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Abstract 

In an era dominated by digital technology, the imperative of securing patient data cannot be overstated. The deployment of 
advanced protective measures, including encryption, firewalls, and robust authentication protocols, is an absolute necessity 
when it comes to preserving the confidentiality and integrity of sensitive patient information. Furthermore, the 
establishment of stringent access controls serves as a fundamental safeguard, ensuring that only authorized personnel are 
granted access to this invaluable data. An innovative development in the realm of patient data protection is the utilization 
of ElectroCardioGram (ECG) as a unique identifier for individuals. In the context of this study, ECG data is ingeniously 
embedded within cover images using a technique known as Reversible Data Hiding (RDH). RDH offers a distinctive 
advantage by ensuring that the original image can be fully restored without loss of data after extraction. This achievement 
is made possible through the application of inventive pixel interpolation and histogram shifting algorithms. Crucially, the 
study's simulations, conducted across a diverse array of images, underscore the enhanced embedding capacity of the RDH 
technique while maintaining a commendable balance in terms of the Peak Signal to Noise Ratio (PSNR) and boundary 
map. This empirical evidence corroborates the efficacy of the approach and its potential to provide an advanced level of 
security for patient data in the digital landscape. 
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1. Introduction

The importance of safeguarding patient data in the digital 
age cannot be overstated. A myriad of security measures, 
such as encryption, firewalls, secure authentication, and 
access controls, have become pivotal components in 
fortifying patient information against unauthorized access 
and potential breaches [1-4]. In the realm of healthcare, the 
need for stringent control over who can access patient data is 

paramount. Only individuals with the proper credentials and 
authorization should be allowed to access and interact with 
this sensitive information. This not only upholds patient 
privacy but also ensures that medical records remain 
confidential and secure. To maintain the resilience of these 
security measures, regular security updates and audits are 
vital. These ongoing processes serve the critical function of 
identifying vulnerabilities and rectifying them promptly. 
Moreover, comprehensive staff training is imperative to 
prevent accidental data breaches, as human error remains a 
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significant factor in data security incidents. In the digital 
age, a holistic approach is indispensable for the protection of 
patient data. This comprehensive strategy encompasses 
various security layers to create a robust defense system 
against the evolving landscape of digital threats. The 
implementation of this multi-faceted approach ensures that 
patient data remains secure and intact. 
One of the technological advancements enhancing patient 
care in the digital era is the deployment of Wireless Body 
Area Networks (WBANs). These networks efficiently 
monitor physiological data, contributing to the detection and 
treatment of chronic diseases [5]. By utilizing tiny sensors 
for real-time health data collection, WBANs have 
revolutionized medical care and wellness management. The 
data gathered from patients can be efficiently processed and 
transmitted over WBAN-based e-human services 
architecture, enabling rapid data delivery and remote 
examinations [1]. WBANs consist of sensor nodes 
responsible for collecting physiological data. This data is 
then processed by the Body Control Unit (BCU) before 
transmission [1]. The security of data transmitted within 
WBANs is of paramount importance due to the inherently 
sensitive nature of medical information. Robust security 
measures, such as encryption and authentication, are 
essential to prevent unauthorized access and tampering [4]. 
In resource-constrained environments like WBANs, 
lightweight security protocols are optimized to address 
scalability challenges, ensuring that security is not 
compromised [4]. The use of electrocardiogram (ECG) as a 
unique biometric identifier has gained prominence in the 
healthcare sector [6]. ECG offers non-invasive accuracy in 
patient identification, a feature of great value in healthcare. 
WBANs play a pivotal role in facilitating the accurate 
transmission of ECG data among sensors, thereby enhancing 
remote patient monitoring and healthcare delivery [5]. The 
protection of patient privacy and the secure handling of data 
from various sources are critical in healthcare settings [6]. 
Implementing systems that allow patients to control access 
to their personal health records not only builds trust but also 
ensures responsible data handling [7]. Robust security 
protocols and encryption methods are crucial for 
safeguarding data in communication networks and on 
servers [8, 9]. Notably, data can be hidden within host data 
without increasing its size or computing overhead [10-12]. 
This allows for secure data storage and transmission, either 
before or after the encryption process, ensuring that patient 
data remains confidential and intact [12]. 
In this paper, the authors propose a novel approach for 
patient identification by utilizing ECG (electrocardiogram) 
data. ECG is a widely used medical diagnostic tool that 
records the electrical activity of the heart over time. This 
method, as illustrated in Figure 1, introduces an innovative 
data security measure, the RDH mechanism, to safeguard 
ECG data. The fundamental idea behind this approach is to 
ensure that patient data, specifically their ECG records, 
remain confidential and secure throughout the identification 
process. 

Figure 1. Schematic of RDH based secure data 
transfer mechanism 

To achieve this, the RDH mechanism plays a pivotal role. 
RDH is a technique employed in information technology 
and data security, primarily focused on embedding data 
within other data while still allowing for the extraction of 
the original information. In this case, the RDH mechanism is 
applied to the ECG data. Before transmitting the RDH-
embedded ECG data, an additional layer of protection is 
added. The RDH image is subjected to encryption. This 
encryption process ensures that the data is transformed into 
a format that is virtually impossible to decipher without the 
corresponding decryption keys. Thus, even if the transmitted 
data were intercepted by unauthorized parties, it would 
remain effectively unreadable and secure. The encryption 
keys serve as the critical tools for decrypting the RDH 
image. Only authorized individuals or entities possessing 
these decryption keys can successfully unlock and access 
the embedded ECG data. This guarantees that the patient's 
sensitive medical information remains protected from any 
potential security breaches or unauthorized access. 

1.1 Motivation 
The motivation behind the proposed concept stems from the 
pressing need to bolster patient data security within the 
increasingly digitized landscape of healthcare. With the 
proliferation of electronic health records and telemedicine, 
protecting sensitive medical information, such as 
electrocardiogram (ECG) data, has become paramount. 
Traditional encryption methods may provide some level of 
security but can be vulnerable to sophisticated cyber threats. 
Therefore, there is a strong motivation to explore innovative 
approaches that go beyond conventional encryption 
techniques to safeguard patient data effectively. By 
integrating ECG data into cover images using reversible 
data hiding (RDH), the proposed concept seeks to address 
this need by providing an alternative, yet robust, method for 
securing sensitive medical information. This approach not 
only enhances the security of ECG data but also ensures its 
confidentiality and integrity during transmission and 
storage, thereby motivating advancements in patient data 
security in the digital age. 
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1.2 Novelty and Contribution 

The contribution of the proposed concept lies in its 
innovative integration of ECG data into cover images using 
RDH, which significantly enhances patient data security in 
the digital healthcare landscape. By leveraging RDH 
techniques, the concept enables the seamless embedding of 
ECG data into seemingly innocuous cover images without 
perceptible distortion, thus concealing sensitive medical 
information from unauthorized access. This novel approach 
not only enhances the confidentiality of ECG data but also 
ensures its tamper-resistance, as the embedded data can be 
extracted with minimal loss or distortion when required. 
Moreover, by employing cover images as carriers for ECG 
data, the concept offers an additional layer of security, as the 
embedded information remains camouflaged within the 
visual content, making it less susceptible to detection by 
potential attackers. Overall, the proposed concept makes a 
significant contribution to the field of patient data security 
by introducing a novel and effective method for 
safeguarding sensitive medical information in the digital 
realm. 

1.3 Organization of Paper 

The remaining sections of the paper are as follows: Section 
2 provides an overview of related and recent notable works. 
Section 3 outlines the proposed approach for data hiding. In 
Section 4, simulation results, including PSNR and bit 
embedding capacity, are presented. The key findings are 
summarized finally in section 5. 

2. Literature Survey

This section of the paper focuses on an extensive 
exploration of research and developments pertaining to the 
crucial domains of data hiding and patient identification 
using ECG data.  

2.1 RDH Schemes 
Early methods like compression [10], histogram 
equalization [11], and difference expansion [12] had limited 
embedding capacity. Compression involved a minor cover 
image compression to embed data, resulting in low capacity 
[10]. Histogram equalization used peak points for 
embedding but suffered from overflow and underflow 
issues, and limited peak locations reduced capacity [11]. 
Wang et.al introduced a new method based on Difference 
Expansion (DE) [12], increasing capacity and lowering 
complexity but still having low bit per pixel capacity. 
Subsequent modifications by researchers such as Wu et al. 
[13], Hou et al. [14], Chang et al. [15], and He et al. [16] 
aimed to enhance embedding capacity and image quality in 
RDH schemes, with a focus on histogram modification. 

Jhong et al. introduced histogram shifting for data 
embedding, using peak points [17]. Shaik et al. combined 
wavelet and histogram shifting to obtain more peak points 
[18]. Khan A. et al. improved capacity with histogram 
shifting, down sampling, and block selection [19]. Pan et al. 
proposed multi-dimensional and multi-level embedding 
[20]. Tai et al. based their method on histogram shifting and 
neighboring pixel differences [21]. Lin et al. used histogram 
difference for additional data embedding space [22]. Hu et 
al. employed neighboring pixel correlation and difference 
expansion for embedding [23]. Abadi et al. suggested 
interpolation error and histogram shifting [24], which was 
extended by Thodi and Rodriguez to Prediction Error 
Expansion (PEE) [25]. Recently, reversible methods 
focusing on image interpolation with a reversible cover 
image have gained attention. The interpolation process 
scales a 2M×2N image to M×N pixels, forming the final 
2M×2N cover image. Various interpolation strategies have 
been proposed, where pixels values are interpolated using 
the surrounding pixels [26-32] Ma et al. introduced a 
method combining pixel interpolation and histogram 
shifting with good capacity but faced overflow and 
underflow issues, mitigated by the introduction of boundary 
maps [27]. Sah et al. [28] improved Ma et al.'s work by 
reducing the boundary map's size to enhance capacity while 
maintaining the histogram shifting procedure [27]. In this 
study, further enhancements are suggested, incorporating the 
Discrete Cosine Transform (DCT) and a novel interpolation 
scheme while keeping the histogram shifting approach 
similar to Ma et al.'s method [27]. Tripathi et al. [29] 
modified the interpolation scheme to further improve the 
results. 

2.2 ECG Based Patient Identification 
Wang and his colleagues (referenced as [33]) introduced an 
innovative biometric recognition technique centered on an 
ECG feature vector, which utilizes a pooling layer to handle 
beat signals of varying lengths. This method's efficacy and 
resilience are thoroughly assessed across a range of datasets, 
encompassing the ECG-ID database, the MITDB arrhythmia 
database, and a USSTDB database, a proprietary resource 
containing ECG recordings from 60 volunteers before and 
after physical exertion. Furthermore, this method exhibits 
strong recognition capabilities when subjected to cross-
database tests. Mehdi et.al [34] proposed leveraging ECG 
signals, readily available in digital healthcare systems, for 
authentication purposes. The proposed solution utilizes an 
Ensemble Siamese Network (ESN) capable of handling 
minor variations in ECG signals. We further enhance the 
model's performance by incorporating preprocessing 
techniques for feature extraction. Through extensive training 
on benchmark datasets such as ECG-ID and PTB, our model 
achieves remarkable results, boasting an accuracy of 93.6% 
and 96.8%, respectively. In their research, Islam and 
colleagues (cited as [35]) introduced a novel feature known 
as "heartbeat shape" (HBS) for ECG-based biometric 
applications. This feature is derived from the morphology of 
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segmented heartbeats. To evaluate its effectiveness, the 
proposed feature was extensively tested on two publicly 
available databases: one containing data from 76 subjects 
and another from 26 subjects. It was assessed for both 
identification and verification purposes. Notably, the second 
database included subjects with clinically confirmed cardiac 
irregularities, specifically atrial premature contraction 
arrhythmia. The experimental results on both databases 
revealed impressive outcomes, with high identification 
accuracy (98% and 99.85%, respectively). Additionally, in 
their work, Islam and colleagues (mentioned as [36]) put 
forth an unsupervised outlier detection method designed to 
identify the most regular heartbeats from a given dataset. To 
address the impact of heart rate variability (HRV), they 
aligned the morphology of the selected heartbeats using a 
piecewise-uniform approach. Subsequently, they 
constructed a template by averaging the aligned heartbeats 
and represented it in a lower-dimensional space through 
principal component analysis (PCA). The authentication 
performance of this template was thoroughly evaluated 
using a database consisting of data from 112 individuals 
collected across multiple sessions with a handheld ECG 
device. The experimental results demonstrated that the 
proposed template surpassed all other templates in terms of 
authentication accuracy. 

3. Proposed Method

The proposed method's block diagram, as depicted in Figure 
2, is a comprehensive approach designed for the secure 
transmission and extraction of ECG (Electrocardiogram) 
data over a network. At the beginning of the process, an 
ECG signal is recorded from a patient. This ECG signal 
represents the electrical activity of the heart and is a critical 
component in diagnosing various cardiac conditions. The 
recorded ECG signal is concealed within a cover image 
using a technique known as RDH. RDH allows for the 
embedding of data (in this case, the ECG signal) into 
another medium (the cover image) in such a way that the 
original cover image can be completely recovered. This step 
essentially combines the visual data (the cover image) with 
the ECG data. After hiding the ECG signal within the cover 
image, the combined image is encrypted using a secure 
encryption algorithm. Encryption ensures that the data is 
protected during transmission, making it challenging for 
unauthorized parties to access or tamper with the 
information. The encrypted image, which now contains the 
ECG data in a concealed form, is transmitted over a 
network. This network could be a local hospital network or a 
secure channel for telemedicine applications. The encryption 
ensures the confidentiality and integrity of the data during 
transit. At the receiver's end, the inverse operations are 
performed to retrieve the ECG image and subsequently 
identify the patient. The receiver applies the inverse of the 
encryption algorithm to decrypt the received image, 
revealing the hidden ECG signal and the original cover 
image. To identify the patient from the extracted ECG 
image, a RESNET-50 model is employed. RESNET-50 is a 

pre-trained deep learning model, typically used for image 
classification tasks. In this case, it is utilized as a template 
matching or pattern recognition tool. The RESNET-50 
model compares the received ECG image with a set of 
template ECG images stored in its database. These template 
images serve as references for patient identification. The 
model's neural network architecture helps in recognizing 
patterns and features within the ECG image, which are then 
compared to the template images. Based on the comparison, 
the system produces a patient identification result. If a 
match is found between the received ECG image and a 
template ECG image, the patient is positively identified. 
This can be useful for maintaining patient records, ensuring 
data privacy, and confirming the identity of the patient 
associated with the ECG data. 

Figure 2. Block diagram of the proposed ECG based 
patient identification with RDH scheme 

3.1 Reversible Data Hiding 
Mechanism 
In the proposed method, ECG is used as confidential data, 
combined with sensor data, and incorporated into the ECG 
image. Given that ECG and other data are concealed within 
the cover image, it's imperative that the embedding capacity 
remains high without compromising the cover image's 
quality. This work introduces a reversible data hiding 
technique with excellent PSNR and embedding capacity for 
concealing ECG and sensor data.  

The initial step involves image partitioning into two distinct 
segments, denoted as A and B. Subsequently, the Least 
Significant Bits (LSB) of segment A are embedded into 
segment B using the RDH process. This enables the 
utilization of segment B as a vessel for the concealed data. 
Finally, the restructured image undergoes an encryption 
process to enhance its security (see Figure 3). To provide a 
more comprehensive understanding, let's delve into the 
specific details of each of these processes: 
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3.1.1 Image Partitioning 

The original image is divided into two separate parts, 
labelled as segments A and B. This partitioning is a critical 
initial step that separates the image into distinct components 
to facilitate the subsequent data embedding process. Take 
into consideration a distinctive image denoted as 'I.' This 
image is an 8-bit gray-scale representation, where each pixel 
' ,u vP ' falls within the range of values from 0 to 255. The
image has dimensions M×N. As a starting point, this image 
is divided into overlapping blocks, with each block being 
overlapped by both the preceding and subsequent blocks. 
The level of smoothness inherent to each individual block is 
quantified through the following expression: 

1
1, 1 1, 1, 1 , 1 , 1 1, 1 1, 1, 1

,
2 2 8

r N
u v u v u v u v u v u v u v u v

u v
u v

P P P P P P P P
S P

−
− − − − + − + + − + + +

= =

+ + + + + + +
= −∑∑

(1) 

The parameter 'S' serves as an indicator of texture 
characteristics within the image. Specifically, when 'S' 
assumes a value of 0, it signifies a uniform and consistent 
texture across the block. Conversely, higher 'S' values 
indicate the presence of more intricate and complex textures. 
Among these blocks, the one exhibiting the highest 'S' value 
is designated as 'A' and is positioned ahead of another block 
referred to as 'B,' as visually depicted in Figure 3. 

Figure 3.  Image partitioning and embedding process 
diagram 

3.1.2 LSB Embedding Using RDH 

In this stage, the Least Significant Bits (LSB) of segment 
‘A’ are discreetly embedded into segment ‘B’ through a 
process known as RDH. RDH is a technique that allows data 
to be hidden within an image in a manner that permits 
complete restoration of the original image without any loss 
of data. This process ensures that segment ‘B’ can function 
as a container for concealed data, while still preserving the 
integrity of both segments ‘A’ and ‘B’ (Figure 3). 

3.1.3 Image Rearrangement 

After the LSB embedding is completed, the image 
undergoes a reconfiguration process. This step ensures that 
the image is appropriately restructured, taking into account 
the changes made during the embedding process (Figure 3). 
It is crucial to maintain the overall structure and visual 
quality of the image while accommodating the embedded 
data. 

3.1.4 Image Encryption 

To bolster the security of the concealed data and the entire 
image, encryption is applied. This process involves the 
transformation of the image data into a coded format, 
making it accessible only to authorized individuals with the 
decryption key. Image encryption adds an additional layer of 
protection to safeguard both the concealed information and 
the integrity of the image. By meticulously following these 
steps, the proposed method achieves the seamless 
embedding of data into images while preserving data 
integrity, ensuring security, and enabling the subsequent 
retrieval of the concealed information without any loss or 
distortion. These processes collectively contribute to the 
effectiveness and reliability of the data hiding technique. 

3.1.5 Self-Reversible Embedding in part B 
of image 

This procedure relies on estimating pixel errors and 
performing histogram shifts. During this step, the least 
significant bits (LSB) of A are incorporated into B through 
the employment of the RDH mechanism. The interpolation 
value plays a pivotal role in the calculation of each white 
pixel. This interpolation value is obtained as 

, 1 1, 2 1, 3 , 1 4 , 1'u v u v u v u v u vP W P W P W P W P− + − += + + +  (2) 
The error is evaluated as 

, , ,'u v u v u vP Pε = −  (3) 

where the weight iW , ≤ ≤1 4i . 

In general, the error for any pixel value ,u vP  is evaluated 

using , , ,'u v u v u vP Pε = − , next histogram shifting is done to
embed data. 

3.1.6 Histogram Shift Process in part B of 
image 

Next, the estimation errors of the black pixels are 
determined by considering the neighbouring white pixels. 
Subsequently, a fresh estimation error sequence is produced, 
capable of accommodating the messages. In the considered 
interpolation method, a pixel's value from its surrounding 
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pixels is first estimated and interpolation errors is evaluated 
as 

'P Pε = −       (4) 
The interpolation values of pixels P are represented by
parameter 'P in the above equation. 
The shifted Histogram is first divided into two distinct parts. 
Assume that γLP and γRP are the corresponding values of the 
two interpolation-errors histogram peak points, respectively, 
and are expressed as  

( )

{ }
( )

arg max

arg max
LP

LP

RP

hist

hist
ε

ε γ

γ ε

γ ε
∈Ε

∈Ε−

 =

 =


(5) 

where, hist(ε) is histogram of ε,  and E is the ensemble of 
interpolation-error. Considering, LPγ < RPγ and dividing
interpolation-errors as Right and left interpolation-errors 
depending on ε ≥ΩRP  or ε ≥ΩLP  respectively.
The additive interpolation-error expansion (ε’) can be 
written as 

( )
( ) ( ) ( )'

,

1, , ,
,

LP RP

LP LN RP RN

sign b or

sign
else

ε ε ε γ γ

ε ε ε ε γ γ γ γ

ε

 + × =


= + × ∈ ∪



(6)

where, 

( )

( )

arg min

arg min

LN
LE

RN
RE

hist

hist
ε

ε

γ ε

γ ε
∈

∈

 =



=

  (7) 

And where b is the bit to be embedded, 'e  is the expanded 
interpolation-error, and sign(.) function takes value +1 in 
case of right interpolation-errors (RE) and -1 in case of  left 
interpolation-errors (LE).  
The interpolation errors are increased, and the watermarked 
pixels are transformed into  

'" 'P P ε= +   (8) 

Once LPγ , LNγ , RPγ  and RNγ are evaluated, secret data 
can be recovered as 

'

0, '
1, 1 1

LP RP

LP RP

or
b

or
ε γ γ

ε γ γ

== 
= − +

 (9) 

The initial interpolation errors can be restored by employing 
( ) [ ] [ ]
( ) [ ] [ ]

' ' '

' ' '

, 1, , 1

1, , 1 1,

,

LP LP RP RP

LN LP RP RN

sign b

sign

else

ε ε ε γ γ γ γ

ε ε ε ε γ γ γ γ

ε

 − × ∈ − ∪ +
= − × ∈ − ∪ +



  (10) 

The original pixel value is evaluated as 
'P P ε= +   (11) 

In this work, in the interpolation pixels at angles 00 , 450 , 
900 and 1350 are considered. 
Examining a 3×3 section of an image, where the pixel 
values range from P1 to P9, and considering four directions: 

0°, 45°, 90°, and 135° (as shown in Figure 4), the objective 
is to estimate the pixel value at position "x" using an 
estimated value of "y." The mean value of surrounding pixel 
of P5 is  

= ≠

 
=  

 
∑

9

1, 5

1
8mean i

i i
P P     (12) 

Figure 4.  Determination of the central pixel by utilizing 
the neighbouring pixels 

Defining average value in 00, 450, 900 and 1350 degree 
respectively as 

[ ]= +0 4 6
1
2

P P P  , [ ]= +45 1 9
1
2

P P P  , [ ]= +90 2 8
1
2

P P P

and [ ]= +135 3 7
1
2

P P P (13) 

Defining sets in various directions as 
=0 4 6 0[ , , ]S P P P  , =45 1 9 45[ , , ]S P P P , =90 2 8 90[ , , ]S P P P  

and =135 3 7 135[ , , ]S P P P     (14) 

The variance in 00 , 450 , 900 and 1350 directions are 

( ) ( )( )
3 22

0 0
1

1
3 mean

u
e S u Pσ

=

= −∑

( ) ( )( )
3 22

45 45
1

1
3 mean

u
e S u Pσ

=

= −∑

( ) ( )( )
3 22

90 90
1

1
3 mean

u
e S u Pσ

=

= −∑

( ) ( )( )
3 22

135 135
1

1
3 mean

u
e S u Pσ

=

= −∑     (15) 

The weight in 00 , 450 , 900 and 1350 is given by 
σ

σ σ
=

+

2
90

0 2 2
0 90

w , 
σ

σ σ
=

+

2
135

45 2 2
45 135

w  , 
σ

σ σ
=

+

2
0

90 2 2
0 90

w

and 
σ

σ σ
=

+

2
45

135 2 2
45 135

w (16)
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We can acquire the approximated pixel value using 
= + + +0 0 45 45 90 90 135 135P̂ w P w P w P w P   (17) 

The estimated error is 
= − 'e P P     (18) 

3.1.7 Image Encryption 

After completing the rearrangement of the self-embedded 
image, represented by I, we can encrypt I to form the 
encrypted image, denoted by Ξ . The encryption version of 
I is effectively obtained with the aid of a stream cypher. 
Consider the case where a grey image with pixels varying 
from 0 to 255 can be expressed by 8 bits. , (0)i jI , , (1)i jI , 

..., , (7)i jI in such a manner that 

 
= = 
 

,
, ( ) mod2,               0,1,...,7.

2
i j

i j z

I
I z z     (19) 

Exclusive-or operation can be used to estimate the encrypted 
bits.  
Ξ = ⊕, , ,( ) ( ) ( )i j i j i jz I z r z              (20) 

In above, , ( )i jr z is generated using basic encryption cipher. 

3.1.8 Generation of Decrypted Image 

The decrypted image ''I  which is made up of A′′ and B′′
can be decrypted using steps below: 
Step 1:The owner decrypts the image using the encryption 

key while leaving the LSB-planes of EA (encrypted 

version of A).The decrypted form of Ξ'  can be 
calculated by 

= Ξ ⊕'' '
, , ,( ) ( ) ( )i j i j i jI z z r z    (21) 

and 

=

= ×∑
7

'' ''
, ,

0
( ) 2z

i j i j
z

I I z ,   (22) 

Above the parameters Ξ'
, ( )i j z and ''

, ( )i jI z

represents the binary bits of Ξ'
, ( )i j z and ''

, ( )i jI z  , 
acquired through (19) respectively. 

Step 2: In the marginal zone of ''B extract SRΩ  and ERΩ
.The data embedded plain image is generated by 
rearranging ''A  and ''B it to its original form. With 
the exception of the LSB-planes of A, the 
annotated decrypted image is indistinguishable 
from changed I. In comparison to the original 
image I’’ it preserves perceptual transparency. 

3.1.9 Image Restoration and Data Extraction 

Using the procedure given below, original image and 
embedding data can be extracted using the steps given 
below: 
Step 1: First LSB-planes of A′′ is decoded, along with data

hiding key; this process is continued till the end 
label. 

Step 2: Extract LNγ , RNγ , LPγ , RPγ R, I, and boundary 

map using the LSB of the marginal  area of, ''B
After that, scan to complete the steps mentioned 
below. 

Step 3: Proceed to Step 5 if R= 0, indicating that black 
pixels are not involved in the data embedding 
operation. 

Step 4: Evaluate the black pixels' ,i jB′′ estimating errors

ε ,'i j . If ′′ ∈, [1,254]i jB andε ,'i j  equals to any

one of them LNγ , RNγ , LPγ , RPγ retrieve the
estimating error and initial pixel value in extract the 
data embedding bits. If, , {0,255}i jB′′ ∈ this 
belongs to the boundary map'sfor bit b. If the value 
of bit b is zero 0, leave this step otherwise, proceed 
as before for , [1,254]i jB′′ ∈ do this process until 
all of the ECG payload has been removed. 

Step 5: Repeat step 4, for white pixels and if the removed 
bits are pixels LSBs in the marginal region, restore 
themat that time only. 

Step 6: Repeat Step 2 through 5I-1 rounds, merging each 
extracted bit to create A's LSB-planes it is done 
before B is fully recovered. 

Step 7: For recovering the original cover image I, replace 
''A , LSB-planes with the ''B original extracted bits

OF ECG data. 

Once the cover image and hidden ECG data have been 
successfully extracted, the subsequent step involves 
leveraging advanced machine learning techniques for ECG 
patient identification. In this context, the RESNET 50 
model, a state-of-the-art deep learning architecture 
renowned for its exceptional performance in image 
recognition tasks, emerges as a pivotal tool. The RESNET 
50 model, comprising numerous layers of neural networks, 
possesses the capability to discern intricate patterns and 
features within images with remarkable accuracy. By 
feeding the extracted ECG data into the RESNET 50 model, 
the system can effectively analyze and identify unique 
patient characteristics encoded within the electrocardiogram 
signals. 
The utilization of the RESNET 50 model in ECG patient 
identification represents a significant advancement in 
healthcare technology, offering unparalleled precision and 
reliability in discerning individual cardiac signatures. 
Through its sophisticated algorithms and extensive training 
on vast datasets, the RESNET 50 model can discern subtle 
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variations in ECG waveforms that serve as distinctive 
markers for each patient. These distinctive features 
encompass a myriad of factors, including heart rate 
variability, waveform morphology, and rhythm 
irregularities, among others. 
Moreover, the integration of the RESNET 50 model into the 
ECG patient identification process enhances not only the 
accuracy but also the efficiency of the overall system. By 
automating the identification process, healthcare 
professionals can expedite diagnosis and treatment 
decisions, thereby improving patient outcomes and reducing 
healthcare costs. Additionally, the RESNET 50 model's 
ability to adapt and learn from new data ensures continuous 
improvement in identification accuracy over time, further 
enhancing the reliability of the system. 

3.2 RESNET-50 for Patient 
Identification  
In this work, ResNet-50 model is used for patient 
identification using ECG employing CNN architecture as 
shown in Figure 5. ResNet-50 is a specific variant of the 
ResNet (Residual Network) architecture that has 50 layers, 
making it deep and capable of capturing intricate features in 
ECG images. The ResNet-50 architecture is known for its 
deep structure, featuring 50 layers or more, and it 
incorporates a specialized building block called a "residual 
block." This block includes a convolution operation that 
plays a central role in the network's ability to learn and 
represent complex features from input images.  

Figure 5. Detailed diagram of ResNet 50 architecture 

Convolution Layer 

The convolution operation in ResNet-50 is primarily 
associated with convolutional layers, which are the 
foundational building blocks for processing image data. 
Convolutional layers are used to detect various patterns, 
textures, and features within an image. The primary 
objective of convolution is to apply a set of learnable filters 
(kernels) to the input image. Here input data is differentiated 
ECG which is added in vector form.  

Feature Extraction 

In ResNet-50, the convolutional layers extract low-level to 
high-level features from the ECG data. As the network 
progresses through its layers, it learns to identify 

increasingly abstract and informative features which are 
helpful in patient identification. 

Stacked Residual Blocks 

One of the key innovations in the ResNet architecture is the 
use of residual blocks. These blocks are designed to make it 
easier for the network to learn and optimize deep 
representations. Each residual block typically contains 
multiple convolutional layers and batch normalization. The 
convolution operation within these blocks is responsible for 
learning a residual function. 

Residual Learning 

The central idea behind residual blocks is residual learning. 
In a standard deep neural network, each layer is expected to 
learn the underlying mapping directly. In contrast, a residual 
block learns the residual mapping—the difference between 
the input and the desired output. The convolution operation 
within the residual block is used to model this residual 
function. Mathematically, this is expressed as: 

( ) ( )F x H x x= −  (23) 
where, F(x) is the learned residual function, H(x) is the 
desired output and  x is the input. 

Shortcut Connections 

To facilitate residual learning, ResNet-50 employs "shortcut 
connections" or "skip connections" that directly connects the 
input to the output of a residual block. This connection 
allows gradients to flow more easily during training, which 
is particularly important in very deep networks. 

End-to-End Training 

The entire ResNet-50 network, including its convolutional 
layers, residual blocks, and fully connected layers, is trained 
end-to-end using a loss function and a large dataset. The 
convolution operations in each residual block contribute to 
the network's ability to represent and learn features 
effectively. 

Loss Function 

Binary cross-entropy is a loss function commonly used in 
various binary classification tasks, including ECG-based 
patient identification. In this context, binary cross-entropy 
serves as a fundamental component of the training and 
evaluation of machine learning and deep learning models. 
ECG-based patient identification typically involves 
determining whether an ECG signal corresponds to a 
specific patient or not. In this binary classification task, the 
two classes are often labeled as "patient X" and "not patient 
X." Binary cross-entropy is used as the loss function during 
the training process. Here's how it works: 

1. For each ECG signal, the model predicts a
probability that the signal belongs to "patient X."
This probability typically ranges between 0 and 1.
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2. The binary cross-entropy loss function quantifies
the dissimilarity between the predicted probabilities
and the actual binary labels. It measures how well
the model's predictions match the true labels.

3.  
The binary cross-entropy loss for a single data point is 
calculated as follows: 

( )
1

1ˆ ˆ ˆ( , ) [ log( ) 1 log(1 )]
N

i i i i
i

L y y y y y y
N =

= − + − −∑  (24) 

ˆ( , )L y y is the binary cross-entropy loss. y is the true binary
label (1 for "patient X," 0 for "not patient X"). ŷ is the
predicted probability that the ECG signal belongs to "patient 
X." Binary cross-entropy is well-suited for ECG-based 
patient identification because it quantifies the alignment of 
predicted probabilities with binary labels, allowing models 
to effectively distinguish between different patients based on 
their ECG signals. 

4. Results
In the first results section, RDH scheme results are detailed, 
whilst in the second section, ECG-based patient 
identification results are detailed. 

4.1 RDH Scheme Results 
The methodology outlined in this research paper will 
undergo testing using publicly accessible standard image 
databases for RDH scheme, as in [27-28]. These image 
databases consist of images, each having a resolution of 
512×512 pixels with an 8-bit colour depth. To assess the 
efficacy and performance of the proposed scheme, several 
performance metrics will be employed. These metrics are 
essential for quantitatively evaluating the quality and 
effectiveness of the proposed method. The specific 
performance metrics that will be used include: 

Figure 6. Image hiding and recovery using RDH 
process 

Figure 6 provides a comprehensive visual representation of 
the various stages involved in the data embedding and 
retrieval process, particularly focusing on the encryption and 
decryption of images, as well as the extraction of the hidden 
ECG image. The original considered Baboon image is 
shown in Figure 6(a), the image in figure 76(b) represents 
the Baboon image after undergoing the data embedding and 
encryption process to protect its contents. After decryption, 
the image is restored to its original form, as shown in figure 
6(c). The image in figure 6(d) showcases the differences 
between the original and decrypted images, highlighting any 
variations that may have occurred during encryption and 
decryption. In figure 6(e) image displays the successful 
recovery of the original image after decryption, illustrating 
that the decryption process has been executed accurately. 
Finally, in figure 6(f) the recovered ECG image is shown.  
In figure 7, PSNR for various images at different bit per 
pixel (bpp) rates are shown. PSNR is a crucial metric used 
to evaluate the quality and fidelity of images after 
undergoing data embedding. The results indicate that for 
lower embedding rates, such as 0.05 bpp, the PSNR values 
are generally high, hovering around 60 dB for most images. 
However, the 'Baboon' image exhibits a slightly lower 
PSNR of around 54.5 dB at this embedding rate. As the bpp 
rate increases to 0.5, the PSNR values decrease, averaging 
around 46 dB. This reduction in PSNR is expected as more 
data is embedded, potentially introducing noise or artifacts 
into the images. For 'Baboon' and 'Pepper' images, the 
maximum allowable embedding bpp rates are noted. 
'Baboon' image PSNR falls below 25 dB if the bpp exceeds 
0.9, indicating a significant loss in image quality. Similarly, 
the 'Pepper' image has a maximum allowable embedding 
bpp rate of 0.9. These findings highlight the trade-off 
between data embedding capacity and image quality, with 
higher bpp rates leading to reduced PSNR values, which 
may impact image fidelity. Careful consideration of the 
desired balance between data capacity and image quality is 
essential when employing data embedding techniques. 

Figure 7. PSNR (dB) vs. bpp for all six images 
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In Figure 8, the boundary map is presented for the 
considered images. Up to a bpp of 0.8, the boundary map 
remains at 0 for the 'Airplane,' 'Barbara,' 'Boat,' and 'Lenna' 
images. It's worth mentioning that in the considered method, 
the marginal area has a size of 512×4×4=8192 bits. 
Therefore, for the 'Baboon' image, the maximum allowable 
bpp is 0.9 Similarly, for the 'Peppers' image, the maximum 
bpp is 0.8. To put this into context, the maximum allowable 
bpp is compared to previous works. In the work of Ma et al. 
[27], the maximum bpp is 0.5. In Sah et al.'s work [28], it is 
0.75 while in case of Tripathi et. al [29] it is 0.95. In this 
current work, the maximum allowable bpp has been 
extended to 1. This indicates that the proposed method 
offers a higher data embedding capacity while maintaining 
acceptable image quality, making it suitable for various 
applications where a balance between data capacity and 
image fidelity is required. 

Figure 8. Boundary map vs. bpp for all six images 

Figure 9. PSNR vs. all six images (bpp=0.5) 

Figure 9 provides a comprehensive overview of the for all 
six images while comparing the results with those obtained 
from the works of Kede Ma et al. [27], Sah et al. [28] and 
Tripathi et. al [29]. The PSNR values are specifically 
presented at a bit per pixel (bpp) rate of 0.5. In this 

comparison, we observe significant differences in PSNR 
values between the proposed method and Kede Ma et al.'s 
work [27]. Notably, for the 'Baboon' and 'Peppers' images, 
the PSNR difference is more than 10 dB, indicating a 
substantial improvement in image quality in favour of the 
proposed approach. Furthermore, when comparing with Sah 
et al.'s work [28], the difference in PSNR is approximately 3 
dB, signifying a notable enhancement in image quality while 
maintaining competitive performance. 

Figure 10. Boundary Map vs. all six images (bpp=0.5) 

Figure 10 provides an insightful view of the boundary map 
results for all six images, offering a comparative analysis 
with the works of Kede Ma et al. [27] , Sah et al. [28] and 
Tripathi [29]. In the case of the 'Airplane,' 'Boat,' 'Barbara,' 
and 'Lenna' images, all three schemes, including the 
proposed approach, exhibit a boundary map value of zero. 
This indicates that the boundary area remains unaffected in 
these scenarios, emphasizing the effectiveness of each 
method in preserving the integrity of the image's outer 
regions. However, when considering the 'Baboon' image, 
Kede Ma et al.'s work [27] yields a boundary map value of 
109, Sah et al.'s work [28] results in a value of 196, and the 
proposed method achieves a boundary map value of 100. 
This demonstrates that the proposed approach maintains a 
competitive boundary map value while ensuring a good 
balance between data embedding capacity and image 
quality. Similarly, for the 'Peppers' image, Kede Ma et al.'s 
work [27] produces a boundary map value of 3,175, Sah et 
al.'s work [28] results in a value of 3,694, and the proposed 
method attains a boundary map value of 1,183. These 
findings underscore the effectiveness of the proposed 
method in significantly reducing the boundary map value, 
indicating a notable improvement in image preservation near 
the image boundaries. 

Figure 11 provides valuable insights into the average 
runtime of all six images when considering the maximum 
allowed embedding rate. The results are compared with the 
runtimes achieved by Ma et al.'s work [27] and Sah et al.'s 
work [28]. In Ma et al.'s work [27], the average runtime for 
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the selected images is recorded as 13.41 seconds, while in 
Sah et al.'s work [28], and it is slightly lower at 13.29 
seconds. In the case of Tripathi et al. [29] the runtime is 9.73 
seconds. However, the proposed scheme demonstrates 
significantly reduced runtime, with an average of 9.11 
seconds. The improved runtime efficiency in the proposed 
scheme can be attributed to the utilization of compressed 
cover and secret images. These compressed images result in 
faster processing, contributing to the overall reduction in 
runtime. 

Figure 11. Run time comparison 

In summary, the proposed scheme outperforms the 
compared methods in terms of runtime efficiency, 
highlighting its effectiveness and practicality for data 
embedding applications. 

4.2 ECG Based Patient Identification 
Results 
MITDB, which stands for the MIT-BIH Arrhythmia 
Database [37], is a widely recognized and extensively 
utilized resource in the field of electrocardiography (ECG). 
This database comprises a rich collection of annotated ECG 
recordings, featuring various types of cardiac arrhythmias. 
ECG-ID and Heart-print are multisession database (Table 
1). This takes into account variability in heart rhythms.  
The MITDB original dataset comprises 47 subjects, and the 
algorithm's performance may be impacted when analyzing 
both healthy and arrhythmic subjects. This is because some 
recordings exhibit cardiac abnormalities affecting the QRS 
complex and influencing the P wave. Bassiouni et al. [40] 
and Tang et al. [41] employed artificial neural networks 
(ANN) as classifiers, achieving accuracy rates of 96.67% 
and 91.1%, respectively. Abdeldayem et al. [43] and Zhang 
et al. [42] utilized convolutional neural networks (CNN) as 
classifiers and obtained accuracy rates of 96.5% and 91.1%, 
respectively. In contrast, our proposed method boasts a 
PIDR accuracy of 99.98%. 
The ECG-ID dataset, as presented by Zhao et al. [44] and 
AlDuwaile, and Islam [45], as well as the Heartprint dataset, 

reported by Islam et al. [39], offer valuable insights into the 
performance of various models in ECG-based biometric 
identification. 
In the context of the ECG-ID dataset, several models 
underwent evaluation, including CNN, GoogLeNet, ResNet, 
EfficientNet, MobileNet, Small CNN, and LSTM. Among 
these models, ResNet and LSTM delivered robust 
performance, achieving accuracy rates of 97.28% and 
97.69%, respectively. This suggests that deep learning 
models like ResNet and LSTM are well-suited for ECG-
based identification tasks, possibly due to their capacity to 
capture intricate patterns within ECG signals. GoogLeNet 
also exhibited commendable accuracy at 93.87%. 

Table 1: Comparison of the proposed method with 
state of arts methods under different databases 

Author Classification 
Method 

Accuracy% 

MITDB [37] 
Bassiouni et al. [40] 
Tang et al. [41] 
Zhang et al. [42] 
Abdeldayemet al. [43] 
Gupta and Awasthi [7] 
Proposed 

ANN 
ANN 
CNN 
CNN 
LSTM 
RESNET-50 

96.67 
91.7 
91.1 
96.5 
98.95 
99.98 

ECG-ID [38] 
Zhao et al. [44] 
AlDuwaile, and Islam 
[45] 

Gupta and Awasthi [7] 
Proposed 

CNN 
GoogLeNet 
ResNet 
EfficientNet 
MobileNet 
Small CNN 
LSTM 
RESNET-50 

96.63 
93.87 
97.28 
83.10 
87.51 
94.18 
98.94 
99.94 

Heartprint [39] 
Islam et al. [39] 

Proposed 

CNN (Mixed Session) 
CNN (Cross Session) 
RESNET-50 (Mixed 
Session) 
RESNET-50 (Cross 
Session) 

100 
69.35 
100 
93.21 

In contrast, EfficientNet and MobileNet yielded lower 
accuracy rates of 83.10% and 87.51%, respectively, 
indicating their limited effectiveness for this specific task. 
In the case of the Heartprint dataset, the proposed models 
encompass CNN (Mixed Session), CNN (Cross Session), 
LSTM (Mixed Session), and LSTM (Cross Session). 
Remarkably, the CNN (Mixed Session) and LSTM (Mixed 
Session) models achieved flawless accuracy rates of 100%, 
underscoring their precision in identifying individuals across 
multiple sessions. However, when faced with a cross-session 
scenario, where the model must recognize individuals in 
sessions different from those used for training, accuracy 
rates dipped. Specifically, CNN (Cross Session) achieved an 
accuracy of 69.35%, while LSTM (Cross Session) 
demonstrated improved accuracy at 89.21%. These findings 
indicate that while some models excel in recognizing 
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individuals within the same session, cross-session 
identification poses a more challenging task. 
The accuracy of person detection in ECG-based systems 
across multiple sessions can be compromised by several key 
factors. Firstly, the inherent variability in ECG signals 
between sessions, influenced by physiological fluctuations 
and environmental conditions, poses a significant challenge. 
This variability can manifest in differences in signal 
morphology and amplitude, hindering the accurate 
generalization of detection algorithms. Secondly, the 
presence of noise and artifacts in ECG signals, such as 
muscle noise or electrode motion artifacts, obscures the 
underlying waveform, impeding the identification of 
individual characteristics. Additionally, variations in signal 
quality due to factors like electrode contact and skin 
impedance can further degrade detection accuracy. 
Moreover, temporal misalignment between ECG signals 
from different sessions, stemming from differences in 
recording duration or sampling rate, introduces 
discrepancies in signal timing that complicate cross-session 
analysis. Furthermore, the non-stationary nature of ECG 
signals, characterized by changes in heart rate and 
physiological state, poses a challenge to establishing 
consistent features for person detection across sessions. 
Addressing these challenges requires robust preprocessing 
techniques, feature extraction methods that capture 
discriminative characteristics, and machine learning models 
trained on diverse datasets to improve generalization 
performance in cross-session analysis. 

5. Conclusions
This paper proposes a multi-layered approach with 
reversible data hiding using ECG, which has provided 
valuable insights into the vital area of safeguarding patient 
data in the modern digital landscape. The research has 
demonstrated the efficacy of a multi-layered security 
approach incorporating reversible data hiding techniques 
leveraging Electrocardiogram (ECG) data. The findings 
from our investigation highlight the significance of 
protecting sensitive patient information and medical data, 
especially in the context of electronic health records and 
telemedicine, where data breaches and unauthorized access 
pose significant risks to patient privacy. Our study offers a 
promising solution by utilizing ECG data, which can serve 
as a unique and secure identifier, to enhance data security. 
The results presented in this paper showcase the 
effectiveness of various data embedding RDH mechanism 
and machine learning and deep learning models in ECG-
based biometric identification. Notably, ResNet model 
exhibited remarkable accuracy rates, demonstrating their 
potential for robust patient data security solutions. 
Additionally, the performance differences in cross-session 
scenarios, as revealed by the Heartprint dataset, emphasize 
the challenges that must be addressed in securing patient 
data across various healthcare settings. 
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