
EAI Endorsed Transactions
on Scalable Information Systems Research Article

1

A Solution to Graph Coloring Problem Using Genetic
Algorithm
Karan Malhotra 1, Karan D Vasa 2, Neha Chaudhary3,*, Ankit Vishnoi4, and Varun Sapra5

1Thirona, Nijmegen, 6525 EC, Netherlands
2Infosys, Pune 411057, Maharashtra, India
3Manipal University Jaipur 303007, India
4CSE Department, Graphic Era Deemed to be University, Dehradun, Uttarakhand, 248002, India
5School of computer science, University of Petroleum and Energy Studies, Dehradun 248007, India

Abstract

INTRODUCTION: The Graph Coloring Problem (GCP) involves coloring the vertices of a graph in such a way that no
two adjacent vertices share the same color while using the minimum number of colors possible.
OBJECTIVES: The main objective of the study is While keeping the constraint that no two neighbouring vertices have the
same colour, the goal is to reduce the number of colours needed to colour a graph's vertices. It further investigate how
various techniques impact the execution time as the number of nodes in the graph increases.
METHODS: In this paper, we propose a novel method of implementing a Genetic Algorithm (GA) to address the GCP.
RESULTS: When the solution is implemented on a highly specified Google Cloud instance, we likewise see a significant
increase in performance. The parallel execution on Google Cloud shows significantly faster execution times than both the
serial implementation and the parallel execution on a local workstation. This exemplifies the benefits of cloud computing
for computational heavy jobs like GCP.
CONCLUSION: This study illustrates that a promising solution to the Graph Coloring Problem is provided by Genetic
Algorithms. Although the GA-based approach does not provide an optimal result, it frequently produces excellent
approximations in a reasonable length of time for a variety of real-world situations.

Keywords: Genetic Algorithm, serial execution, parallel execution, graph colouring

Received on 19 December 2023, accepted on 09 March 2024, published on 15 March 2024

Copyright © 2024 K. Mahotra et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-SA
4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the
original work is properly cited.

doi: 10.4108/eetsis.5437

*Corresponding author. Email: chaudhary.neha@jaipur.manipal.edu

1. Introduction

The Graph Coloring Problem (GCP) stands as a
fundamental challenge in combinatorial optimization,
with applications ranging from scheduling to network
design. The Graph Coloring Problem (GCP) involves
coloring the vertices of a graph in such a way that no two
adjacent vertices share the same color while using the
minimum number of colors possible. The GCP is known
to be NP-hard, making it a computationally challenging
task for large-scale graphs. As there is no known

polynomial-time algorithm to solve it exactly. However,
there are many heuristic algorithms that can find
approximate solutions to the graph coloring problem. To
address this complex optimization problem, researchers
have explored various heuristic and metaheuristic
approaches. One such promising technique is the Genetic
Algorithm (GA), inspired by the process of natural
selection and evolution. The ability of Genetic algorithms
to handle vast search spaces and generating optimal
solutions for the problems makes it a best fit for solving
combinatorial problems like GCP.
Graph coloring has many applications, including:

EAI Endorsed Transactions
on Scalable Information Systems |

| Volume 11 | Issue 6 | 2024 |

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:chaudhary.neha@jaipur.manipal.edu

K. Malhotra et al.

2

• Scheduling: Graph coloring can be used to schedule
tasks so that no two tasks that conflict with each other are
scheduled at the same time. For example, graph coloring
can be used to schedule classes at a school so that no two
students are taking classes that meet at the same time.
• Register allocation: Graph coloring can be used to
allocate registers in a compiler so that no two variables
that are used at the same time are assigned to the same
register.
• Channel assignment: Graph coloring can be used to
assign channels in a wireless network so that no two
nearby channels are used at the same time.
In this study, we suggest a novel use of GA for solving
the Graph Colouring problem. The performance of the
proposed method is evaluated by rigorously testing the
method on different graph sizes. The method has been
implemented on three different implementation settings -
serial execution, high-specified parallel execution on
Google Cloud so that the behaviour of the method can be
analysed with the increase in the graph size as well as the
effects of cloud computing resources and parallel
processing on the overall execution time.
This work includes a thorough analysis of the obtained
data, focusing on performance measures such as
execution time and scalability. In particular, we
investigate the variation of the execution time for each
implementation parameter as the number of nodes in the
graph increases. Comparing the three implementation
schemes - serial, parallel, and parallel on Google Cloud
provides us a deep insight regarding the efficiency
achieved using parallelism and cloud computing
resources.

2. Literature Review

In this paper, Dey, Arindam et al. present a genetic
algorithm (GA) as a solution approach for the graph
coloring problem (GCP). The authors propose a novel GA
tailored to address the GCP efficiently [1]. Through
rigorous experimental evaluations, the proposed GA
demonstrates competitive performance in terms of
solution quality and execution time. The paper contributes
significantly to the field by introducing a GA-based
technique for the GCP and provides valuable insights into
the algorithm's effectiveness in handling large-scale graph
instances.
S. Balakrishnan et al. propose a multi-objective genetic
algorithm (MOGA) to address the graph coloring
problem. The authors recognize that the GCP involves
multiple conflicting objectives, including minimizing the
number of colors and optimizing other relevant graph
properties [2]. The MOGA optimizes these objectives
simultaneously, providing a set of solutions representing
different trade-offs between them. Experimental
evaluations on various graph instances demonstrate that
the MOGA approach produces a diverse set of high-
quality solutions. The paper demonstrates the use of
multi-objective optimization in case of GCP and

showcase the significant benefits of multiple objectives in
GA-based solutions.
Using a Reduced Quantum Genetic Algorithm, Ardelean
et al. proposed a novel GA solution for the problem of
graph colouring [3]. In their approach they propose a
unique technique to enhance search space exploration by
maintaining a consistent population size throughout the
process. When compared to typical GAs, the fixed-size
pool technique improves both convergence speed and
solution quality. The performance of the graph is
evaluated by experimental assessments on benchmark
graphs by computing time and solution quality.
In this work, idi Mohamed Douiri et al. proposed a hybrid
approach for solving the graph colouring problem (GCP)
[4]. To represent graph colours, the authors suggested a
hybrid approach that makes it possible to explore the
solution space effectively. The performance of the
suggested method in generating high-quality solutions
was evaluated using advanced local guided search, with
low computational overhead. The paper significantly
advances the area by introducing a novel encoding
method and showing the potential applications of real-
coded GAs for the GCP.
A novel crossover operator based on complementing
solutions is included in Marappan et al.'s [5] improved
genetic algorithm for the GCP. The proposed operator
promotes search space exploration by enabling the
exchange of complementary genetic information among
solutions. The novel crossover operator significantly
increases solution diversity and convergence speed, as the
authors' extensive testing on a variety of graph cases
show. By comparing the algorithm's performance against
traditional GAs, the benefits it offers in terms of
execution time and solution quality become clear.
X. Li et al. propose a hybrid approach that combines a
variable neighborhood search with a genetic algorithm to
address the GCP [6]. The hybrid method utilizes VNS as a
local search strategy to improve solutions generated by
the GA. By incorporating the VNS within the GA's
evolutionary framework, the algorithm effectively
explores the solution space and refines solutions locally.
Experimental evaluations on graphs demonstrate the
hybrid approach's superior performance compared to
stand-alone GAs and VNS methods. This paper offers
valuable contributions by showcasing the synergy
between VNS and GA, highlighting the potential of
hybrid approaches for the GCP, and achieving
competitive results in graph coloring tasks.
Hamed Kazemi et al. present a parallel hybrid genetic
algorithm (GA) designed to tackle the graph coloring
problem (GCP) in a distributed computing environment
[7]. The authors combine the benefits of parallel
processing and the GA's evolutionary mechanisms to
improve solution efficiency. By distributing the GA's
population across multiple computational nodes, the
parallel hybrid approach achieves faster convergence and
reduces the execution time for large-scale graph instances.
Experimental evaluations demonstrate the effectiveness of
the parallel hybrid GA in producing high-quality solutions

EAI Endorsed Transactions
on Scalable Information Systems |

| Volume 11 | Issue 6 | 2024 |

A Solution to Graph Coloring Problem Using Genetic Algorithm

3

in comparison to traditional serial GAs. This paper
contributes valuable insights into harnessing the power of
parallelism for combinatorial optimization problems like
the GCP.
Feng Liu et al. propose a dynamic multi-objective genetic
algorithm for the rotating seru production problem [8].
The method incorporates a hybrid crossover operator that
combines different crossover methods to balance
exploration and exploitation in the solution space. The
algorithm dynamically adapts its parameters during the
evolutionary process to improve convergence and
enhance solution diversity. The paper contributes to the
advancement of multi-objective optimization techniques
and highlights the benefits of dynamically adjusting GA
parameters.
Feng et al. evaluated different approaches of genetic
algorithm and compared them on the basis of chromatic
number generated by each approach. The authors
strongly recommended the utilization of the right GA
approach provide faster convergence with minimum
population size. [9]. Experimental evaluations conducted
on graphs demonstrate the efficacy of the GA operator in
enhancing the algorithm's performance. By exploiting the
inherent graph structure, the genetic algorithm produces
competitive results compared to conventional GAs. This
paper contributes valuable insights into the problem-
specific operators for the GCP, showcasing the potential
of tailoring genetic algorithms to address optimization
problems.
Mohamed, et al. introduce a novel genetic algorithm-
based approach to address the optimization problems. The
authors propose an innovative Gaining Sharing
Knowledge scheme to solve optimization problems more
efficiently [10]. The algorithm utilizes unique genetic
operators tailored to the specific encoding, promoting
effective exploration of the search space. Experimental
evaluations on optimization demonstrate that the proposed
approach achieves competitive results in terms of both
solution quality and computation time. This paper
contributes to the field by presenting a novel genetic
algorithm GSK for the optimization.
R. Marappan et al. discussed the robust method to solve
the NP Hard problem of graph coloring. This study
proposed a method to implement the single parent and
conflict gene mutation [11]. further it compared the time
taken for the conversion with the existing methods and
finds out the significant improvements.
Et al. discussed the results achieved after the
implementation of Evolutionary algorithms to solve the
graph coloring problem. This study compared the
traditional GA’s with the proposed method considering
the parameters like edge density, topology and size [12].
The results conclude that the EA provides better stats
while comparing it with the traditional algorithms.
Eiben et al. give a new method to solve the GCP using
parallel approach which involves HPGA [13]. This
research discussed the proposed method derived from
VOA. They used DIMACS website to compare the

proposed method and find out, it is better than the
traditional approaches.
In 2016 R. Marappan et al. again discussed the single
conflict gene and proposed a new procedure to solve the
problem [14]. It again provides significantly improved
results when compared with the las research and the
modern GA.
Kong, Y et al. proposed RGCP method to solve the GCP
which uses the method to provide real life solution for the
problem. They also proposed the application that can be
implemented to develop the application for timetable
management [15].
Brighen et al. explains the use of distributed approach to
solve the GCP for the larger graphs derived from VGCP
[16]. They proposed a new algorithm “DistG”. Among all
the supersets it starts coloring from second superset, and
provides some promising results.

3. Methodology

In order to assign frequencies to different nodes, we will
utilize a Genetic Algorithm (GA). GA is a type of
metaheuristic, that draws inspiration from natural
selection and belongs to the broader category of
evolutionary algorithms (EA). By employing bio-inspired
operators like mutation, crossover, and selection, genetic
algorithms are widely employed to produce excellent
solutions for optimization and search problems.
Cross Over in Genetic Algorithm:

Figure 1: Sample Graph

In the context of the graph coloring problem and the given
sequence, it appears that a genetic algorithm (GA) is
being used to find a valid and optimized coloring for the
graph. The goal is to assign colors to nodes (vertices) in
such a way that no two adjacent nodes have the same
color while minimizing the total number of colors used.
The given sequence represents different color assignments
for the nodes of the graph. Each number represents a color
assigned to an individual node. The sequence is structured
as follows (Flow chart of the prosses given in figure 2):

• The graph has 6 nodes labeled as 0, 1, 2, 3, 4, and 5.
• The first set of numbers (e.g., 0-1-2-3-4-5) represents a
specific coloring assignment for the graph, where node 0
is assigned color 0, node 1 is assigned color 1, node 2 is
assigned color 2, and so on.

EAI Endorsed Transactions
on Scalable Information Systems |

| Volume 11 | Issue 6 | 2024 |

K. Malhotra et al.

4

Two examples (E.g. -) of different valid colorings are
given:

1. Example 1:
• Nodes: 0-1-2-3-4-5
• Colors: 1 – 2 – 1 – 3 – 3 – 4

2. Example 2:
• Nodes: 0-1-2-3-4-5
• Colors: 2 – 1 – 1 – 4 – 3 – 2

The GA proceeds with a crossover operation on these
examples to create new color assignments. The crossover
combines the color assignments of two-parent colorings to
generate new potential solutions.
After the crossover, two new colorings are generated:

1. New Coloring 1:
• Colors: 1 – 1 – 1 – 3 – 3 – 4
• Result: Rejected, meaning this new coloring is
invalid according to the graph coloring problem
since nodes 1 and 2 are assigned the same color
(1) and are adjacent.

2. New Coloring 2:
• Colors: 1 – 2 – 1 – 4 – 3 – 4
• Result: Correct, this new coloring is valid
according to the graph coloring problem, and no
adjacent nodes have the same color.

3. New Coloring 3:
• Colors: 2 – 1 – 1 – 3 – 3 – 4
• Result: Correct, this new coloring is also valid,
and adjacent nodes have different colors.

The GA aims to find the best coloring that satisfies the
constraints of the graph coloring problem while
minimizing the number of colors used. The examples
given illustrate how the GA iteratively explores different
color assignments to eventually converge to a suitable and
optimized solution.

Fig. 2: Flow Chart of the GA for GCP with above
Example

4. Results

The initial population is created through random
generation, and the fitness of each individual is assessed
by considering the conflicts that occur when adjacent
vertices are assigned the same color. The crossover
operation merges the genetic information of two-parent
individuals to produce new offspring solutions, while the
mutation operation introduces slight random alterations to
preserve diversity within the population. Throughout the
evolution process, the genetic algorithm aims to converge
toward a feasible and efficient coloring of the graph,
using as few colors as possible. The termination criteria
can be defined either as a maximum number of
generations or upon reaching a satisfactory solution.
Initial experiment was performed on a single
processor/core by taking different nodes from 4 to 15 (all
number of nodes values are taken randomly) and
calculated the execution time. For each number of nodes,

EAI Endorsed Transactions
on Scalable Information Systems |

| Volume 11 | Issue 6 | 2024 |

A Solution to Graph Coloring Problem Using Genetic Algorithm

5

an average value is calculated for 3 different iterations of
execution.

Table 1: Serial execution of the proposed method for
different numbers of nodes

No of Nodes Serial Execution time

4 0.541

4 0.543

4 0.495

Average 0.53

5 6.456

5 3.184

5 4.286

Average 4.642

6 9.127

6 8.033

6 6.326

Average 7.82

10 10.763

10 30.34

10 5.022

Average 15.375

15 236.394

15 167.615

15 195.259

Average 199.756

The table 1 represent the results of serial execution (on a
single processor/core), and figure 3 for different numbers
of nodes (or data points). Each row represents a separate
execution, and the "Execution time" column shows the
time taken to complete the task for that specific number of
nodes. The "Average" value at the bottom of each table
represents the average execution time across all the
executions for that particular number of nodes.

Fig. 3. Serial Execution Time vs Number of Cities

Later the experiment was performed on a parallel
execution on multiple processors/cores by taking different
nodes from 4 to 15 (all number of nodes values are taken
randomly) and calculated the execution time. For each
number of nodes, an average value is calculated for 3
different iterations of execution.

Table 2: Parallel execution of the proposed method
for different numbers of nodes

No of Nodes Parallel Execution time

4 0.222

4 0.522

4 0.236

Average 0.326

5 3.953

5 1.876

5 2.459

Average 2.76

6 3.452

6 5.918

6 9.459

Average 6.27

10 5.545

10 9.509

10 12.391

Average 9.14

15 100.209

15 92.381

15 122.391

EAI Endorsed Transactions
on Scalable Information Systems |

| Volume 11 | Issue 6 | 2024 |

K. Malhotra et al.

6

Average 104.99

The table 2 represent the results of parallel execution on
multiple processors/cores, and figure 4 for different
numbers of nodes (or data points). Each row represents a
separate execution, and the "Execution time" column
shows the time taken to complete the task for that specific
number of nodes.

Fig. 4. Parallel Execution Time vs Number of Cities

Later the experiment was performed on the Google Cloud
a cloud computing platform by taking different nodes
from 4 to 15 (all number of nodes values are taken
randomly) and calculated the execution time. For each
number of nodes, an average value is calculated for 3
different iterations of execution.

Table 3: Google Cloud execution of the proposed
method for different numbers of nodes

No of Nodes Execution time on Google Cloud

4 0.247

4 0.294

4 0.213

Average 0.251

5 1.546

5 0.854

5 0.746

Average 1.04

6 2.114

6 4.122

6 3.711

Average 3.31

10 1.5

10 5.487

10 3.389

Average 3.45

15 65.713

15 53.491

15 61.301

Average 60.168

The table 3 represent the results Google Cloud on a cloud
computing platform, and figure 5 for different numbers of
nodes (or data points). Each row represents a separate
execution, and the "Execution time" column shows the
time taken to complete the task for that specific number of
nodes.

Fig. 5. Google Cloud Execution Time vs Number of
Cities

The result of different executions shown above explain
the time taken by the processes with different nodes. Now
when the comparison of these different processes, serial
execution (on a single processor/core), parallel execution
(on multiple processors/cores), and Google Cloud (a
cloud computing platform) was done it was found that the
Google Cloud platform provides promising results. To
perform the comparison the Average value of each
execution is taken into consideration.

EAI Endorsed Transactions
on Scalable Information Systems |

| Volume 11 | Issue 6 | 2024 |

A Solution to Graph Coloring Problem Using Genetic Algorithm

7

Table 4: Average Execution Time on Serial
execution, Parallel execution and Google Cloud

execution

No of
Nodes

Average
Serial

Execution
time

Average
Parallel

Execution
time

Average
Execution

time on
Google Cloud

4 0.53 0.326 0.251

5 4.642 2.76 1.04

6 7.82 6.27 3.31

10 15.375 9.14 3.45

15 199.756 104.99 60.168

Table 3 represents the average execution time of the
process with different number on nodes asper serial
execution, parallel execution and Google Cloud
execution. Where as the figure 6 represents the
comparison of these results.

Fig 6: Average Execution Time Comparison

The figure 6 represents a comparison graph between serial
execution, parallel execution, and parallel execution on
the Google Cloud platform. It shows how the execution
times vary across different configurations and numbers of
nodes.
From the above comparison it is concluded that the
Google Cloud platform provides most promising results
when compared with Serial and Parallel execution on the
machine. After receiving promising results from the
Google Cloud execution, the experiments were extended
to observe the execution time of the proposed method on
Google Cloud with number of nodes between 15 to 75 (all
number of nodes values are taken randomly).

Table 4: Exemplary Results Obtained on Google
Cloud

No. of Nodes Execution time on
Google Cloud

15 3.513
20 7.559
30 20.971
50 34.497
75 138.35

The table 4 represents exemplary results obtained on
Google Cloud for various numbers of nodes. The
"Execution time" column shows the time taken to
complete the task for each specific number of nodes.

Fig. 7: Exemplary Results Obtained on Google
Cloud

Figure 7 represents the number of nodes at the X axis and
execution time in seconds of Y axis. After analysing the
above figure, it is worth mentioning that Google Cloud is
providing better result even while increasing the number
of nodes to 75 as the execution time not going beyond 140
seconds.

5. Conclusion

This paper illustrates that a promising solution to the
Graph Coloring Problem is provided by Genetic
Algorithms. Although the GA-based approach does not
provide an optimal result, it frequently produces excellent
approximations in a reasonable length of time for a
variety of real-world situations. In order to demonstrate
the GA's competitiveness and promise as an efficient tool
for addressing the Graph Coloring Problem in a variety of
application domains, its computational efficiency and
solution quality are examined. Based on figure 2 to 6, one
can infer that the performance of the solution differs

EAI Endorsed Transactions
on Scalable Information Systems |

| Volume 11 | Issue 6 | 2024 |

K. Malhotra et al.

8

depending on its implementation, whether serially, in
parallel, or on the high-specification Google Cloud
platform. It is evident that the serial implementation
shows a significant increase in execution times as the
number of nodes increases. In comparison, the rise is less
steep for parallel execution and even less so when using
the high-specification Google Cloud system. This solution
can be implemented in various real-life scenarios like
timetable management using the proposed method. For
the future, it would be interesting to analyse the other
possible areas where the above method can be applicable.

References
[1] Dey, Arindam et al. ‘A Genetic Algorithm for Total Graph

Coloring’, Journal of Intelligent & Fuzzy Systems, vol. 37,
no. 6, pp. 7831-7838, 2019.

[2] S. Balakrishnan, Tamilarasi Suresh, Raja Marappan.
(2021) A New Multi-Objective Evolutionary Approach to
Graph Coloring and Channel Allocation Problems. Journal
of Applied Mathematics and Computation, 5(4), 252-263.

[3] Ardelean, Sebastian Mihai, and Mihai Udrescu. “Graph
coloring using the reduced quantum genetic algorithm.”
PeerJ. Computer science vol. 8, e836, Jan. 2022,
doi:10.7717/peerj-cs.836.

[4] idi Mohamed Douiri, Souad Elbernoussi, “Solving the
graph coloring problem via hybrid genetic algorithms”,
Journal of King Saud University - Engineering Sciences,
Volume 27, Issue 1, 2015, Pages 114-118, ISSN 1018-
3639, https://doi.org/10.1016/j.jksues.2013.04.001.

[5] Marappan, R., Sethumadhavan, G. Solution to Graph
Coloring Using Genetic and Tabu Search Procedures. Arab
J Sci Eng 43, 525–542 (2018).
https://doi.org/10.1007/s13369-017-2686-9.

[6] X. Li, L. Gao, Q. Pan, L. Wan and K. -M. Chao, "An
Effective Hybrid Genetic Algorithm and Variable
Neighborhood Search for Integrated Process Planning and
Scheduling in a Packaging Machine Workshop," in IEEE
Transactions on Systems, Man, and Cybernetics: Systems,
vol. 49, no. 10, pp. 1933-1945, Oct. 2019, doi:
10.1109/TSMC.2018.2881686.

[7] Hamed Kazemi, Mohammad MahdaviMazdeh,
Mohammad Rostami & Mahdi Heydari (2021) The
integrated production-distribution scheduling in parallel
machine environment by using improved genetic
algorithms, Journal of Industrial and Production
Engineering, 38:3, 157-170, DOI:
10.1080/21681015.2020.1848930.

[8] Feng Liu, Kan Fang, Jiafu Tang, Yong Yin, “Solving the
rotating seru production problem with dynamic multi-
objective evolutionary algorithms”, Journal of
Management Science and Engineering, Volume 7, Issue 1,
2022, Pages 48-66, ISSN 2096-2320,
https://doi.org/10.1016/j.jmse.2021.05.004.

[9] R. Marappan and G. Sethumadhavan, “Complexity
Analysis and Stochastic Convergence of Some Well-
known Evolutionary Operators for Solving Graph Coloring
Problem,” Mathematics, vol. 8, no. 3, p. 303, Feb. 2020,
doi: 10.3390/math8030303.

[10] Mohamed, A.W., Hadi, A.A. & Mohamed, A.K. Gaining-
sharing knowledge based algorithm for solving
optimization problems: a novel nature-inspired algorithm.
Int. J. Mach. Learn. & Cyber. 11, 1501–1529 (2020).
https://doi.org/10.1007/s13042-019-01053-x.

[11] R. Marappan and G. Sethumadhavan, "A New Genetic
Algorithm for Graph Coloring," 2013 Fifth International
Conference on Computational Intelligence, Modelling and
Simulation, Seoul, Korea (South), 2013, pp. 49-54, doi:
10.1109/CIMSim.2013.17.

[12] Eiben, A., van der Hauw, J. & van Hemert, J. Graph
Coloring with Adaptive Evolutionary Algorithms. Journal
of Heuristics 4, 25–46 (1998).
https://doi.org/10.1023/A:1009638304510.

[13] Eiben, A., van der Hauw, J. & van Hemert, J. Graph
Coloring with Adaptive Evolutionary Algorithms. Journal
of Heuristics 4, 25–46 (1998).
https://doi.org/10.1023/A:1009638304510.

[14] R. Marappan and G. Sethumadhavan, "Solution to graph
coloring problem using divide and conquer based genetic
method," 2016 International Conference on Information
Communication and Embedded Systems (ICICES),
Chennai, India, 2016, pp. 1-5, doi:
10.1109/ICICES.2016.7518911.

[15] Kong, Y., Wang, F., Lim, A., Guo, S. (2003). A New
Hybrid Genetic Algorithm for the Robust Graph Coloring
Problem. In: Gedeon, T. (D., Fung, L.C.C. (eds) AI 2003:
Advances in Artificial Intelligence. AI 2003. Lecture Notes
in Computer Science(), vol 2903. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-540-24581-
0_11.

[16] Brighen, A., Slimani, H., Rezgui, A. et al. A new
distributed graph coloring algorithm for large
graphs. Cluster Comput (2023).
https://doi.org/10.1007/s10586-023-03988-x.

EAI Endorsed Transactions
on Scalable Information Systems |

| Volume 11 | Issue 6 | 2024 |

https://doi.org/10.1007/s13042-019-01053-x
https://doi.org/10.1023/A:1009638304510
https://doi.org/10.1023/A:1009638304510
https://doi.org/10.1007/978-3-540-24581-0_11
https://doi.org/10.1007/978-3-540-24581-0_11
https://doi.org/10.1007/s10586-023-03988-x

