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Abstract 

Intrusion detection system (IDS) plays an important role as it provides an efficient mechanism to prevent or mitigate 

cyberattacks. With the recent advancement of artificial intelligence (AI), there have been many deep learning methods for 

intrusion anomaly detection to improve network security. In this research, we present a novel hybrid framework called 

KCLSTM, combining the K-means clustering algorithm with convolutional neural network (CNN) and long short-term 

memory (LSTM) architecture for the binary classification of intrusion detection systems. Extensive experiments are 

conducted to evaluate the performance of the proposed model on the well-known NSL-KDD dataset in terms of accuracy, 

precision, recall, F1-score, detection rate (DR), and false alarm rate (FAR). The results are compared with traditional 

machine learning approaches and deep learning methods. The proposed model demonstrates superior performance in terms 

of accuracy, DR, and F1-score, showcasing its effectiveness in identifying network intrusions accurately while minimizing 

false positives. 
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1. Introduction

The digital landscape has significantly paved the way for 

innovative advancements, transforming communication 

methods across various technical domains [1]. This 

growing reliance on internet services across all aspects of 

life, including military cybersecurity, e-commerce, 

education, and business, has become a major concern due 

to the potential intrusion threats that jeopardize the security 

of individuals and sensitive organizations [2]. Notably, 

recent security breaches in companies like Yahoo, Exactis, 

British Airways, and Under Armour have prompted 

industry professionals and academia to embrace 

*Corresponding author. Email: stone_dingy@126.com 

cybersecurity as a captivating research area aimed at 

safeguarding critical information from devastating 

cyberattacks. Traditionally, the "first line of defense" has 

relied on measures such as encryption, antivirus software, 

decryption, access control, and firewalls to detect 

intrusions and protect networks from malicious 

cyberattacks [3]. However, these conventional security 

technologies often prove inadequate and sometimes fail to 

shield networks against emerging intrusion techniques [4]. 

Consequently, addressing these challenges necessitates the 

adoption of defense-in-depth strategies [5]. In response, 

researchers have designed efficient intrusion detection 

systems (IDS). 

https://creativecommons.org/licenses/by-nc-sa/4.0/
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IDS monitor networks for malicious activities and 

provide protection against various cyberattacks that affect 

the availability, integrity, and confidentiality (AIC) of the 

network. IDSs encompass different configurations and 

types, including those that record information, notify 

security administrators of abnormal activity, and generate 

reports [6]. IDS software can be installed in different ways 

depending on the type and source of data analyzed, such as 

network-based IDS (NIDS), host-based IDS (HIDS), and 

hybrid or distributed IDS. These software systems detect 

threats using single or combined methods, including 

anomaly-based and signature-based approaches [7]. 

Anomaly-based detection has the advantage of identifying 

zero-day attacks that may go unnoticed in signature-based 

methods, but it tends to generate more false positives [8]. 

On the other hand, signature-based detection is effective 

for known threats, while anomaly-based detection excels in 

identifying new threats. In the case of anomaly-based 

detection, instead of relying on static databases, it 

examines typical activities and maintains a log of normal 

data flow patterns. Alerts are generated for activities that 

deviate from these patterns [9]. Anomaly-based 

classification methods can be categorized into machine 

learning (ML)-based, statistical-based, and knowledge-

based approaches [10]. ML-based methods employ data 

mining techniques to automatically develop a model from 

labeled regular datasets. One restriction is the need for 

computational resources and time during the initial model 

deployment, but subsequent analysis is often efficient [11]. 

In order to improve IDS performance, researchers have 

investigated the use of Deep Learning-based approaches, a 

specific branch of artificial intelligence. 

In deep learning-based IDS, utilizing advanced and 

updated datasets is preferable to enhance the effectiveness 

of intrusion detection. The most recent datasets created 

especially for intrusion detection, which include a wide 

range of attack types and features, are frequently used to 

train these systems. The accuracy of intrusion detection 

achieved by deep learning architectures tends to increase 

with more features in the dataset [12]. Deep learning 

techniques automatically decrease the attribute vector's 

size to the ideal amount of needed attributes, negating the 

necessity for attribute extraction or selection procedures 

[13]. However, in some studies, attributes were selected 

using ML models before applying deep learning techniques 

to achieve improved performance [14]. The outcomes of 

the model suggested using the NSL-KDD dataset [15] were 

further examined, which frequently used by scholars. The 

NLS-KDD dataset, derived from the original KDD Cup 

1999 dataset [16], represents a comprehensive collection of 

network traffic data with labeled instances of normal and 

anomalous behavior. However, the dataset poses 

challenges due to its class imbalance, high dimensionality, 

and complex patterns inherent in real-world network traffic.  

To address these challenges, the proposed hybrid model 

leverages the K-means clustering algorithm to create 

clusters of network traffic instances, enabling a more 

nuanced analysis of the data. By distinguishing between 

normal and anomalous instances at the cluster level, the 

system can effectively identify outliers and potential 

intrusions. To capture both spatial and temporal 

dependencies in the network traffic data, a hybrid deep 

learning architecture combining CNN and LSTM models 

is introduced. The CNN component extracts spatial 

features from the network traffic samples, allowing the 

system to identify local patterns and anomalies. The LSTM 

component, on the other hand, captures temporal patterns 

and long-term dependencies, enabling the system to 

analyze the sequential behavior of the network traffic. This 

fusion of spatial and temporal analysis enhances the 

system's ability to detect sophisticated attacks that may 

involve both localized and sequential anomalies. 

The primary objective of this research is to evaluate the 

effectiveness of the proposed hybrid model on the NLS-

KDD dataset. Extensive experiments are conducted to 

assess the system's performance in terms of accuracy, DR, 

and F1-score, comparing it with common machine learning 

approaches. The results indicate the superiority of the 

hybrid model in accurately identifying network intrusions 

while minimizing false positives, thus showcasing its 

potential for practical deployment in real-world security 

scenarios. 

The contributions of this paper lie in the development of 

the novel hybrid KCLSTM model is summarized as 

follows: 

(1)The frequency of cyber-attacks on industrial network 

traffic has been increasing steadily, resulting in both 

monetary and non-monetary losses. As a result, it is crucial 

to identify these attacks and secure the system. This study 

implements intrusion detection systems using K-means, 

CNN, and LSTM models. 

(2)Moreover, the proposed hybrid approach for IDS 

underwent testing using the NSL-KDD dataset, which is 

known for its large volume of data and high number of 

attributes. To assess the performance of our proposed 

model, we implemented a binary classification process on 

current datasets, resulting in a more dependable and 

accessible procedure. 

(3)Lastly, a comparison was made between our proposed 

KCLSTM model and those presented in previous studies. 

The accuracy for intrusion detection achieved by our 

proposed model were significantly higher than the results 

obtained in previous studies. These findings confirm that 

the hybrid KCLTSM model enhances the performance of 

IDS. 

The remainder of this paper is organized as follows: 

Section 2 provides a comprehensive review of related work 

in intrusion detection and the application of clustering and 

deep learning techniques. Section 3 details the 

methodology of the proposed hybrid KCLSTM model, 

including data preprocessing, K-means clustering, and the 

CNN+LSTM architecture. Section 4 presents the 

experimental setup and analyzes the performance of the 

system on the NLS-KDD dataset. Finally, Section 5 

concludes the paper by summarizing the findings, 

discussing the implications of the research, and suggesting 

avenues for future work.  
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2. Related work 

This section provides a summary of IDS generated through 

machine and deep learning methods, along with the results 

obtained from related studies. Furthermore, an evaluation is 

conducted on the various models and architectures 

implemented previously for intrusion detection. This section 

furnishes a summary of IDS generated through machine and 

deep learning methods, as well as the outcomes of related 

researches. Additionally, we evaluate several methods that 

were formerly implemented for intrusion detection. The 

NSL-KDD dataset is constructed by selecting a subset of the 

KDD Cup 1999 dataset and pre-processing it to remove 

duplicate records, correct labeling errors, and balance the 

class distribution. The dataset consists of network traffic 

instances, each characterized by a set of features that capture 

various aspects of network communication. These features 

are categorized into three types: basic features, content-

based features, and traffic features. 

A trustworthy intrusion detection model was created by 

Zhou et al. [17] using the CFS-BA approach and an 

ensemble classifier. Their suggested solution uses an 

ensemble classifier made up of C4.5, Random Forest (RF), 

and Penalized Attribute Forest (Forest PA) to identify the 

most pertinent features based on feature correlation. The 

final classification is then made using a voting method. The 

experiment used the NSL-KDD dataset, and their model 

produced accuracy and DR of 87.37% and 87.4%, 

respectively. 

In a different study [18], a paradigm for preventing 

ransomware attacks on devices in Industrial Internet of 

Things (IIoT) networks was put out. There are two sections 

to the model. Data is cleaned up using an auto-encoder in the 

first section to ensure better representation. The second part 

enables deep neural network-based intrusion detection and 

identification. The suggested model was examined 

individually using the NSL-KDD, ISOT, and X-IIoTID 

datasets. The findings of the study show that the suggested 

methodology successfully attained a high detection rate for 

targeted ransomware on devices in IIoT networks. 

An IDS for intrusion detection utilizing the genetic 

algorithm for attribute selection was suggested in another 

work [19]. The fitness function for the genetic algorithm was 

the Random Forest model. Classification techniques such 

Extra Trees, Naive Bayes, Random Forest, Linear 

Regression, Extreme Gradient Boosting, and Decision Tree 

were used to detect intrusions. Ten feature vectors were 

produced for binary classification and seven for multi-class 

classification by the genetic algorithm-random forest model. 

The implementation produced an area under the curve of 

0.98 and a test accuracy of 87.61% for binary classification 

using the UNSW-NB15 dataset. These results were 

produced by a genetic algorithm-random forest model with 

sixteen features. 

An IoT-based intrusion detection system with heuristic 

feature selection was proposed by Liu et al. [20]. The particle 

swarm optimization technique employed in the research was 

based on the Light Gradient Boosting Machine (LightGBM) 

algorithm, while the Support Vector Machine was used to 

classify incursions. The UNSW-NB15 dataset was utilized 

to test the suggested models, and the accuracy value and 

false alarm rate performance metrics were employed. The 

accuracy rate of the suggested model was 86.68%, and the 

false alarm rate was 10.62%. These findings suggest that, in 

comparison to other studies in the literature, the proposed 

model had a greater false alarm rate for binary classification. 

The model was not used by the researchers in the multi-class 

classification procedure. 

For massive data systems utilized in the industrial sector, 

Zhou et al. [21] suggested an intrusion detection system 

based on Variational Long Short-Term Memory (VLSTM). 

For feature extraction from the complicated and big dataset, 

the model rebuilt features and underwent a selection 

procedure among the new features produced using an 

autoencoder. This implementation employed the UNSW-

NB15 dataset, and the performance of the suggested model 

was assessed using metrics for precision, recall, false alarm 

rate, F1-Score, and the area under the curve. The area under 

the curve, recall, precision, and F1-Score values for the 

VLSTM approach were 0.895, 97.8%, 86.0%, and 90.7% 

respectively. These values exceed those that were stated in 

various studies from the literature. However, the researchers 

acknowledged that uneven distributions of attack types in the 

dataset used in this study could be addressed in future 

implementations to obtain better results. 

A proposed IDS based on an Extreme Learning Machine 

was made by Gao et al. [22]. The Extreme Learning Machine 

was presented with the chosen features for classification 

using the model's adaptive principal component. A multi-

class classification method was carried out for both the KDD 

and UNSW-NB15 datasets in order to test the suggested 

model on them. The performance metric was the accuracy 

rate as determined by the test data. In comparison to earlier 

research, the suggested model outperformed them with 

accuracy rates of 81.22% for the NSL-KDD dataset and 

70.51% for the UNSW-NB15 dataset. To improve the 

accuracy rate in actual industrial control systems, the authors 

highlighted the need for more research. 

Researchers suggested an IDS employing Deep Neural 

Networks (DNNs) in a different study [23] to quickly 

identify new threat types and work with different platforms. 

Six distinct datasets were used to assess the performance of 

the proposed model, including Kyoto, CICIDS 2017, KDD-

Cup99, NSL-KDD, UNSW-NB15, and WSN-DS. Using the 

updated NSL-KDD dataset as a benchmark, the deep neural 

network scored an F1-Score of 79.7%, a recall of 96.3%, a 

precision of 68.0%, and an accuracy of 78.9% in binary 

classification. In contrast to binary classification, the deep 

neural network performed worse in multi-class 

classification, with F1-Score of 76.5%, accuracy of 78.5%, 

precision of 81.0%, and recall of 78.5%. 

A novel intrusion detection method was suggested by 

Mushtaq et al. [24] using a hybrid architecture that combines 

a deep auto-encoder (AE) with the LSTM and the BiLSTM 

for categorization into normal and anomalous data. On the 

well-known dataset NSL-KDD, the proposed model is 

assessed in terms of error indices such as precision, recall, F-

score, accuracy, DR, and FAR. In comparison to existing 
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deep and shallow machine learning techniques, including 

other recently disclosed methods, the results show that the 

proposed AE-LSTM performs noticeably better with less 

prediction error. On the NSL-KDD dataset, AE-LSTM 

displays classification accuracy of 89% with DR of 89.84% 

and FAR of 11%, illustrating the improved performance of 

the suggested model over current state-of-the-art 

methodologies.  

Liu et al. [25] proposes a hybrid IDS that combines 

machine learning and deep learning algorithms to classify 

intrusion events. The model uses k-means and random forest 

algorithms for binary classification, which are parallelized 

on the Spark platform to improve the speed of data 

preprocessing and training. The normal and abnormal events 

are collected by the distributed storage system, HDFS, and 

sent directly to the driver side after binary classifications. In 

the third stage, the intrusion detection data stored on the 

driver side is used for classification. The model also divides 

aberrant events into various attack types using CNN, LSTM, 

and other deep learning methods. The unbalanced dataset is 

addressed via adaptive synthetic sampling (ADASYN). 

With the use of the NSL-KDD and CIS-IDS2017 datasets, 

the performance of the suggested model is assessed. 

According to the experimental findings, the suggested model 

has a higher True Positive Rate (TPR) for the majority of 

attack events, a quicker data preprocessing rate, and perhaps 

a shorter training period. 

Another a study [26] proposed a novel 5-layer 

Autoencoder (AE)-based model for network anomaly 

detection tasks. The paper emphasizes the importance of 

network anomaly detection as an effective mechanism to 

block or stop cyberattacks. The authors extensively 

investigate several performance indicators of an AE model 

to understand the critical impacts of the core set of important 

performance indicators and the detection accuracy. The 

proposed model utilizes a new data pre-processing 

methodology that removes the most affected outliers from 

the input samples to reduce model bias caused by data 

imbalance across different data types in the feature set. The 

paper also discusses the use of different reconstruction loss 

functions and their sensitivity to the detection accuracy. The 

proposed model outperforms other similar methods, 

achieving the highest accuracy and F1-Score of 90.61% and 

92.26%, respectively, in detecting the NSL-KDD dataset. 

Vinayakumar et al. [27] discussed the development of an 

intelligent IDS using deep learning techniques. The paper 

evaluated the performance of various machine learning 

algorithms on publicly available benchmark malware 

datasets, such as NLS-KDD and proposed an extremely 

scalable and hybrid DNNs architecture named scale-hybrid-

IDS-AlertNet, which can be applied in real-time to 

efficiently monitor network traffic and host-level events to 

preventatively detect potential threats. Overall, this article 

advances the field of cyber security by offering a thorough 

assessment of DNNs and other machine learning classifiers 

on several benchmark malware datasets that are made 

publically available. 

 Patil et al. [28] explores the use of majority voting and 

feature selection techniques to improve detection accuracy. 

Similarly, Venkateswaran et al. [29]  focuses on  

neuro deep learning methods for wireless intrusion 

detection system that distinguishes the attacks in 

MANETs. Additionally, Singh et al. [30] demonstrates the 

application of machine learning in social media analysis. 

Other notable works include [31-34] provide valuable 

insights into various aspects of IDS and related fields. You 

et al. [31] introduced a Two-Layer Evolutionary 

Framework (TLEF) for t-closeness anonymization, 

balancing data utility and privacy using evolutionary 

algorithms. Yin et al. [32] proposed a framework using 

heterogeneous graphs to predict software vulnerabilities' 

exploitability, enhancing vulnerability prioritization 

through integrated data sources. Ge et al. [33-34] explored 

evolutionary approaches for database partitioning and data 

publishing privacy. In [33], they optimized database 

partitioning to balance privacy and utility, allowing real-

time adjustments. In [34], they introduced a cooperative 

coevolutionary framework to address data publishing 

privacy and transparency, promoting collaboration among 

entities to protect sensitive information while maintaining 

transparency. Their coevolutionary approach ensures the 

system evolves to meet dynamic privacy and transparency 

needs. 

Papalkar et al. [35-38] explored various techniques to 

enhance attack detection capabilities in IoT and cloud 

computing environments across a series of studies. They 

proposed a hybrid CNN approach specifically designed for 

detecting unknown attacks in edge-based IoT networks 

[35]. Additionally, they analyzed various defense 

techniques against DDoS attacks in IoT environments, 

providing a comprehensive overview of existing strategies 

and highlighting the need for more robust and adaptive 

solutions [36]. To optimize the efficiency of DDoS attack 

detection, they developed an optimized feature selection 

method to guide lightweight machine learning models in 

cloud computing environments, aiming to enhance 

detection efficiency while minimizing computational 

overhead [37]. They also discussed various deep learning 

techniques for detecting unknown attacks, emphasizing the 

potential of deep learning models in identifying novel and 

sophisticated threats that traditional methods may miss [38]. 

Hamadouche et al. [39] combined lexical, host, and 

content-based features to detect phishing websites using 

machine learning models. It highlights the importance of 

multi-feature integration for improving the accuracy of 

phishing detection systems. The above works highlight the 

need for innovative solutions like the proposed KCLSTM 

model. 
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3. Approaches 

3.1 Motivation 

The increasing complexity and frequency of 

cyberattacks necessitate advanced IDS capable of 

accurately identifying malicious activities. Traditional IDS 

methods often struggle with high-dimensional data and 

class imbalance issues, which can lead to high false alarm 

rates and missed detections. To address these challenges, 

we propose a hybrid framework, KCLSTM, that combines 

K-means clustering with CNN and LSTM architectures. 

This approach leverages the strengths of clustering and 

deep learning to enhance the detection of sophisticated 

network intrusions, making it a robust solution for modern 

cybersecurity threats. 

Figure.1 shows the intrusion detection framework 

proposed in this paper which consists of two stages. The 

first stage processed the original intrusion detection dataset, 

containing the deletion of invalid data, the digitization of 

categorical features and the normalization of digital 

features. The second stage is to classify abnormal and 

normal network traffic based on a hybrid model with K-

means and CNN+LSTM. The model framework is shown 

in Figure 1. 

 
 

Figure 1. Intrusion detection framework of the 
proposed KCLSTM model 

3.2. K-means Algorithm 

A well-liked unsupervised machine learning approach 

[40] called "K-means clustering" is used to group data points 

into k clusters according to how similar they are to one 

another in the feature space. The approach aims to reduce the 

sum of squared distances between the data points and the 

cluster centroids that are allocated to them. The cluster 

assignments and centroids don't change during the 

convergence phase of the iterative process. Given a dataset 

of n data points }x,...,x,x{ 21 n , the algorithm aims to group 

the data points into k clusters }c,...,c,c{ 21 k , where each 

cluster contains a set of data points and a centroid k . The 

objective function to be minimized is the sum of squared 

distances between each data point xi and its assigned centroid 

j  

2

1
x =

−=
n

i
jiJ  ,                              (1) 

 

where ||.|| denotes the Euclidean distance. 

The algorithm seeks to minimize this objective function by 

iteratively updating the assignment of each data point to its 

nearest centroid and recalculating the centroid of each 

cluster. The algorithm works as follows: 

(1)Initialize k cluster centroids randomly. 

(2)Assign each data point to the nearest cluster centroid 

based on the Euclidean distance between the data point and 

each centroid. 

(3)Recalculate the centroid of each cluster by taking the 

mean of all the data points assigned to that cluster. 

(4)Repeat steps (2) and (3) until convergence is reached. 

3.3. Convolutional Neural Network 

Convolutional Neural Network (CNN) [41] is a type of deep 

learning model that has been widely used in image and 

anomaly detection analysis tasks. CNN consist of multiple 

layers, including several convolutional layers and pooling 

layers, which are designed to extract and process features 

from the input attribute. 

The convolutional layer is the most important layer in 

CNN. It applies a set of learnable filters (also called kernels 

or weights) to the input attribute to produce a set of output 

feature maps. The filters are typically small in size (e.g.,3×3 

or 5×5) and slide over the input attribute in a systematic way, 

computing dot products between the filter weights and the 

corresponding values in the input attribute. The output 

feature maps capture different types of local input attribute 

patterns, such as edges, corners, and blobs, and they can be 

interpreted as a set of high-level features that represent the 

input attribute. The output feature maps are typically passed 

through an activation function (e.g., ReLU) to introduce 

non-linearity and enhance the discriminative power of the 

features. The mathematical formula for the convolutional 

layer can be expressed in Eq.2.  The L
ix  represents the 

attribute i map of convolution layer L, while σ denotes the 

activation function. ik  refers to the input attribute set of 

layer (L-1), 
L
jiw represents the connection weight between 

attribute i of convolution layer L and attribute j of layer (L-

1), and 
L
jb  is the deviation in the related layer. 
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−
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After the convolution layer comes the pooling layer. The 

pooling layer's goal is to minimize the attribute map's size. 

By doing this procedure, it is ensured that key qualities are 

identified, the complexity of the data is reduced, and the 
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network's resistance to environmental changes is increased. 

The pooling layer can be shown as shown in Eq. 3. 

( )( )L
j

L
i

L
i

L
i bc += −1xx  ,                          (3) 

The sub-sampling function is denoted by the symbol c in 

this example, while the weighting matrix is denoted by the 

symbol β. A well-liked unsupervised machine learning 

approach called "K-means clustering" is used to group data 

points into k clusters according to how similar they are to 

one another in the feature space. The approach aims to 

reduce the sum of squared distances between the data 

points and the cluster centroids that are allocated to them. 

The cluster assignments and centroids don't change during 

the convergence phase of the iterative process. 

3.4. Long Short-Term Memory 

Long Short-Term Memory (LSTM) network is a type of 

recurrent neural network (RNN) that is designed to handle 

the vanishing gradient problem and capture long-term 

dependencies in sequential data. Architecture of LSTM is 

graphically shown in Figure. 2. LSTM consist of a memory 

cell and three gates: forget gate, input gate, and output gate, 

which control the flow of information in and out of the cell. 

 

Figure 2. Architecture of LSTM 

The forget gate is used to selectively discard information 

from the memory cell that is no longer relevant. It takes as 

input the previous hidden state and the current input, and 

produces a forget vector that indicates which information to 

keep and which to discard from the cell state. The 

mathematical formula for the forget gate can be expressed in 

Eq.4. 

( )fttft bxhf += − ],[ 1W ,                         (4) 

 

where σ is the sigmoid activation function, fW is the weight 

matrix,  1−th is the previous hidden state, tx  is the current 

input, and fb  is the bias vector. 

The input gate is used to selectively update the memory 

cell with new information from the current input. It takes as 

input the previous hidden state and the current input, and 

produces an input vector that indicates which information to 

add to the cell state. The mathematical formula for the input 

gate can be expressed in Eq.5 and Eq.6. 

( )ittit bxhi += − ],[ 1W ,                           (5) 

( )CttCt bxhanhC += − ],[t 1

~

W ,                      (6) 

where ti is the input gate vector, 
~

tC  is the temporary cell 

state vector, σ is the sigmoid activation function, iW and 

CW are the weight matrices, ib  and Cb  are the bias vector. 

The cell state is the internal memory of the LSTM 

network. It stores the information that is relevant for the 

current task and is updated by the input and forget gates. Eq. 

7 is a mathematical expression that may be used to represent 

the cell state. 
~

1 ** ttttt CiCfC += − ,                           (7) 

where Ct is the current cell state, 1−tC  is the previous cell 

state, tf is the forget gate vector, ti  is the input gate vector, 

and 
~

tC  is the temporary cell state vector. 

 

The output gate is used to selectively output information 

from the memory cell. It takes as input the previous hidden 

state and the current input, and produces an output vector 

that indicates which information to output from the cell state. 

The mathematical formula for the output gate can be 

expressed in Eq.8 and Eq.9. 

( )ottot bxho += − ],[ 1W ,                       (8) 

( )ttt Canhoh t*= ,                               (9) 

where to  is the output gate vector, th is the current hidden 

state, σ is the sigmoid activation function, oW  and ob are 

weight and bias matrices, respectively. 

3.5. The Proposed KCLSTM Model :K-
means+CNN+LSTM 

The proposed hybrid KCLSTM model used the NSL-KDD 

dataset to identify network abnormalities by combining the 

K-means clustering algoritrhm with CNN and LSTM 

networks. Figure. 1 presents the conceptual diagram of the 

developed technique. The latter subsections included 

descriptions of the specifics. 

3.5.1 Dataset Description 

The NSL-KDD dataset was used to evaluate the validity of 

the proposed model in this study and was divided into two 

subsets: KDDTrain+ and KDDTest+. We employed 

KDDTrain+ and KDDTest+ for training and testing the 

KCLSTM model, respectively. To focus on the main 

performance metrics, we classified the traffic samples in 

both subsets into two categories: normal and anomaly. As 

shown in Table 1, the KDDTrain+ dataset contains a total 

of 125,973 records, with 67,343 labeled as normal and 

58,630 labeled as anomaly. Similarly, the KDDTest+ 

dataset has 22,544 records, with 9,711 labeled as normal 
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and 12,833 labeled as anomaly. The NSL-KDD dataset 

comprises one label and 41 features. 

Table 1. Normal and anomaly records distribution on 
the  NSL-KDD dataset. 

NSL-KDD Total Normal Anomaly 

KDDTrain+ 125973 67343 58630 

KDDTest+ 22544 9711 12833 

The NSL-KDD dataset has four classes of features, 

including basic features, Content features, Time based 

traffic features and Connection based features, as shown in 

Figure 3. The features with character values cannot be used 

directly as input, instead numeric features must be selected. 

Several features in the NSL-KDD dataset have big 

deviations. The classification results tend to be affected by 

the features with big deviations. Thus, it is necessary to 

digitize and normalize the input sample dataset. The NSL-

KDD dataset consists of network traffic instances, each 

characterized by a set of features that capture various 

aspects of network communication. These features are 

categorized into four types: basic features, content-based 

features, time based traffic features and connection based 

traffic features, as shown Figure.3 .  

The basic features include attributes like the duration of 

the connection, the protocol type (e.g., TCP, UDP), the 

service associated with the connection (e.g., ftp, http), and 

the source and destination IP addresses and port numbers. 

The content-based features are derived from the packet 

payload and include attributes like the number of failed 

login attempts, the number of root accesses, and the 

number of file creations. These features provide insights 

into the actual content of the network communication. The 

traffic features capture statistical information about the 

network traffic, such as the number of connections to the 

same host in the past two seconds or the number of 

connections from the same service in the past two seconds. 

 

Figure.3 Types of features in the NSL-KDD dataset 

3.5.2 Data Preprocessing 

The presence of character values in some of the features in 

the NSL-KDD dataset renders them unsuitable for direct 

use as input. Therefore, it is necessary to select only 

numeric features for this purpose. Additionally, certain 

features in the dataset exhibit significant deviations, which 

can adversely impact the classification results. To address 

this issue, it is essential to preprocess  the input sample 

dataset. 

Deletion. The deletion step involves removing any 

irrelevant or redundant features from the NSL-KDD 

dataset. This process helps reduce the dimensionality of the 

dataset and eliminate noise or irrelevant information that 

may hinder the anomaly detection process. Features that do 

not contribute significantly to the task at hand are removed, 

improving computational efficiency and reducing the risk 

of overfitting, such as the “num_outbound_cmds” attribute . 

Digitization. To digitize categorical features in the 

NSL-KDD dataset, we utilized one-hot encoding. This 

approach was applied to four categorical features, namely 

flag, service, and protocol_type. For instance, the 

protocol_type feature comprised the values ICMP, UDP, 

and TCP, which were converted into three 3-dimensional 

binary vectors: [1,0,0], [0,1,0], and [0,0,1], respectively. 

Thus, the single feature 'protocol_type' was transformed 

into three features through one-hot encoding. In this 

experiment, the service feature was converted into digital 

values ranging from 1 to 70 with a step size of 1, while the 

flag feature was transformed into digital values within the 

range of [1,11] using a step size of 1. Subsequently, these 

values were further processed using the one-hot method. 

Normalization. It involves scaling the values of the 

dataset's numerical features to a standardized range. 

Normalization prevents certain features from dominating 

the learning process due to differences in their magnitudes 

or ranges. It ensures fair comparisons between features 

during the training and inference stages. Common 

normalization techniques include Min-Max scaling, where 

the feature values are linearly transformed to a specified 

range (e.g., 0 to 1), or Z-score normalization, which 

standardizes the features by subtracting the mean and 

dividing by the standard deviation.  In this study, we 

employed min-max normalization to map all characteristic 

values to the range [0,1]. This normalization technique uses 

the formula Eq.10, where xm,n denotes the n-th feature of 

the m-th data, nm ,axx  represents the maximum value of the 

n-th feature, and nm ,inx  represents the minimum value of 

the n-th feature. 

 

nnm

nnm
m,n

min,ax,

min,,*

xx

xx
x

−

−
= ,                           (10) 

Attribute Ratio-Based Feature Selection.  After 

normalization, Attribute Ratio (AR) [42]-based feature 

selection is applied to the preprocessed NSL-KDD dataset. 

This process aims to reduce the dimensionality of the 

dataset by selecting the most relevant and informative 

features. Attribute ratio-based feature selection considers 

the information gain and correlation between features and 

the target variable (i.e., the class labels) to determine their 

significance. Features with low information gain or low 
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correlation with the target variable are discarded, as they 

are considered less informative for the anomaly detection 

task. This step reduces the number of features, improves 

computational efficiency, and focuses on the most 

informative attributes that contribute significantly to the 

detection of network anomalies. In this paper, We calculate 

the AR from numeric and binary type using attribute 

average and frequency for each class. AR may be 

determined using Equation 11. 

 

MAX(CR(j))AR(i) = ,                           (11) 

 
Where Class Ratio (CR) is the attribute  ratio of each class 

for attribute i. There are two ways to calculate CR depending 

on the type of attributes. For numeric attributes, the CR is 

calculated as the ratio of the sum of attribute i for each class 

to the total sum of attribute i, the formula is expressed in 

Eq.12. 

)(AVG

))((AVG
CR(j)

total

jC
= ,                              (12) 

For binary attributes, the CR is calculated as the ratio of the 

number of times attribute i appears in each class to the total 

number of times attribute i appears in all classes, the 

formula is expressed in Eq.13. 

)0(Frequency

)1(Frequency
CR(j) = ,                        (13) 

The CR is used to calculate the Attribute Ratio (AR) for 

each feature, which is then used to rank the features for 

feature selection. 

3.4.3 Classification based on KCLSTM model 

The second stage of our approach involves the use of the 

proposed KCLSTM model to rapidly classify anomaly 

events while ensuring the accuracy of the intrusion 

detection system (IDS). It is crucial to minimize the false 

negative rate of the IDS and accurately distinguish between 

normal and anomalous events to ensure the effectiveness 

of the boundary protection. Therefore, this phase focuses 

on accurately separating normal and anomalous events to 

the best of our ability. The validity of the data is a critical 

factor that determines the accuracy of the IDS. 

Additionally, Algorithm 1 presents the KCLSTM model’s 

pseudocode. 

Algorithm 1: KCLSTM 

Input: KDDTrain, KDDTest+, Hyper-Parameters: k, optimizer, 

learning_rate, filter_size, poolsize, hidden_size, batch_size, epochs, 

loss_func, and et.al. 

Output:  predicted labels of the KDDTest+. 

1.begin: 

2.    Pre-processing(KDDTrain, KDDTest+) 
3.    kmeans=KMeans(n_clusters=k).fit(Train_X) 

4.    kmeans.transform(Test_X) 

5.    pred_labels=[] 

6.    For cluster  in [0...k] do 

7.        kcmodel = Sequential() 

8.       kcmodel.add(Conv1D,MaxPooling1D,Conv1D,MaxPooling1D, 

Dropout) 
9.        kcmodel.add(LSTM(hidden_size), Dropout) 

10.      kcmodel.add(Dense(hidden_size/2), Dense(1), Dropout) 

11.      train_x, train_y, test_x = filter(Train_X, Train_Y, Test_X)[cluster] 

12.      kcmodel.compile(loss_func, optimizer) 

13.      kcmodel.fit(train_x, train_y, epoches, batch_size) 

14.      pred_labels.append(kcmodel.predict(test_x)) 

15.   Return pred_labels 

4. Experiments 

The assessment measures used in our experiment and 

result analysis are provided in this section. 

4.1. Evaluation Metrics 

To evaluate the performance of our proposed framework, 

we utilize evaluation metrics such as accuracy, precision, 

recall, F1 score, detection rate, and false alarm rate. We 

label normal samples as class 0 and abnormal samples as 

class 1. The results are categorized into the following four 

variables: True Positive (TP), which represents correctly 

predicted cases for class 1; True Negative (TN), which 

denotes correctly predicted cases for class 0; False Positive 

(FP), which represents class 0 cases that are incorrectly 

predicted as class 1; and False Negative (FN), which 

denotes class 1 cases that are misjudged as class 0. The 

mathematical expressions for all evaluation metrics are 

presented in Table 2. 

Table 2. Metrics for evaluation and the formulas 
underlying them 

Metric 
Symbo

l 
Mathematical formulae 

Precision P P=TP/(TP+FP) 

Recall R R=TP/(TP+FN) 

F1-Score F1 F1 = 2 * (P* R)/(P+R) 

Accuracy ACC 
ACC= (TP+TN) 

/(TP+TN+FP+FN )*100 

Detection 

rate 
DR DR = TP/(TP+FN) 

False alarm 

rate 
FAR FAR = FP/(TN+FP) 

4.2 Hyperparameter settings for the 
KCLSTM model 

The proposed KCLSTM model consists of a CNN with two 

convolutional layers, each followed by a ReLU activation 

function and max-pooling. The convolutional layers use 

output filter sizes of 64,  128, respectively. The LSTM 

component includes two layers with 128 and 64 units, 

respectively. Hyperparameter tuning was performed using 

grid search, optimizing parameters such as learning rate, 

batch size, and dropout rate. This process significantly 

improved the model's performance, achieving higher 

accuracy and lower false alarm rates. Hyperparameters 

were set for the proposed model to achieve optimal results. 

Table 3 presents the hyper-parameters obtained from the 

development experiment using the NSK-KDD dataset. 

Table 3. Hyper-parameters for KCLSTM model 
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parameters settings parameter description 

k 8 The number of K-means 

clusters  

initSteps 25 The number of steps for 

k-means 

maxIter 100 The maximum number of 

iterations 

ar 0.005 Feature selection by 

Attribute Ratio. If feature 

importance >ar,then 

selects this feature 

num_lstm 1 Number of lstm layers   

num_maxpool 2 Number of maxpooling 

layers 

num_convo 2 Number of convolutional 

layers 

kernel_size 3 specifying the length of 

the convolution window 

filters_size 64,128 the number of output 

filters in the convolution 

hidden_size 128 dimensionality of the 

output space in LSTM 

learning rate 0.001 KCLSTM model learning 

rate 

dropout  0.2 the fraction of neurons 

dropped out 

es_train 0.5 threshold for judgment as 

anomaly in train dataset 

es_test 0.022 threshold for judgment as 

anomaly in test dataset 

optimizer adam  String (name of 

optimizer) or optimizer 

instance 

4.3 The performance indices of KCLSTM 
model 

A graphic representation of the proposed KCLSTM 

performance for several performance indices is shown in 

Fig. 4. Fig. 4 indicates KCLSTM outperform kmeans-lstm 

with regard to accuracy (0.933), precision (0.942), recall 

(0.932), DR (0.932), and F-score (0.937), while accuracy 

(0.895), recall (0.906), and F-score (0.904) are less for 

kmeans-lstm. 

 

Figure.4 KCLSTM for observed performance 
metrics 

4.3.1 Accuracy and loss curve for KCLSTM model  

Figure 5 displays the accuracy and loss plot of the proposed 

model. The accuracy plot shows that the model was 

properly trained because the curves eventually reach 

saturation. The model showed comparable performance on 

both datasets and did not overfit the training set. As more 

epochs are added, the loss plot demonstrates that the model 

performs similarly on both the training and test datasets. It 

is a sign to stop training if the parallel curves start to 

diverge. 

 

Figure.5 Accuracy and loss plots for train and test 
data 

4.3.2 ROC and PR curve analysis of the KCLSTM 

The ROC curve is a performance measurement tool that 

plots a model's true positive rate on the y-axis and false 

positive rate on the x-axis in various threshold settings [43]. 

The ROC and PR curves of the proposed models are shown 

in Figure 6. From Figure 6, it can be observed that (a) and 

(b) represent the ROC and PR of the proposed model 

without k-means, and (c) and (d) show corresponding  

curves with k-means. It is evident from the ROC curve that 

cnn_lstm exhibits an AUC of 91.76, but with k-means, the 

proposed model's AUC substantially improves to 95.64. 

Likewise, for the PR curve, the proposed model's PR-AUC 

without k-means is 93.56, but with k-means, it improves to 

95.99. Given the dataset's imbalanced nature, the PR curve 

is a standard metric for evaluating the proposed model's 

performance. Additionally, the proposed KCLSTM 

exhibits an excellent PR-AUC of 95.99, indicating its 

excellent classification ability. 
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Figure.6 (a)ROC-AUC woutk (b) PR-AUC woutk (c) 
ROC-AUC withk (d) PR-AUC withk 

4.3.3 Performance comparison with K-means assisted 

baseline models 

The output of baseline models using k-means on the chosen 

feature set is shown in Table 4. Table 4 shows that Decision 

tree exhibited the lowest performance for all performance 

indices, including recall 83.6%, accuracy 83.3%, precision 

82.7% and F-score 83.1%. Among the other baseline 

models, CNN demonstrated good performance, with an 

recall of 91.8%, F-score of 91.6%, accuracy of 90.8%, DR 

of 91.8%, and precision of 91.4%. In contrast, the proposed 

KCLSTM achieved a DR of 93.2%, precision of 94.2%, 

accuracy of 93.3%, F-score of 93.7%, and recall of 93.2%. 

The results indicate that the proposed KCLSTM 

outperforms other baseline models significantly. 

Table 4. Performance comparison with K-means 
assisted baseline models 

Model Accurac

y 

Precisio

n 

Recal

l 

F1-

scor

e 

DR 

Decision 

tree 

0.803 0.827 0.836 0.83

1  

0.83

6 

XGBOOS

T 

0.852 0.864 0.874 0.86

9  

0.87

4 

CNN 0.908 0.914 0.918 0.91

6  

0.91

8 

LSTM 0.895 0.902 0.906 0.90

4  

0.90

6 

Ours 0.933 0.942 0.932 0.93

7 

0.93

2 

4.4 Comparison With Other Models 

In this experiment, we trained the proposed model on the 

NSL-KDD dataset using KDDTrain+ and tested it using 

KDDTest+. The results of our comparison between the 

proposed KCLSTM model and other models are shown in 

Table 5. It is clear from the table that the proposed KCLSTM 

outperforms all previously published approaches in terms of 

accuracy. Even while the proposed model has a larger FAR 

than the AE-LSTM [24], it is more accurate and has a higher 

DR by 4.28%. KMRF [25] exhibits the best performance 

among current baseline models, with an accuracy of 92.89%, 

DR of 98.57%, and FAR of 14.6%. However, the proposed 

KCLSTM achieves an accuracy of 93.3%, with DR of 93.2% 

and FAR of 12%. EM-FS [45] performs noticeably better in 

terms of FAR, however it has substantially worse accuracy 

than our model. RNN is utilized for intrusion detection in 

RNN-IDS [48], and it achieves an accuracy of 83.28%, 

which is lower than our model. Similar to DST-TL [49], 

which employs a self-taught learning-based IDS and a sparse 

auto-encoder, it has produced promising results on 

KDDTest+. Its accuracy and detection rate are lower than 

those of KCLSTM, though. Bi-LSTM with an attention 

mechanism was used by BAT-MC [50], another IDS based 

on deep learning architecture, to achieve an accuracy of 

84.25% with 122 features. This is less accurate than our 

model with fewer features. 

Table 5.  Performance comparison of the proposed 
KCLSTM with other models 

Model Featu

re 

selecti

on 

Classifier Feat

ures 

ACC

(%) 

DR(

%) 

FA

R(

%) 

FSSL[44

] 

cluster

ing 

FSSL 41 84.12 N/A N/A 

EM-

FS[45] 

IGR Bagging(C4.

5) 

32 84.25 N/A 2.79 

FSSL-

EL[46] 

 

PCA  

 

Ensemble 20 84.54 N/A 5.31 

TSE-

IDS[47] 

hybrid  

 

Two-stage 

ensemble 

37 85.79 86.8 11.7 

RNN-

IDS[48] 

N/A RNN 122 83.28 N/A N/A 

DST-

TL[49] 

N/A Sparse auto-

encoder 

122 84.60 86 14 

BAT-

MC[50] 

N/A BiLSTM 

with 

attention 

122 84.25 N/A N/A 

AELST

M[24] 

AE LSTM 30 89 88 11 

KMRF[

25] 

hybrid  Two-stage 

ensemble 

N/A 92.89 98.5

7 

14.6 

KCLST

M 

hybrid  Two-stage 

ensemble 

77 93.3 93.2 12.2

3 

5. Conclusion and future work 

This paper presents a hybrid intrusion detection model 

based on K-means clustering, CNN, and LSTM to address 

the time-consuming and low-efficiency bottlenecks of IDS. 

Through comprehensive analysis and evaluation, we 

demonstrate that integrating these three components yields 

promising results in accurately detecting network 

anomalies. The proposed hybrid categorization model was 

evaluated on the NSL-KDD dataset, and the experimental 

results indicate that the model can successfully detect 

anomalous  events with a high accuracy of 93.3%, a F1-

score of 93.7%, and a DR of 93.2% for both anomalous and 

normal events. Compared with other intrusion detection 

models, our proposed model achieves a better detection 

rate for anomaly events, indicating that the vast majority of 

anomaly events can be correctly identified. The proposed 

model also offers advantages in terms of faster data 

preprocessing.  

For limitations and future work, while the KCLSTM 

model demonstrates promising results, it has certain 



A hybrid intrusion detection system with K-means and CNN+LSTM 

 

 

 

11 

limitations. The model's performance may vary with 

different datasets, and its effectiveness in real-time 

scenarios needs further evaluation. Future research could 

focus on optimizing the model for specific network 

environments and attack patterns, as well as exploring its 

deployment in live network settings. 

Acknowledgements 

-Ethics Approval: 

Not applicable. 

 

-Conflict of Interest: 

The authors declare no conflict of interest. 

 

-Data Availability: 

The dataset used in this study is available upon request 

from the corresponding author. 

 

-Author Contribution: 

The contributions of each author are as follows: 

[Haifeng Lv]: Conceptualization, methodology, and 

writing - original draft. 

[Yong Ding]: Paper revision and review. 

 

-Funding: 

This article is supported in part by the National Key R&D 

Program of China under project (2023YFB3107301), the 

Guangxi Science and Technology Major Program under 

grant (AA22068067), the Guangxi Natural Science 

Foundation under grant (2024GXNSFDA010064), and the 

National Natural Science Foundation of China under 

project (62172119). 

 

-Consent to publish: 

All authors have given their consent to publish this 

manuscript. 

References 

[1] Gauthama Raman M R, Somu N, Jagarapu S, et al. An 

efficient intrusion detection technique based on support 

vector machine and improved binary gravitational search 

algorithm[J]. Artificial Intelligence Review, 2020, 53: 3255-

3286. 

[2] Zhang J, Ling Y, Fu X, et al. Model of the intrusion detection 

system based on the integration of spatial-temporal 

features[J]. Computers & Security, 2020, 89: 101681. 

[3] Manzoor I, Kumar N. A feature reduced intrusion detection 

system using ANN classifier[J]. Expert Systems with 

Applications, 2017, 88: 249-257. 

[4] Wang W, Liu J, Pitsilis G, et al. Abstracting massive data for 

lightweight intrusion detection in computer networks[J]. 

Information Sciences, 2018, 433: 417-430. 

[5] Marin G A. Network security basics[J]. IEEE security & 

privacy, 2005, 3(6): 68-72. 

[6] Jabez J, Muthukumar B. Intrusion Detection System (IDS): 

Anomaly detection using outlier detection approach[J]. 

Procedia Computer Science, 2015, 48: 338-346. 

[7] Depren O, Topallar M, Anarim E, et al. An intelligent 

intrusion detection system (IDS) for anomaly and misuse 

detection in computer networks[J]. Expert systems with 

Applications, 2005, 29(4): 713-722. 

[8] Gyanchandani M, Rana J L, Yadav R N. Taxonomy of 

anomaly based intrusion detection system: a review[J]. 

International Journal of Scientific and Research Publications, 

2012, 2(12): 1-13. 

[9] Jyothsna V, Prasad R, Prasad K M. A review of anomaly based 

intrusion detection systems[J]. International Journal of 

Computer Applications, 2011, 28(7): 26-35. 

[10] Wagh S K, Pachghare V K, Kolhe S R. Survey on intrusion 

detection system using machine learning techniques[J]. 

International Journal of Computer Applications, 2013, 

78(16): 30-37. 

[11] Liao H J, Lin C H R, Lin Y C, et al. Intrusion detection 

system: A comprehensive review[J]. Journal of Network and 

Computer Applications, 2013, 36(1): 16-24. 

[12] Avci İ, Özarpa C. Machine learning applications and security 

analysis in smart cities[M]//Machine Learning for Smart 

Environments/Cities: An IoT Approach. Cham: Springer 

International Publishing, 2022: 183-197. 

[13] Zhang P, Wang C, Jiang C, et al. Deep reinforcement 

learning assisted federated learning algorithm for data 

management of IIoT[J]. IEEE Transactions on Industrial 

Informatics, 2021, 17(12): 8475-8484. 

[14] Vallathan G, John A, Thirumalai C, et al. Suspicious activity 

detection using deep learning in secure assisted living IoT 

environments[J]. The Journal of Supercomputing, 2021, 77: 

3242-3260. 

[15] Serinelli B M, Collen A, Nijdam N A. Training guidance 

with kdd cup 1999 and nsl-kdd data sets of anidinr: 

Anomaly-based network intrusion detection system[J]. 

Procedia Computer Science, 2020, 175: 560-565. 

[16] Tavallaee M, Bagheri E, Lu W, et al. A detailed analysis of 

the KDD CUP 99 data set[C]//2009 IEEE symposium on 

computational intelligence for security and defense 

applications. Ieee, 2009: 1-6. 

[17] Zhou Y, Cheng G, Jiang S, et al. Building an efficient 

intrusion detection system based on feature selection and 

ensemble classifier[J]. Computer networks, 2020, 174: 

107247. 

[18] Al-Hawawreh M, Sitnikova E, Aboutorab N. Asynchronous 

peer-to-peer federated capability-based targeted ransomware 

detection model for industrial IoT[J]. IEEE Access, 2021, 9: 

148738-148755. 

[19] Kasongo S M. An advanced intrusion detection system for 

IIoT based on GA and tree based algorithms[J]. IEEE Access, 

2021, 9: 113199-113212. 

[20] Liu J, Yang D, Lian M, et al. Research on intrusion detection 

based on particle swarm optimization in IoT[J]. IEEE Access, 

2021, 9: 38254-38268. 

[21] Zhou X, Hu Y, Liang W, et al. Variational LSTM enhanced 

anomaly detection for industrial big data[J]. IEEE 

Transactions on Industrial Informatics, 2020, 17(5): 3469-

3477. 

[22] Gao J, Chai S, Zhang B, et al. Research on network intrusion 

detection based on incremental extreme learning machine 

and adaptive principal component analysis[J]. Energies, 

2019, 12(7): 1223. 

[23] Vinayakumar R, Alazab M, Soman K P, et al. Deep learning 

approach for intelligent intrusion detection system[J]. Ieee 

Access, 2019, 7: 41525-41550. 

[24] Mushtaq E, Zameer A, Umer M, et al. A two-stage intrusion 

detection system with auto-encoder and LSTMs[J]. Applied 

Soft Computing, 2022, 121: 108768. 



Haifeng Lv, Yong Ding 

  12      

[25] Liu C, Gu Z, Wang J. A hybrid intrusion detection system 

based on scalable K-Means+ random forest and deep 

learning[J]. IEEE Access, 2021, 9: 75729-75740. 

[26]Xu W, Jang-Jaccard J, Singh A, et al. Improving performance 

of autoencoder-based network anomaly detection on nsl-kdd 

dataset[J]. IEEE Access, 2021, 9: 140136-140146. 

[27] Vinayakumar R, Alazab M, Soman K P, et al. Deep learning 

approach for intelligent intrusion detection system[J]. Ieee 

Access, 2019, 7: 41525-41550. 

[28] Patil D R, Pattewar T M. Majority voting and feature 

selection based network intrusion detection system[J]. EAI 

Endorsed Transactions on Scalable Information Systems, 

2022, 9(6). 

[29] Venkateswaran N, Prabaharan S P. An efficient neuro deep 

learning intrusion detection system for mobile adhoc 

networks[J]. EAI Endorsed Transactions on Scalable 

Information Systems, 2022, 9(6). 

[30] Singh R, Subramani S, Du J, et al. Antisocial Behavior 

Identification from Twitter Feeds Using Traditional 

Machine Learning Algorithms and Deep Learning[J]. EAI 

Endorsed Transactions on Scalable Information Systems, 

2023, 10(4). 

[31] You M, Ge Y F, Wang K, et al. TLEF: Two-Layer 

Evolutionary Framework for t-Closeness 

Anonymization[C]//International Conference on Web 

Information Systems Engineering. Singapore: Springer 

Nature Singapore, 2023: 235-244. 

[32] Yin J, Chen G, Hong W, et al. Empowering Vulnerability 

Prioritization: A Heterogeneous Graph-Driven Framework 

for Exploitability Prediction[C]//International Conference 

on Web Information Systems Engineering. Singapore: 

Springer Nature Singapore, 2023: 289-299. 

[33] Ge Y F, Wang H, Bertino E, et al. Evolutionary dynamic 

database partitioning optimization for privacy and utility[J]. 

IEEE Transactions on Dependable and Secure Computing, 

2023. 

[34] Ge Y F, Bertino E, Wang H, et al. Distributed cooperative 

coevolution of data publishing privacy and transparency[J]. 

ACM Transactions on Knowledge Discovery from Data, 

2023, 18(1): 1-23. 

[35] Papalkar R R, Alvi A S. A Hybrid CNN Approach for 

Unknown Attack Detection in Edge-Based IoT Networks[J]. 

EAI Endorsed Transactions on Scalable Information 

Systems, 2024. 

[36] Papalkar R R, Alvi A S. Analysis of defense techniques for 

DDos attacks in IoT–A review[J]. ECS Transactions, 2022, 

107(1): 3061. 

[37] Papalkar R R, Alvi A S, Ali S, et al. An optimized feature 

selection guided light-weight machine learning models for 

DDoS attacks detection in cloud computing[M]//Artificial 

Intelligence, Blockchain, Computing and Security Volume 1. 

CRC Press, 2023: 975-982. 

[38] Papalkar R R, Alvi A S. Review of unknown attack detection 

with deep learning techniques[M]//Artificial Intelligence, 

Blockchain, Computing and Security Volume 1. CRC Press, 

2023: 989-997. 

[39] Hamadouche S, Boudraa O, Gasmi M. Combining Lexical, 

Host, and Content-based features for Phishing Websites 

detection using Machine Learning Models[J]. EAI Endorsed 

Transactions on Scalable Information Systems, 2024. 

[40] Hartigan J A, Wong M A. Algorithm AS 136: A k-means 

clustering algorithm[J]. Journal of the royal statistical 

society. series c (applied statistics), 1979, 28(1): 100-108. 

[41] Gu J, Wang Z, Kuen J, et al. Recent advances in 

convolutional neural networks[J]. Pattern recognition, 2018, 

77: 354-377. 

[42] Chae H, Choi S H. Feature selection for efficient intrusion 

detection using attribute ratio[J]. Int. J. Comput. Commun, 

2014, 8: 134-139.  

[43] Shaukat K, Luo S, Varadharajan V, et al. Performance 

comparison and current challenges of using machine 

learning techniques in cybersecurity[J]. Energies, 2020, 

13(10): 2509. 

[44] Ashfaq R A R, Wang X Z, Huang J Z, et al. Fuzziness based 

semi-supervised learning approach for intrusion detection 

system[J]. Information sciences, 2017, 378: 484-497. 

[45] Pham N T, Foo E, Suriadi S, et al. Improving performance 

of intrusion detection system using ensemble methods and 

feature selection[C]//Proceedings of the Australasian 

computer science week multiconference. 2018: 1-6. 

[46] Gao Y, Liu Y, Jin Y, et al. A novel semi-supervised learning 

approach for network intrusion detection on cloud-based 

robotic system[J]. IEEE Access, 2018, 6: 50927-50938. 

[47] Tama B A, Comuzzi M, Rhee K H. TSE-IDS: A two-stage 

classifier ensemble for intelligent anomaly-based intrusion 

detection system[J]. IEEE access, 2019, 7: 94497-94507. 

[48] Yin C, Zhu Y, Fei J, et al. A deep learning approach for 

intrusion detection using recurrent neural networks[J]. Ieee 

Access, 2017, 5: 21954-21961.  

[49] Qureshi A S, Khan A, Shamim N, et al. Intrusion detection 

using deep sparse auto-encoder and self-taught learning[J]. 

Neural Computing and Applications, 2020, 32(8): 3135-

3147. 

[50] Su T, Sun H, Zhu J, et al. BAT: Deep learning methods on 

network intrusion detection using NSL-KDD dataset[J]. 

IEEE Access, 2020, 8: 29575-29585. 


