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Abstract 
INTRODUCTION: The satellite's physical and technical capabilities limit high spectral and spatial resolution image 
acquisition. In Remote Sensing (RS), when high spatial and spectral resolution data is essential for specific Geographic 
Information System (GIS) applications, Pan Sharpening (PanS) becomes imperative in obtaining such data. 
OBJECTIVES: Study aims to enhance the spatial resolution of the multispectral Landsat-8 (L8) images using a synthetic 
panchromatic band generated by averaging four fine-resolution bands in the Sentinel-2 (S2) images. 
METHODS: Evaluation of the proposed multi-satellite PanS approach, three different PanS techniques, Smoothed Filter 
Intensity Modulation (SFIM), Gram-Schmidt (GS), and High Pass Filter Additive (HPFA) are used for two different study 
areas. The techniques' effectiveness was evaluated using well-known Image Quality Assessment Metrics (IQAM) such as 
Root Mean Square Error (RMSE), Correlation Coefficient (CC), Erreur Relative Globale Adimensionnelle de Synthèse 
(ERGAS), and Relative Average Spectral Error (RASE). This study leveraged the GEE platform for datasets and 
implementation. 
RESULTS: The promising values were provided by the GS technique, followed by the SFIM technique, whereas the HPFA 
technique produced the lowest quantitative result. 
CONCLUSION: In this study, the spectral bands of the MS image’s performance show apparent variation with respect to 
that of the different PanS techniques used. 
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1   Introduction 

In remote sensing, composing images from multiple sources 
to create a single image by harnessing the best characteristics 
of all the sources is called image fusion [1]–[5]. The image 
fusion, which merges the spatial information from the 
Panchromatic (PAN) band with higher resolution with the 
multispectral (MS) bands with lower resolution for obtaining 
a higher resolution MS image, is termed Pan Sharpening 
(PanS) [6]–[8]. 
The PanS draws much research interest because the technical 
and financial constraints limit the direct acquisition of images 
with higher spatial and spectral resolution from all imaging 
systems. There are three categories of PanS techniques: 

feature-level, decision-level, and pixel-level [1], [9], [10]. At 
the decision level, the input images are processed separately 
to extract the decisions. These decisions are combined instead 
of the actual images [11]. The structural, geometrical, and 
spectral features like textures, edges, angles, and shapes are 
fused in feature-level PanS. The input image values are 
combined pixel-by-pixel in pixel-level PanS. 
The pixel-level PanS techniques are the most frequently used 
PanS approach in remote sensing for generating high spatial 
and spectral fused images. The high frequency information 
extracted from the PAN image is injected on the resampled 
MS bands using various PanS models [12].  PanS methods 
enhance visual interpretation, improve image quality, and 
increase classification accuracy[13]. The reliability and 
accuracy obtained from the pan-sharpened image play a 
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crucial role in determining the quality of the successive image 
processing and analysis tasks using the input as the pan-
sharpened image. The generated synthesized image quality 
relies mainly on the performances of the fusion algorithms 
used for the PanS process.  
The fusion quality assessment of various PanS techniques is 
examined by various researchers [2], [3], [11]. However, 
selecting an optimal PanS technique is challenging. The 
effectiveness of various PanS techniques using different 
fusion quality assessment methods has been evaluated [3], 
[4], [11], [14]–[19]. Small datasets [20] are used for 
comparing the performance of newly introduced fusion 
algorithms with the existing benchmark methods [21], [22] 
and for comparing the performance of the current methods 
[3], [4], [6], [18]. In light of the different advantages and 
limitations associated with PanS techniques, fused image 
quality assessment is required before applying these 
techniques to different applications [23]. Moreover, visually 
evaluating the satellite images is essential, considering 
factors like patterns, scale, tones, colour, contrast, and 
shadows, which play a crucial role in interpreting the image 
[1].  
Earth observation satellites, like Landsat, capture PAN bands 
with high-resolution (15m) and MS bands with lower 
resolution (30m) [24], [25]. Therefore, the PanS of PAN and 
MS bands becomes essential for generating MS image 
representation with higher resolution (15m). S2, on the other 
hand, has 13 bands but has no dedicated PAN with high 
resolution, while the spatial resolutions vary across bands 
ranging between 10m to 60m [26].  
The 10m bands of S2 effectively captures the spatial details 
of the ground features, which are important while performing 
the image sharpening process. For generating synthetic PAN 
band, the major task is to fuse the coarse S2 bands (20m/60m) 
using the 10m fine resolution S2 bands [27]. However, 
researchers have created a synthetic PAN (synPAN) band 
using the four bands with fine spectral resolution and used it 
for S2 PanS [28]. Various studies have proposed different 
synPAN generation methods for S2 PanS. MS bands with 
high spatial resolution were used by [27] as synthetic bands. 
Averaging of all four fine-resolution bands for generating 
PAN was suggested by [28]. [29] in their study, the NIR band 
was selected as the PAN band for increasing the spatial 
resolution of a few bands. [26] reviewed the various S2 PanS 
methods and observed that all the PAN generation techniques 
give accurate results in downscaling 20 m bands. 
To overcome the challenge of analyzing the remote sensing 
big data, Google Earth Engine (GEE) was developed by 
Google as a free cloud computing platform that consists of a 
wide array of datasets including pre-processed as well as raw 
data[30]. The coverage offered by GEE spans regional to 
global scales. The L8 archive in GEE includes imagery from 
2013 to present and that of S2 is available from 2015 to 
present. Google’s computing infrastructure is used by GEE 
for rapid analysis [31]. The time and effort required for 
various satellite preprocessing steps are considerably reduced 
by using GEE within its environment[32]. This can be utilized 
in numerous applications including multi-temporal, spatio-
temporal, spatio-spectral applications such as inundation 

mapping [33], image fusion[19], PanS[18], land cover 
classification [34], [35], forest cover mapping[12] etc.  
This paper proposes a multi-satellite PanS, where images 
from two different satellites are used, namely L8 and S2 
satellites; one for obtaining the MS image and the other for 
generating the SynPAN image for PanS. A SynPAN image is 
generated by making use of a few bands from the S2 satellite, 
and the L8 OLI optical satellite image is pan-sharpened using 
different PanS techniques to obtain a resultant high-
resolution pan-sharpened MS image. The resulting L8 fused 
image using multi-satellite PanS had an increased spatial 
resolution. The most popular PanS techniques were selected, 
such as SFIM, GS, and HPFA. The quantitative comparison 
of the methods involved using metrics such as RMSE, CC, 
RASE, and ERGAS. This study leveraged the GEE platform 
for datasets and the methods were implemented as separate 
Java scripts in GEE. 
The main contributions of this study are summarized as: 
• Firstly, a multi-satellite PanS model for pan-sharpening 

the MS bands (30m) of the L8 satellite is proposed. The 
model utilizes the generated SynPAN band (10m) from 
the S2 satellite. 

• Secondly, PanS uses three different techniques namely 
HPFA, GS, and SFIM. 

• Thirdly, we Assess the pan-sharpened results using 
IQAM namely RMSE, CC, ERGAS, and RASE. 

• Lastly, the Implementation of the multi-satellite PanS 
model as a script in Google Earth Engine (GEE) is 
performed. 

We organize the remaining portion of the paper as follows: In 
section 2, we provide an overview of the materials 
incorporated in this study. In section 3, we present the 
methods in detail. In section 4, we discuss evaluation methods 
and the outcomes of experiments. Finally, in section V, we 
provide the paper’s conclusion. 

2.   Materials 

Two study areas were selected for this research, marked as 
area-1 and area-2, from San Francisco, located on the Pacific 
coast and one of the biggest cities in the United States and in 
the state of California [18]. Renowned for its captivating 
tourist spots, pleasant weather, beaches, facilities, landmarks, 
distinctive cuisine, and diverse, multicultural community. 
San Francisco is known for its cultural, business, financial, 
and commercial center with a rich historical and traditional 
background. The 'Presidio of San Francisco' is selected as the 
study area-1, which lies on the northern tip of the San 
Francisco Peninsula, and area-2 is Golden Gate Park, which 
lies between the Richmond and Sunset districts of San 
Francisco. Figure 1. illustrates the city area with coordinates 
37° 46' 26.2992'' N and 122° 25' 52.6692'' W of San 
Francisco, and the area-1 and area-2 are marked. 
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Figure 1. Study Area-1 and Area-2: San Francisco 

The L8 OLI/TIRS combined satellite sensor image acquired 
on the 17th of April 2019, path 44, and row 34 were utilized 
for the study. Three bands of L8, namely band 2 (Blue), band 
3 (Green), and band 4 (Red), each with 12-bit radiometric 
resolution, were employed as the lower-resolution MS image 
[36].  
The MS imagery, depicted in Figures 3. a) and 3. b), has a 30 
m spatial resolution. The S2 image was acquired on the 15th 
of April 2019; the band 2 (Blue), band 3 (Green), band 4 
(Red), and band 8 (Visible and Near Infrared (VNIR)) have 
a spatial resolution of 10m. The RGB composite of S2 is as 
illustrated in Figures 3. c) and 3. d). The generated synPAN 
image has a 10 m spatial resolution and a radiometric 
resolution of 12-bit, as illustrated in Figures 3. g) and 3. h). 
Experiments on the multi-satellite PanS help to assess the 
proposed S2 synPAN generation method's effectiveness and 
the resulting multi-satellite pan-sharpened image quality. All 
the applications in this research were performed using the 
Google Earth Engine. Area-1, covering the Presidio of San 
Francisco area in San Francisco, as shown in Figure 1 b) and 
Area-2, representing the Golden Gate Park, San Francisco, as 
depicted in Figure 1 c), consisted of images obtained from L8 
and S2, with acquisition dates in Table 1.  

Table 1. S2 and L8 acquisition dates for the study areas 

 Data Acquisition 
date 

Landsat-8 LANDSAT/LC08/C01/T1_SR/
LC08_044034_20190417 

17-04-2019 

Sentinel-2 COPERNICUS/S2/20190415
T184919_20190415T190044
_T10SEG 

15-04-2019 

3.   Methods 

For enhancing the L8 satellite’s spatial resolution for the 
RGB bands, a synPAN image was generated using four bands 
selected from the S2 satellite, namely bands 2, 3, 4, and 8, 
then averaging those fine-resolution bands. The research 
outlining this approach is explained in [28]. This study uses 
the generated S2 synPAN for multi-satellite PanS of the L8 
MS satellite image’s RGB bands.  Figure 2. gives a detailed 
workflow of the proposed work. The PanS techniques used 
are outlined in this section.  
Before performing the PanS techniques, it is important that 
the varying spatial resolutions of both synPAN and MS 
images need to be expressed at a similar spatial resolution. 
The upsampling of the MS image resolution to that of the 
synPAN image resolution is required and done using 
interpolation methods such as near or cubic. The PanS 
methods used in this research are introduced concisely. The 
data used in this study comprised corrected surface reflection 
products freely available from the Google Earth Engine data 
catalogue. 

3.1 PanS Algorithms 

This research uses three PanS techniques: HPFA, GS, and 
SFIM. 
HPFA. The HPFA fusion process incorporates high-
frequency information generated using the high-pass filter, 
which is applied to the SynPAN image while aiming to 
maintain the spectral features of the low-resolution image. It 
is an image fusion technique that falls under the spatial 
domain, integrating an image’s high-resolution (HR) textural 
and structural attributes with a lower-resolution (LR) image. 
Compared to more complex PanS methods, HPFA achieves 
fusion by relying on simple square box high-pass filters, 
unlike wavelet-based techniques [37]. 
GS. The GS technique improves the MS image’s spatial 
resolution while preserving its spectral characteristics. This 
technique creates a simulated SynPAN band by calculating 
the MS image’s weighted sum of multiple bands, thus 
emulating the lowest spatial resolution among the MS bands. 
The determination of these weights considers the sensor's 
optical diffusion and spectral ranges of both the SynPAN and 
MS bands [3], [18]. 
Subsequently, the simulated SynPAN band is used as the 
initial band in the GS transformation. The GS technique is 
applied to the simulated SynPAN and MS bands. The 
statistics of the high pixel-sized SynPAN band are adjusted to 
ensure statistical balance in the first band of the GS 
transformations. With higher spatial resolution, this modified 
SynPAN band is then substituted for the first band of the GS 
transformation [38]. Finally, the MS image is generated 
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through inverse GS transforms, utilizing the spatial resolution 
of the SynPAN image. 
 
SFIM is a technique that preserves the contrasts and spectral 
properties while effectively combining the spatial details of 
high-resolution (HR) SynPAN images with a co-registered 
low-resolution (LR) MS image. This modulation is achieved 
using the ratio between the HR SynPAN image and its 
corresponding low-pass filtered image, obtained through a 
smoothing filter [39]. 

3.2 Image Quality Evaluation of PanS 
Techniques 
 
In PanS techniques, the MS image is resampled to the 
SynPAN images’ spatial resolution. The spectral distortion 
can be evaluated using the source MS image with the 
dimensions corresponding to the SynPAN image [40].  
RMSE utilizes statistical summaries such as mean, standard 
deviation, etc., coupled with the pixel values of the entire 

 
Figure 2: The flowchart representing the methodology used in this study 
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image are considered while computing the straightforward 
RMSE metrics calculations. Ps and R are the Pan-sharpened 
and reference images, respectively. The N denotes the total 
number of pixels. The RMSE metric computes the pan-
sharpened image's level of correctness. As the squaring of the 
errors before calculating the average is performed, high 
weights are assigned for large errors in RMSE metrics. 
Therefore, RMSE is helpful in instances where the goal is 
avoiding large errors. 

        𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �� (𝐹𝐹𝑖𝑖−𝑅𝑅𝑖𝑖)2
𝑁𝑁
𝑖𝑖=1

𝑁𝑁
     (1) 

CC calculations are performed between the reference and 
pan-sharpened image, representing the spectral 
characteristics' comparability [41]. The mean value of image 
R is represented as ( 𝑅𝑅)‾  and that of the pan-sharpened image 
is represented as(𝑃𝑃𝑃𝑃‾ ). A spectral performance value equal to 
1 is considered ideal for the pan-sharpened image. 

CC � 𝑅𝑅
𝑃𝑃𝑃𝑃
� =  ∑  𝑁𝑁

𝑖𝑖=1  (𝑅𝑅𝑖𝑖−𝑅𝑅‾)(𝑃𝑃𝑃𝑃𝑖𝑖−𝑃𝑃𝑃𝑃‾ )

� ∑  𝑁𝑁
𝑖𝑖=1  (𝑅𝑅𝑖𝑖−𝑅𝑅‾)2  ∑  𝑁𝑁

𝑖𝑖=1  (𝑃𝑃𝑃𝑃𝑖𝑖−𝑃𝑃𝑃𝑃‾ )2
            (2) 

 
RASE is deducted from RMSE; its effectiveness improves 
with respect to the decrease in the numerical value. Here, L 
indicates spectral bands, the mean radiance (µ), and Bi 
represents the ith band of R.  
 

RASE = 100
μ
�1
𝐿𝐿
∑  𝐿𝐿
𝑖𝑖=1  RMSE2 (𝐵𝐵𝑖𝑖)                  (3) 

 
ERGAS metric considers the ratios of the MS bands and the 
SynPAN band’s spatial resolutions. The (h) indicates the MS 
image having higher spatial resolution, and (l) for the lower 
spatial resolution MS image. 

ERGAS = 100 ℎ
𝑙𝑙 �

1
𝐿𝐿
∑  𝐿𝐿
𝑖𝑖=1  

RMSE2 (𝐵𝐵𝑖𝑖)
𝜇𝜇𝑖𝑖
2             (4) 

4. Results and Discussion 

The visual comparison alone would be insufficient in 
assessing the PanS; therefore, the quantitative assessment is 
considered in this work to evaluate the performances of 
techniques applied to the outcomes of various image fusion 
techniques and compare them. Following a visual assessment, 
the pan-sharpened images should be assessed statistically 
using image quality assessment metrics. Since the squaring of 
the errors before calculating the average is performed, RMSE 
assigns large errors with a higher weight. Therefore, RMSE 
is helpful in instances where evading large errors is required. 
The effectiveness of using RASE metrics increases with the 
decrease in numerical value as the RASE is deduced from 
RMSE. The ERGAS metric considers the MS bands and 
SynPAN band spatial resolution ratios along with the RMSE 
metric. The CC value nearer to 1 is regarded as the best. 

A comparative assessment of the three PanS techniques for 
Area 1 is shown in Table 2 and Table 4, which for Area 2 are 
illustrated in Table 3, and Table 5. 

Table 2. IQAM for HPFA, SFIM, and GS PanS 
techniques for multi-satellite pan-sharpened images for 

area-1 

IQAM HPFA SFIM GS 
RASE 12.7688 9.0899 10.1492 
ERGAS 1.8542 1.4926 1.4890 

Table 3. IQAM for HPFA, SFIM, and GS PanS 
techniques for multi-satellite pan-sharpened images for 

area-2 

IQAM HPFA SFIM GS 
RASE 12.7258 9.1199 10.1662 
ERGAS 1.8472 1.4996 1.4908 

Table 4. IQAM for HPFA, SFIM, and GS PanS 
techniques for multi-satellite pan-sharpened 

images corresponding to R, G, and B bands of L8 
and the bands average for area-1. 

IQAM Band HPFA SFIM GS 

RMSE 

Blue 0.0097 0.0064 0.0089 
Green 0.0102 0.0066 0.0073 
Red 0.0102 0.0075 0.0069 
Avg 0.0100 0.0068 0.0077 

PCC 

Blue 0.9789 0.9941 0.9878 
Green 0.9523 0.9808 0.9759 
Red 0.9699 0.9848 0.9935 
Avg 0.9670 0.9865 0.9857 

Table 5. IQAM for HPFA, SFIM, and GS PanS 
techniques for multi-satellite pan-sharpened images 
corresponding to R, G, and B bands of L8 and the 

bands average for area-2. 

IQAM Band HPFA SFIM GS 

RMSE 

Blue 0.0097 0.0090 0.0092 
Green 0.0101 0.0081 0.0085 
Red 0.0099 0.0078 0.0071 
Avg 0.0099 0.0083 0.0082 

PCC 

Blue 0.9696 0.9752 0.9768 
Green 0.9633 0.9900 0.9723 
Red 0.9599 0.9798 0.9864 
Avg 0.9642 0.9816 0.9785 
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The promising values were provided by the GS technique, 
followed by the SFIM technique, whereas the HPFA 
technique produced the lowest quantitative result. In this 

study, the spectral bands of the MS image’s performance 
show apparent variation with respect to that of the different 
PanS techniques used.

 
Area-1 

 
Area-2 

  

L8  (RGB) (30m) L8  (RGB) (30m) 

  
S2 (RGB) (10m) S2 (RGB) (10m) 

  
S2 (B5,B8A,B12) (20m) S2 (B5,B8A,B12) (20m) 

EAI Endorsed Transactions on 
Scalable Information Systems 

Online First



Image Quality Assessment of Multi-Satellite Pan-Sharpening Approach: A Case Study using Sentinel-2 Synthetic 
Panchromatic Image and Landsat-8   

 
 
 

7 

  
S2 SynPAN (10m) S2 SynPAN (10m) 

  
L8 pan-sharpened with synPAN using GS technique L8 pan-sharpened with synPAN using GS technique 

  
L8 pan-sharpened with synPAN using SFIM technique L8 pan-sharpened with synPAN using SFIM technique 
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L8 pan-sharpened with synPAN using HPFA 
technique. 

 

L8 pan-sharpened with synPAN using HPFA 
technique. 

Figure 3. L8 MS images, S2 synPAN images, and pan-sharpened images using three different techniques for 
area-1 and area-2. 

 

5. Conclusion 

L8 image (30m) enhancement was carried out in this 
research using a synPAN image (10m) generated by 
averaging the four selected fine-resolution bands from the 
S2 image, which resulted in a pan-sharpened L8 image 
(10m). Three different PanS techniques, such as SFIM, GS, 
and HPFA, were selected for the multi-satellite PanS 
process, which utilizes satellite images acquired using 
various sensors with varying spatial resolutions. The 
techniques' effectiveness was evaluated, and well-known 
IQAMs such as CC, RMSE, ERGAS, and RASE. Although 
the qualitative and quantitative comparisons showed slight 
differences, the GS method emerged as the most effective, 
while HPFA was the least successful. 
Furthermore, the proposed multi-satellite PanS of L8 using 
synPAN generation from the Senntinel-2 method's 
applicability was evaluated in two study areas. The 
proposed approach's feasibility was assessed using 
statistical tools and visual presentations. These pan-
sharpened results find application in land cover 
classifications, thematic mapping, other visualization 
purposes, environmental hazard monitoring etc. It is 
necessary to obtain atmospheric corrected products as it 
can hinder the accuracy of the results. Another limitation is 
the turning of hyperparameters in PanS techniques which 
limit the model’s performance. The different SynPAN 
generation techniques can be explored as a future scope of 
this study, and an assessment of their performance can be 

studied by combining them with other PanS techniques to 
identify the most promising combination. The possibilities 
of using deep learning techniques for PanS can also be 
explored and experimented with. This can enhance the land 
cover land use classification accuracy, object 
identification, crop identification, and other related 
applications. 
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