes labeled as 0, 1, 2, 3, 4, and 5.
• The first set of numbers (e.g., 0-1-2-3-4-5) represents a
specific coloring assignment for the graph, where node 0
is assigned color 0, node 1 is assigned color 1, node 2 is
assigned color 2, and so on.
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Two examples (E.g. -) of different valid colorings are 
given: 

1. Example 1:
• Nodes: 0-1-2-3-4-5
• Colors: 1 – 2 – 1 – 3 – 3 – 4

2. Example 2:
• Nodes: 0-1-2-3-4-5
• Colors: 2 – 1 – 1 – 4 – 3 – 2

The GA proceeds with a crossover operation on these 
examples to create new color assignments. The crossover 
combines the color assignments of two-parent colorings to 
generate new potential solutions. 
After the crossover, two new colorings are generated: 

1. New Coloring 1:
• Colors: 1 – 1 – 1 – 3 – 3 – 4
• Result: Rejected, meaning this new coloring is
invalid according to the graph coloring problem
since nodes 1 and 2 are assigned the same color
(1) and are adjacent.

2. New Coloring 2:
• Colors: 1 – 2 – 1 – 4 – 3 – 4
• Result: Correct, this new coloring is valid
according to the graph coloring problem, and no
adjacent nodes have the same color.

3. New Coloring 3:
• Colors: 2 – 1 – 1 – 3 – 3 – 4
• Result: Correct, this new coloring is also valid,
and adjacent nodes have different colors.

The GA aims to find the best coloring that satisfies the 
constraints of the graph coloring problem while 
minimizing the number of colors used. The examples 
given illustrate how the GA iteratively explores different 
color assignments to eventually converge to a suitable and 
optimized solution. 

Fig. 2: Flow Chart of the GA for GCP with above 
Example 

4. Results

The initial population is created through random 
generation, and the fitness of each individual is assessed 
by considering the conflicts that occur when adjacent 
vertices are assigned the same color. The crossover 
operation merges the genetic information of two-parent 
individuals to produce new offspring solutions, while the 
mutation operation introduces slight random alterations to 
preserve diversity within the population. Throughout the 
evolution process, the genetic algorithm aims to converge 
toward a feasible and efficient coloring of the graph, 
using as few colors as possible. The termination criteria 
can be defined either as a maximum number of 
generations or upon reaching a satisfactory solution. 
Initial experiment was performed on a single 
processor/core by taking different nodes from 4 to 15 (all 
number of nodes values are taken randomly) and 
calculated the execution time. For each number of nodes, 
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an average value is calculated for 3 different iterations of 
execution.      

Table 1: Serial execution of the proposed method for 
different numbers of nodes 

No of Nodes Serial Execution time 

4 0.541 

4 0.543 

4 0.495 

Average 0.53 

5 6.456 

5 3.184 

5 4.286 

Average 4.642 

6 9.127 

6 8.033 

6 6.326 

Average 7.82 

10 10.763 

10 30.34 

10 5.022 

Average 15.375 

15 236.394 

15 167.615 

15 195.259 

Average 199.756 

The table 1 represent the results of serial execution (on a 
single processor/core), and figure 3 for different numbers 
of nodes (or data points). Each row represents a separate 
execution, and the "Execution time" column shows the 
time taken to complete the task for that specific number of 
nodes. The "Average" value at the bottom of each table 
represents the average execution time across all the 
executions for that particular number of nodes.  

Fig. 3. Serial Execution Time vs Number of Cities 

Later the experiment was performed on a parallel 
execution on multiple processors/cores by taking different 
nodes from 4 to 15 (all number of nodes values are taken 
randomly) and calculated the execution time. For each 
number of nodes, an average value is calculated for 3 
different iterations of execution. 

Table 2: Parallel execution of the proposed method 
for different numbers of nodes 

No of Nodes Parallel Execution time 

4 0.222 

4 0.522 

4 0.236 

Average 0.326 

5 3.953 

5 1.876 

5 2.459 

Average 2.76 

6 3.452 

6 5.918 

6 9.459 

Average 6.27 

10 5.545 

10 9.509 

10 12.391 

Average 9.14 

15 100.209 

15 92.381 

15 122.391 
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Average 104.99 

The table 2 represent the results of parallel execution on 
multiple processors/cores, and figure 4 for different 
numbers of nodes (or data points). Each row represents a 
separate execution, and the "Execution time" column 
shows the time taken to complete the task for that specific 
number of nodes. 

Fig. 4. Parallel Execution Time vs Number of Cities 

Later the experiment was performed on the Google Cloud 
a cloud computing platform by taking different nodes 
from 4 to 15 (all number of nodes values are taken 
randomly) and calculated the execution time. For each 
number of nodes, an average value is calculated for 3 
different iterations of execution. 

Table 3: Google Cloud execution of the proposed 
method for different numbers of nodes 

No of Nodes Execution time on Google Cloud 

4 0.247 

4 0.294 

4 0.213 

Average 0.251 

5 1.546 

5 0.854 

5 0.746 

Average 1.04 

6 2.114 

6 4.122 

6 3.711 

Average 3.31 

10 1.5 

10 5.487 

10 3.389 

Average 3.45 

15 65.713 

15 53.491 

15 61.301 

Average 60.168 

The table 3 represent the results Google Cloud on a cloud 
computing platform, and figure 5 for different numbers of 
nodes (or data points). Each row represents a separate 
execution, and the "Execution time" column shows the 
time taken to complete the task for that specific number of 
nodes. 

Fig. 5. Google Cloud Execution Time vs Number of 
Cities 

The result of different executions shown above explain 
the time taken by the processes with different nodes. Now 
when the comparison of these different processes, serial 
execution (on a single processor/core), parallel execution 
(on multiple processors/cores), and Google Cloud (a 
cloud computing platform) was done it was found that the 
Google Cloud platform provides promising results. To 
perform the comparison the Average value of each 
execution is taken into consideration.  
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Table 4: Average Execution Time on Serial 
execution, Parallel execution and Google Cloud 

execution 

No of 
Nodes 

Average 
Serial 

Execution 
time 

Average 
Parallel 

Execution 
time 

Average 
Execution 

time on 
Google Cloud 

4 0.53 0.326 0.251 

5 4.642 2.76 1.04 

6 7.82 6.27 3.31 

10 15.375 9.14 3.45 

15 199.756 104.99 60.168 

Table 3 represents the average execution time of the 
process with different number on nodes asper serial 
execution, parallel execution and Google Cloud 
execution. Where as the figure 6 represents the 
comparison of these results.  

Fig 6: Average Execution Time Comparison 

The figure 6 represents a comparison graph between serial 
execution, parallel execution, and parallel execution on 
the Google Cloud platform. It shows how the execution 
times vary across different configurations and numbers of 
nodes. 
From the above comparison it is concluded that the 
Google Cloud platform provides most promising results 
when compared with Serial and Parallel execution on the 
machine. After receiving promising results from the 
Google Cloud execution, the experiments were extended 
to observe the execution time of the proposed method on 
Google Cloud with number of nodes between 15 to 75 (all 
number of nodes values are taken randomly). 

Table 4: Exemplary Results Obtained on Google 
Cloud 

No. of Nodes Execution time on 
Google Cloud 

15 3.513 
20 7.559 
30 20.971 
50 34.497 
75 138.35 

The table 4 represents exemplary results obtained on 
Google Cloud for various numbers of nodes. The 
"Execution time" column shows the time taken to 
complete the task for each specific number of nodes. 

Fig. 7: Exemplary Results Obtained on Google 
Cloud 

Figure 7 represents the number of nodes at the X axis and 
execution time in seconds of Y axis. After analysing the 
above figure, it is worth mentioning that Google Cloud is 
providing better result even while increasing the number 
of nodes to 75 as the execution time not going beyond 140 
seconds. 

5. Conclusion

This paper illustrates that a promising solution to the 
Graph Coloring Problem is provided by Genetic 
Algorithms. Although the GA-based approach does not 
provide an optimal result, it frequently produces excellent 
approximations in a reasonable length of time for a 
variety of real-world situations. In order to demonstrate 
the GA's competitiveness and promise as an efficient tool 
for addressing the Graph Coloring Problem in a variety of 
application domains, its computational efficiency and 
solution quality are examined. Based on figure 2 to 6, one 
can infer that the performance of the solution differs 
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depending on its implementation, whether serially, in 
parallel, or on the high-specification Google Cloud 
platform. It is evident that the serial implementation 
shows a significant increase in execution times as the 
number of nodes increases. In comparison, the rise is less 
steep for parallel execution and even less so when using 
the high-specification Google Cloud system. This solution 
can be implemented in various real-life scenarios like 
timetable management using the proposed method. For 
the future, it would be interesting to analyse the other 
possible areas where the above method can be applicable. 
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