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Abstract 

The access gateway layer in the IoT interior design bridging the gap between several destinations. The capabilities include 

message routing, message identification, and a service. IoT intelligence can help machinery industries optimize their 

operations with perspectives on factory processes, energy use, and help efficiency. Automation can bring in improved 

operations, lower destruction, and greater manufacture. IoT barriers are exactly developed for bridging the gap between field 

devices and focused revenues and industrial applications, maximizing intelligent system performance and receiving and 

processing real-time operational control data that the network edge. The creation of powerful, flexible, and adjustable Human 

Machine Interfaces (HMI) can enable associates with information and tailored solutions to increase productivity while 

remaining safe. An innovative strategy for data-enabled engineering advances based on the Internet of Manufacturing Things 

(IoMT) is essential for effectively utilizing physical mechanisms. The proposed method HMI-IoMT has been gap analysis 

to other business processes turns into a reporting process that can be utilized for improvement. Implementing a gap analysis 

in production or manufacturing can bring the existing level of manpower allocation closer to an ideal level due to balancing 

and integrating the resources. Societal growth and connection are both aided in the built environment. Manufacturing 

operations are made much more productive with the help of automation and advanced machinery. Increasing the output of 

products and services is possible as a result of this efficiency, which allows for the fulfillment of an expanding population's 

necessities. 
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1. Introduction

The convergence of the IoT and machines has unleashed 

unprecedented prospects for intelligent manufacturing [1]. 

These changes in attitude have led to the current 

optimization of operations and increase in production 

results, characterized by the full incorporation of digital 

technologies into traditional manufacturing processes [2]. 

This alteration is significant because it acts as the entry 

*Corresponding author. Email: wyf1226882024@163.com 

gateway layer where information can flow across different 

nodes that are not connected [3]. There are several benefits 

when IoT intelligence is integrated with equipment 

departments, including potential for substantial increase in 

operational effectiveness, energy use, and production [4]. 

Automation and real-time data analytics enable 

manufacturers to realize streamlined operations, 

interruption avoidance, and better productivity [5]. IoT 

barriers align field devices with industrial applications, 

allowing decision-makers at the network edge to access 
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actionable information [6]. The greatest system 

performance is achieved through this alignment [7]. This 

involves operator-specific HMI that is powerful and 

flexible [8]. By way of HMIs, workers can access 

information and customize solutions, enhancing their 

productivity while maintaining safe working conditions 

[9]. The IoMT, among other things such as data-enabled 

engineering solutions like IoMT optimizes physical assets 

and promotes continuous improvement within 

manufacturing processes [10]. Therefore, the paper 

presents a new methodology named HMI-IoMT, which 

undertakes an extensive gap analysis on prevailing 

business processes to identify improvement opportunities 

[11]. Consequently, strategic resource integration and more 

accurate staff allocation within the manufacturing sector 

can enhance operational efficiencies while maximizing 

human capital and technology usage [12]. Intelligent 

manufacturing has no less important impact on societies; it 

drives economic growth, enhances globalization through 

connectivity, and meets fast-rising demands from growing 

populations [13]. 

Objectives 

This paper aims to improve intelligent production by 

integrating IoT with machinery [14]. It seeks a theoretical 

framework, optimization methodologies, and HMI and 

IoMT prominence [15]. Issues for potential future studies 

and their practical effects on manufacturers are addressed 

[16]. The analysis aims to shed light on how manufacturing 

companies may make better use of IoT technology, 

streamline their processes, and stay ahead of the 

competition in the dynamic industry [17]. 

Contribution of the paper 

• An important step toward smart manufacturing is the

theoretical groundwork for IoT integration with

machinery that this paper lays forward. Outlining

tactics for operational optimization, it highlights the

critical importance of HMIs and IoMT.

• There is an examination of the practical

consequences, emphasizing the social and economic

benefits, and the proposal of future study directions.

• Based on these findings, the paper offers a road map

for manufacturers to successfully use IoT technology,

simplify operations, and gain competitive advantages

in a changing industrial landscape.

Moreover, intelligent manufacturing has social 

implications that cannot be ignored since it drives 

economic development, enhances connectivity, and meets 

changing demands from population growth across nations 

worldwide [19]. The smart Industry is witnessing a new 

evolution driven by machines and the Internet. 

Manufacturers today can thrive with innovative strategies 

and modern technology when faced by difficult production 

environments [20]. The remaining portion of the paper is 

structured in the following manner: The discussion of 

similar works can be found in Section II. In Section III, the 

HMI-IoMT strategy has been articulated as the one that has 

been suggested. The outcomes of the experiments, 

analysis, disputes, and comparisons to earlier methods are 

all reported in Section IV of the report. Section V is where 

the conclusion is presented. 

2. Related works

All of the works connected to this topic cover a wide range 

of technological developments and approaches driving the 

evolution of intelligent manufacturing. Extending from the 

Industrial Internet of Things (IIoT) to Artificial 

Intelligence (AI)-assisted Customized Manufacturing 

(CM), and from Particle Swarm Optimization (PSO) to Big 

Data-Driven Analysis (BDDA), these studies investigate a 

variety of methods that aim to improve the effectiveness, 

sustainability, and decision-making capabilities of 

manufacturing processes. 

Industrial Internet of Things (IIoT) 

There are now intelligent and data-driven manufacturing 

processes in IIoT. In a smart factory, the IIoT links 

materials, tools, and logistics [21]. The IIoT connects 

production units with interconnected equipment and 

sensors that enable remote access, monitoring, and data 

collection through Big Data Analytics and associated 

cyber-physical systems. This paper revolutionizes cyber-

physical systems and manufacturing processes in industry 

40 through big data analytics. A paper on the topic of IIOT 

gives one idea about its advantages for industries. It is 

shown how diagrams help change factories’ moods about 

the culture of IIoTs affect production. They include twenty-

nine major IIoT applications ranging from transportation to 

supply chain monitoring to warehouse optimization. Daily 

improvement in efficiency and performance by 

transforming manufacturing has been necessitated by the 

Internet of Things (IIoT).  

Qualitative and quantitative methods 

This paper uses qualitative and quantitative approaches to 

clear up any misunderstandings around Smart 

Manufacturing (SM) vs Intelligent Manufacturing (IM) 

[22]. Thus, it will methodically compare SM with IM after 

outlining their definitions, evolutionary routes, and 

foundational technologies using a systematic approach 

while explaining their linkages. Applying bibliometric 

analysis established publication sources pattern, keyword 

frequency, research focus areas, etc. As Industry 40 

includes intelligence into manufacturing processes 

including human-cyber-physical systems it is necessary to 

thoroughly understand the concepts of SM and IM which 

this study tries to cover. 
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Artificial Intelligence (AI)-assisted 

Customized Manufacturing (CM) 
In smart factories AI enables CM which is transformative 

development process.The growth highlights that there is a 

move towards small batch production techniques with 

multivariety products aimed at particular buyers [23]. 

Details of a self-awareness adaptable customized factory 

are included. Manufacture’s architecture involves flexible 

line construction; this includes AI based tailor made smart 

factory conceptualization. Modern AI tools including 

cloud-edge computing, big data, machine learning, and the 

internet of things are reviewed. The study illustrates the 

effectiveness of AI-assisted CM in improving production 

flexibility and efficiency through a case study conducted 

on customized packaging.  

 

Particle swarm optimization (PSO)  
 

This paper focuses on energy-intensive sectors and 

provides a data-driven framework for sustainable, 

intelligent manufacturing systems [24]. The framework 

integrates demand response tactics within the Industry 40’s 

cloud computing and IoT environment to facilitate cleaner 

production by adhering to sustainability development 

goals. Multi-level demand response models targeting 

machine, shop-floor, and factory levels were developed to 

support energy usage/cost optimization. PSO based 

electrical demand response can significantly reduce energy 

costs for industries that consume high amounts of 

electricity. The paper gives some practical 

recommendations to support smart decision-making 

processes at energy-intensive industrial enterprises.  

 

Big Data-driven Analysis (BDDA)  
 

Intelligent manufacturing has gained much attention from 

scholars and entrepreneurs in this era of economic 

globalization. As one of AIs core technologies, BDDA 

enhances the ability of manufacturers to make meaningful 

conclusions out of large chunks of factory data thereby 

remaining competitive.The usefulness and benefits of big 

data-driven analysis in intelligent manufacturing decision-

making were examined theoretically [25].This theoretical 

paper suggests a framework for industrial big data-driven 

technology-based intelligent decision-making that is useful 

in guiding future studies in this area.Thus, HMI-IoMT is 

conclusively seen as a viable approach yielding better 

results than existing techniques. 

3. Proposed method 

Combining HMI with an IoMT is the goal of the suggested 

technique, HMI-IoMT, which is a forward-thinking 

strategy to transform production operations. There is an 

urgent need for improved operations in the equipment 

sector, and the novel approach meets that demand. With 

HMI-IoMT, the gap between the IoT and equipment 

functionality may be filled, leading to increased 

productivity, safety, and efficiency. This technology allows 

industrial processes to adapt, grow, and prosper by utilizing 

modern robotics and real-time data processing. In this 

introductory section, it lay the groundwork for a deep dive 

into how HMI-IoMT may revolutionize manufacturing 

environments. 

Figure 1 explains about machines and the IoT work 

together in intelligent production, which is changing the 

face of manufacturing. Real-time monitoring of 

environmental parameters, such as temperature, pressure, 

and machine performance, is made possible by the 

distributed sensor networks that are characteristic of 

Internet of Things devices. Following that, the data are 

merged into a single set and saved for later analysis, which 

takes place at a time that is fairly distant from the present. 

Through the identification of patterns, trends, and outliers, 

advanced analytics make it possible to make proactive 

decisions. Data analysis is a crucial component of decision-

making in intelligent manufacturing, which enables 

ongoing improvements to be made. An evaluation of the 

data that has been acquired is carried out by means of 

algorithms in order to improve operations, increase 

performance, and reduce the probability of downtime 

occurring.  

 

Figure 1. Smart manufacturing information and 
control flow 

Since they are continually taking in new inputs and 

maintaining themselves, these algorithms can deliver 

operations that are both efficient and adaptable. The use of 

automated control systems for the purpose of optimizing 

the efficiency of equipment may include modifying the 

environment in accordance with the data that is acquired in 

real time. The ability to do predictive maintenance, which 

helps in recognizing problems with machinery before they 

break down, is made possible by intelligent manufacturing. 
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This helps to reduce the frequency of repairs and 

maintenance as well as the expenses associated with them. 

The integration of Internet of Things devices and 

equipment may result in the simplification of operations, 

the improvement of product quality, and the acceleration of 

answers to the requirements of the market. This seamless 

merging of technology and manufacturing techniques is a 

huge step forward in industrial efficiency and 

competitiveness, and it is driving the industry towards a 

smarter, greener future. 

𝑍(𝑢) = 𝐵 (𝑢)  × 𝐺 (𝐿, 𝑀, 𝐹)

= 𝐵(𝑢) × 𝑀(𝑢)𝛽 ×  𝐿(𝑢)𝛾

× 𝐹(𝑢)𝛿                                                        (1) 

 

The equation 1 provides a general framework for 

optimizing production processes by taking all relevant 

variables into account. Where 𝑍(𝑢) represents the ideal 

result, which is the sum of three primary factors: While 

𝐵 (𝑢)  is the baseline efficiency, 𝐺 (𝐿, 𝑀, 𝐹)is the total 

impact of human effort, mechanical input, and physical 

space. The various contributions of each element on the 

total outcome are reflected by raising each factor to its 

relevant exponent (𝛽, 𝛾, 𝛿). The interplay between labour 

(M), machinery (L), and facilities (F) is what defines the 

level of efficiency and productivity in production.  

 

𝑍(𝑢)𝑟𝑒𝑎𝑙

=  [(1 − 𝜇) × 𝐵(𝑢)]  × 𝐵(𝑢)𝜋 × 𝐿(𝑢)𝜌

× 𝐹(𝑢)𝜎                                                       (2) 

 

Equation (2) gives a revised model for optimization in real-

world production. Following an impact on the actual 

output, which is denoted as 𝑍(𝑢)𝑟𝑒𝑎𝑙. Nevertheless, the 

base efficiency, labour, and facilities have a modified 

influence on the ultimate output due to the addition of 

additional parameters 𝜇, 𝜋, 𝜌, and 𝜎 in this equation. 

Parameters𝜋, 𝜌, and 𝜌 modify the impact of base 

efficiency, labour, and facilities, respectively, whereas 𝜇 

represents the extent of divergence from the base optimum 

level.  

 

𝑍(𝑢)𝑠 = (𝐵 × 𝐶)∃  × [𝑍(𝑢)1−∃]
= (𝐵 × 𝐶)1−∆

× [𝐵(𝑢) × 𝐿(𝑢)𝜏 ×  𝐿(𝑢)𝜏

× 𝐿(𝑢)𝜏]1−∇                                                (3) 

 

 

 
 

Figure 2. IoT-based smart manufacturing industries 

The optimized manufacturing result is now represented in 

Equation (3) with a new variable C added to the basic 

efficiency 𝐵(𝑢) and labour (𝐿) from earlier equations. In 

this case, 𝑍(𝑢)𝑠 represents the best possible result when C 

is considered. A new component C, raised up the value of 

the variable ∃, and base efficiency both have an impact, as 

shown by the equation. A mixture of components from the 

preceding equation are reflected in the 

expression[𝑍(𝑢)1−∃], where 𝑍(𝑢)𝑠 reflects the total 

optimization affected by base effectiveness and labour, and 

is modified by a supplementary factor of ∃.  

Figure 2 shows the Oone of the most important 

IoT applications in industry smart factories is predictive 

maintenance, which greatly decreases unexpected 

downtime in part-production operations. Predictive 

maintenance uses data and analytics to determine when 

machines and manufacturing equipment will need repairs, 

which reduces downtime and increases efficiency. This 

preventative method lowers maintenance costs, keeps 

equipment running for longer, and avoids interruptions. In 

smart factories, the IoT is crucial because it constantly 

checks the status of machines, finds any problems before 

they happen, and plans maintenance.  

IoT sensors monitor the chip-making process and provide 

critical data about the gear, such as vibration, temperature, 

and energy use. Predictive maintenance uses this data to 

improve maintenance schedules and decrease downtime, 

which aligns with the Industry's enhanced aims. IoT, 

applications in smart factories include a wide range of 

areas, including supply chain management, process control 

and monitoring, sensor integration, inventory management, 

shipment tracking, and AGV (Automated Guided Vehicle) 

applications. This all-encompassing integration highlights 

the revolutionary power of the IoT in coordinating quick 

and effective production processes inside the industry 

paradigm. 

 

𝑍 (𝑢) = 𝐵(𝑢) × 𝐺(𝐿, 𝑀, 𝐹)

=  [𝐵0(𝑢) + 𝐸(𝑢)] × 𝑀(𝑢)𝜔 × 𝐿(𝑢)∁

× 𝐹(𝑢)𝜀                                                         (4) 
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To optimize manufacturing processes and attain the desired 

output, 𝑍 (𝑢), Equation (4) provides a complete model that 

incorporates various elements. The equation presents a 

number of essential elements: In contrast to 𝐺(𝐿, 𝑀, 𝐹), 

which denotes the combined effect of labour (L), 

equipment (M), and amenities (F), 𝐵(𝑢) denotes the 

baseline level of efficiency. Parameters 𝜔, ∁, and 𝜀 modify 

the effect of equipment, labour, and facilities, respectively, 

whereas E(u) reflects external influences impacting base 

efficiency.  

 

𝐽𝑁𝑗𝑢

=  ∑
𝑒𝑚𝑝𝑙𝑜𝑦𝑡𝑗𝑢

𝑒𝑚𝑝𝑙𝑜𝑦𝑗𝑢

×
𝑅𝑜𝑏𝑡𝑢

𝑒𝑚𝑝𝑙𝑜𝑦𝑡𝑢=2006

𝑇

𝑡=1

×
𝑁𝑅𝑜𝑏𝑡𝑢

𝑒𝑚𝑝𝑙𝑜𝑦𝑡𝑢=2006

                                                                          (5) 

 

For any given 𝑗𝑢, the Job Neutral Index 𝐽𝑁𝑗𝑢 may be 

calculated using Equation (5). To calculate the index, it 

take the total work in the jurisdiction, divided by all sectors, 

and multiply it by the robot-to-employ ratio 𝑅𝑜𝑏𝑡𝑢 and the 

non-robot capital-to-employment ratio 𝑁𝑅𝑜𝑏𝑡𝑢 for a given 

base year 𝑡𝑢 = 2006. Over a certain time period (𝑡 = 1 to 

𝑇), this equation measures the relative effect of robots and 

non-robot assets on the dynamics of employment within a 

jurisdiction.  

 

𝐹𝑄𝑗𝑢 = 𝑏0 + 𝑏1𝐽𝑁𝑗𝑢

+ ∑ 𝑏𝑙𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑗𝑢𝑙 + ∇𝑗 + 𝑤𝑢

7

𝑗=1

+∋𝑗𝑢                                                         (6) 

 

A regression model for predicting business-level firm 

quality 𝐹𝑄𝑗𝑢 in a given (𝑗𝑢) is shown in Equation (6). 

Numerous explanatory factors are included in the equation. 

Job neutrality has an effect on firm quality; the intercept is 

represented by 𝑏0, and the coefficient linked with the Job 

Cleanliness Index 𝐽𝑁𝑗𝑢 is 𝑏1. The summation term includes 

seven control factors 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑗𝑢𝑙  that could have an impact 

on firm quality, and the values of the coefficients 𝑏𝑙 for 

these variables range from 1 to 7. A number of potential 

elements impacting business success are captured by these 

control variables. In addition, the equation incorporates a 

random error term ∋𝑗𝑢, temporal fixed effects 𝑤𝑢, and 

specific firm-level fixed effects ∇𝑗. 

 

  

Figure 3. Block diagram of proposed method HMI-
IoMT 

Specifically for manufacturing settings, Figure 3 depicts an 

Internet of Things (IoT) interior design system that seeks 

to improve industrial operations. The first layer is the 

Access Gateway, which mediates data exchanges between 

the various components of the system. Effortless 

communication and data sharing are made possible across 

the whole IoT architecture by this layer. The Access 

Gateway is the foundation upon which the Internet of 

Things Intelligence functions, such as message routing, 

identification, and service provision, are created.  This 

intelligence layer is vital for the management of the vast 

data quantities that are produced by Internet of Things 

devices. These data sets are required for effective advanced 

analytics and decision-making. In order to the system and 

its operators to interact with one another, the HMI layer 

serves as a clear entry point for communications. Because 

it is able to give relevant data and provide intuitive control 

over the manufacturing methods, it is able to deliver 

individualized solutions, which in turn results to better 

productivity and enhanced security.  

One of the primary goals of the Internet of Things (IoT) 

layer is to use IoT technology in order to improve the 

efficiency of industrial operations. The data-enabled 

engineering processes are aided, improvement possibilities 

are found via gap analysis, and decision-making reports are 

meaningfully generated. Because it improves both 

production and operational efficiency, automation is a 

crucial instrument in commercial environments.  
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As a consequence of automation, human participation is 

reduced, errors are minimized, and throughput is 

maximized. The development of smart manufacturing 

systems is driven by the need to optimize operations, boost 

productivity, and meet the rising expectations of modern 

enterprises. Automation, data analytics, human-machine 

interaction, and the Internet of Things are all components 

of these systems. 
𝑈𝐺𝑄𝑗𝑢

=  𝑐0 + 𝑐1𝐽𝑁𝑗𝑢 + ∑ 𝑐𝑙𝐶𝑜𝑛𝑡𝑟𝑜𝑙
7

𝑗=1 𝑗𝑢𝑙

+ ∇𝑗 + 𝑤𝑢

+∋𝑗𝑢                                                                                          (7)  

 

The level of 𝑈𝐺𝑄𝑗𝑢 inside a certain 𝑗𝑢 may be predicted 

using a regression model, as shown in Equation (7). There 

are several parts to the equation, including the intercept 

term 𝑐0 and the coefficient 𝑐1 that indicates the effect of job 

neutral on graduate quality; the latter is related to the 

Employment Neutrality Index 𝐽𝑁𝑗𝑢. Also, the sum of the 

seven variables used for control. A word with j values 

between 1 and 7 represents control that could influence 

graduation quality. The above list of control variables 

accounts for many of the possible variables that affect the 

quality of graduate students. Furthermore, the equation 

includes individual fixed effects ∇𝑗, temporal fixed effects 

𝑤𝑢, and a random error component ∋𝑗𝑢 . 

 

𝐻𝑈𝐽𝑗𝑢

=  𝑑0 + 𝑑1𝐽𝑁𝑗𝑢 + ∑ 𝑑𝑙𝐶𝑜𝑛𝑡𝑟𝑜𝑙
7

𝑗=1 𝑗𝑢𝑙

+ ∇𝑗 + 𝑤𝑢

+∋𝑗𝑢                                                                                         (8) 

 

Using a regression model, as seen in Equation (8), it is 

possible to make a prediction for the Human Urbanization 

Index 𝐻𝑈𝐽𝑗𝑢  for the month of 𝑗𝑢. There are a number of 

components that make up the equation, two of which are 

the Work Neutrality Index 𝐽𝑁𝑗𝑢, which demonstrates the 

influence that work neutrality has on urbanization, and the 

intercept term, 𝑑0. The seven control variables 

∑ 𝑑𝑙𝐶𝑜𝑛𝑡𝑟𝑜𝑙7
𝑗=1 𝑗𝑢𝑙

that have the potential to influence 

urbanization are included into a summation term. The value 

of j may vary from 1 to 7. The term "control variables" 

refers to a wide range of elements that have the potential to 

influence the pace and degree of urbanization found within 

the jurisdiction. The equation includes temporal fixed 

effects 𝑤𝑢, distinct fixed effects ∇𝑗, and an unforeseen term 

∋𝑗𝑢 .  

 

𝑆𝐽𝐺(𝑟𝜑 , 𝑍, 𝐺𝑧)

=  𝑟𝜑

+
𝜑 − 1(𝑧 ≤ 𝑟𝑠)

𝑔𝑧(𝑟𝑠)
                                                                       (9) 

 

In a particular situation defined by parameters 𝑟𝜑 , 𝑍, and 

G_z, 𝐺𝑧 Equation (9) provides a justice gradient Gradient 

(𝑆𝐽𝐺). The SJG, which depends on a number of things, is 

computed using the equation. An person or group's relative 

position along the scale of society is denoted by the word 

𝑟𝜑 . On top of that, the equation includes the variable 𝜑, 

which is a parameter that changes the way Z (a 

measurement of social inequality) affects the SJG. This 

conditional statement checks if Z's value is less than or 

equal to a specific threshold, represented by 𝑟𝑠, and the 

expression 𝑧 ≤ 𝑟𝑠 does just that. If this is the case, the SJG 

can be adjusted by adding a correction term to the equation, 

which takes into account a proportion of 𝜑 − 1 to 𝑔𝑧(𝑟𝑠), 

where 𝑔𝑧(𝑟𝑠) is a function that describes how social 

inequality affects the equity gradient at the threshold 𝑟𝑠.  

 

 

Figure 4. Manufacturing execution system 

Figure 4 shows the manufacturing execution system 

Management information system, which links machines, 

controllers, and management departments; it is a crucial 

feature of any manufacturing environment. Ensuring 

seamless data interchange and sharing throughout the 

whole production process is its primary objective. At the 

process level, there are usually a number of proprietary 

control systems in use, such as CNC controllers, PLCs, and 

WSNs. To move data streams from these control systems 

to two different database servers in real-time, gateway 

computers are required.  

Users at the management level thereafter employ software 

tools for data analytics and process monitoring. Supply 

chain optimization, digital performance management, 

energy management, cost analysis, and quality control are 

the many tasks that MES supports. Traditional MES 

architectures have been transformed by recent 

breakthroughs in IoT technologies. The transfer of MES to 

cloud platforms has been made possible by integrating IoT-

enabled control systems with protocols like MTConnect. 

Problems with proprietary data stream decoding are no 

longer an issue with cloud-based MES solutions, which 

streamline data storage, analytics, reporting, and 
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communication. Efficiency and productivity in 

manufacturing processes are being driven by the transition 

towards cloud-based MES, which improves scalability, 

flexibility, and accessibility. 
 

𝐹𝑌{𝐹[𝑆𝐽𝐺(𝑟𝜑 , 𝑍, 𝐺𝑧)|𝑌|]}

= 𝑟𝜑                                              (10) 

 

The aggregate distribution function of the (𝑆𝐽𝐺) dependent 

on the event Y is given as 𝐹[𝑆𝐽𝐺(𝑟𝜑 , 𝑍, 𝐺𝑧)|𝑌|] in Equation 

(10) as𝐹𝑌, a conditional probability function. Given an 

event Y, the relative position 𝑟𝜑  in the social hierarchy is 

equal to the chance that the SJG drops below or equal to a 

specified value, as indicated by this equation. 

Fundamentally, it suggests that one's social rank 

determines their SJG, and that this connection is dependent 

on event Y. Put otherwise, the SJG distribution is 

deterministic with regard to the relative location 𝑟𝜑 , 

according to Equation (10) when the event Y is considered. 

 

𝑅𝑈(𝑍)

=  ∫ 𝐹(𝑆𝐽𝐺(𝑟𝜑 , 𝑍, 𝐺𝑧) |𝑌

= 𝑦) 𝑒𝐺𝑌(𝑦)                                                                              (11) 

 

The metric of efficiency, 𝑅𝑈(𝑍), is determined using an 

integral operation and is represented by Equation (11). 

Given a particular amount of Y, represented as y, the 

equation incorporates the combination symbol (∫) over the 

whole range of values associated with the (𝑆𝐽𝐺). Assuming 

that the event Y has the value y, the conditional cumulative 

distributive function of the SJG is represented by 

𝐹(𝑆𝐽𝐺(𝑟𝜑 , 𝑍, 𝐺𝑧) |𝑌 = 𝑦) inside the integral. If Y is equal 

to y, then this function represents the likelihood that the 

SJG will be less than or equal to a specific number. Another 

thing that 𝑒𝐺𝑌(𝑦) stands for is the chances distribution 

function of Y.  

 

𝑉𝑅𝑄𝐹(𝜑) =  ∫
∁𝐹(𝑆𝐽𝐺(𝑟𝜑 , 𝑍, 𝐺𝑧)|𝑌)

∁𝑌
𝑒𝐺𝑌                   (12) 

 

 

Figure 5. Management of inventories in real-time 
with dynamic scheduling 

Equation (12) shows an integral operation that determines 

a performance metric, 𝑉𝑅𝑄𝐹(𝜑). For a given value of φ, 

this equation incorporates the integration symbol (∫) across 

all possible values of the (𝑆𝐽𝐺). This integral is the 

conditional likelihood density functional of the 𝑆𝐽𝐺 given 

a specific value of 𝜑, split by the probability distribution 

function of 𝑌, as shown by 
∁𝐹(𝑆𝐽𝐺(𝑟𝜑,𝑍,𝐺𝑧)|𝑌)

∁𝑌
. In essence, this 

ratio expresses how the conditional likelihood of the SJG 

varies in relation to changes in Y. Furthermore, the 

likelihood density as a function of 𝑌 is denoted by 𝑒𝐺𝑌.  

As can be seen in Figure 5, sensors connected to the IoT are 

bringing about a technological revolution in inventory 

management inside smart industrial processes. One of the 

numerous advantages that these sensors provide is a 

reduction in expenditures, and another is an improvement 

in environmental sustainability. Internet of Things (IoT) 

sensors and radio frequency identification (RFID) tags 

make real-time monitoring possible, which means 

producers may potentially acquire precise information on 

inventory levels, positions, and movements. This gives 

companies the chance to improve their manufacturing 

processes and make choices with precise information. 

Enhancing operational efficiency and lowering the risk of 

stockouts or overstocking are also possible outcomes of 

having the capability to monitor in real time. It is possible 

that Internet of Things devices might enhance inventory 

management in a variety of different ways. Establishing up 

automated reordering may be one approach to accomplish 

this goal. This can be done when particular thresholds are 

reached. On the other side, they could investigate an 

alternative option. Because of this automation, numerous 

industrial operations are guaranteed to have sufficient 

inventory. This is beneficial as it improves the accuracy of 

inventory counts while simultaneously reducing the 

likelihood of errors resulting from human intervention.  

 

An development in the process of demand forecasting is 

being prompted by a number of factors, one of which is the 

expansion of Internet of Things devices. Through the use 

of advanced analytics and the collection of sensor data, this 

strategy takes into consideration previous patterns and 

properly forecasts future demand trends going forward. 

Businesses have a higher chance of lowering their losses 

and boosting their profits via improved inventory 

management if they are able to predict the demand from 

customers and make adjustments to their inventory levels 

in a proactive manner. This proactive strategy has several 

benefits, two of which are the reduction in pollutant levels 

associated with component manufacturing and the 

improvement in operating efficiency. Both of these 

benefits are among the many advantages. The key to these 

benefits is reducing the amount of waste that occurs during 

manufacturing and storage. Tools for inventory 
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management have become available to firms that are smart 

thanks to the Internet of Things. When these firms use these 

solutions, they are able to decrease their impact on the 

environment, enhance their operational efficiency, and 

conserve cost all at the same time.  

 

𝑆𝐽𝐺(𝐹𝑄𝑗𝑢 , 𝑟𝜑)

=  𝒆𝟎 + 𝜎𝐽𝑁𝑗𝑢

+ ∑ 𝑐𝑗  𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑗𝑢𝑙 + 𝛽𝑗 + 𝛼𝑢

7

𝑗=1

+ 𝛿𝑗𝑢                                                           (13) 

 

The 𝑆𝐽𝐺(𝐹𝑄𝑗𝑢 , 𝑟𝜑) is used in Equation (13) to perform an 

analysis of many components of production that are 

included inside a single jurisdiction (𝑗𝑢). The value of the 

coefficient that is connected with the phrase 𝜎𝐽𝑁𝑗𝑢 is 

specified by the symbol 𝐹𝑄𝑗𝑢, and the symbol e_0 is used 

to indicate the intercept term in the equation. The use of 

this coefficient may be utilized to demonstrate the impact 

that position neutrality has on the efficiency of the 

workplace. Every control variable 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑗𝑢𝑙  that has the 

potential to influence productivity has an extra term that 

has values ranging from 1 to 7 for the 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑗𝑢𝑙  

component. These control variables allow for the 

consideration of any and all conceivable factors that might 

have an effect on output within the chosen jurisdiction. 

Both the primary components 𝛽𝑗, which have an impact on 

production, and the additional variables α_u and 𝛿𝑗𝑢, which 

are concerned with specific fixed outcomes and regional 

fixed effects, respectively, are taken into consideration by 

the equation under consideration.  

 

𝐹𝑄𝑗𝑢

= 𝑒0 + 𝑒1𝐽𝑁𝑗𝑢

+  ∑ 𝑒𝑗𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑗𝑢 + ∇𝑗
1𝐸𝑢 + ∆𝑗 + 𝑢𝑣

7

𝑗=1

+ ∃𝑗𝑢                                                          (14) 

 

Equation (14) provides a model that can be used to study 

the impact of interoperability on firm quality 𝐹𝑄𝑗𝑢  in a 

certain jurisdiction (𝑗𝑢). E_0 represents the intercept term 

in the equation, while e_1 stands for the coefficient 

associated with (𝐽𝑁𝑗𝑢). Here is the correlation between 

employment neutrality and company performance via this 

coefficient. This includes all seven control elements 

(𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑗𝑢)  that might affect the company's quality, as j 

can be anywhere from 1 to 7. Every possible jurisdictional 

problem that impacts an organization's quality is 

considered as a control variable. An uncertainty 

component, individual fixed impacts (∇𝑗
1), regional 

variable effects (∆𝑗), and variable in time effects (𝑢𝑣) are 

all included in the equation.  

 

𝑇𝑄𝑘𝑣 =  𝑓0 + 𝑓1𝐾𝑃𝑘𝑣 +  ∑ 𝑓𝑘 𝐶𝑜𝑛𝑡𝑟𝑜𝑙
7

𝑘=1 𝑘𝑣

+ ∆𝑘
1 𝐹𝑣

+ ∇𝑘 + 𝑣𝑤 +∋𝑘𝑣                                (15) 

 

As explained by Equation (15), performing an analysis of 

the Total Quality (𝑇𝑄𝑘𝑣) inside a certain environment that 

is specified by the variables k and v. The intercept term is 

represented by the symbol 𝑓0, and the coefficient for the 

key performance measure 𝑓1𝐾𝑃𝑘𝑣 is represented by the 

symbol (𝐾𝑃𝑘𝑣). This coefficient illustrates the influence 

that the key performance measure has on the overall 

quality. There are seven control variables (𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑘𝑣) in 

the summation term, and the coefficient values (𝑓𝑘)  of 

these control factors range from one to seven. Each of these 

control factors has the potential to influence the overall 

quality. Within the framework provided by k and v, these 

control variables include a broad variety of characteristics 

that have an opportunity to impact the overall quality.  

As a result of its innovative approach to resolving a 

complex problem, the HMI-IoMT technology has the 

potential to initiate a revolution in the industrial sector. By 

using the capabilities of the Internet of Industrial Things 

(IoMT) and Machine Interfaces (HMI), this strategy is able 

to bridge large intelligence and connectivity gaps that exist 

in industrial environments. By using state-of-the-art 

automation, real-time data processing, and efficient 

resource allocation, the HMI of the Internet of Things 

improves efficiency, safety, and productivity to 

unprecedented levels. Not only is this strategy essential for 

thriving in today's dynamic corporate landscape, but it will 

also propel forward at all times and help society achieve its 

goals. More than just a technological development, HMI-

IoMT signals an evolution toward an industrial sector 

future that is more networked, positive, and 

environmentally conscious. 

4. Result and discussion 

Dataset description: Data acquired by Industry 4.0, also 

known as the Industrial Internet of Things (IIoT) [26], 

includes maintenance records, operating characteristics, 

and performance measurements for storage and retrieval 

systems. These are all examples of the types of information 

that would be collected. Quantifications are included in this 

dataset for a variety of factors, including retrieval speeds, 

inventory turnover rates, storage space, and the number of 

times the system is down. This essential data set for 

monitoring the environment of the storage facility includes 

readings from sensors that measure temperature, humidity, 

and vibration levels, each of which are importantThe 

optimization of storage operations is one of the objectives 

of the projects that are part of the Industry 4.0 initiative. 

This data has the potential to assist with this objective, as 

well as with improving the effectiveness and dependability 

of industrial storage systems and preparing ready for 

predictive maintenance.  
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A comprehensive illustration of the metrics that are used 

by intelligent manufacturing systems is shown in Figure 6, 

which is a picture of an efficiency study. The data 

visualization and analysis that is shown in this image sheds 

light on several areas of operational efficiency, including 

production output, resource usage, reduction of downtime, 

cost-effectiveness, and other factors. Monitoring data such 

as cycle durations, equipment utilisation, and failure rates 

is something that manufacturers to ensure that they are 

increasing their production. Following the identification of 

problem regions, they may subsequently be able to 

administer individualized therapies.  

Having feedback loops and real-time monitoring is critical 

for continually optimizing manufacturing processes, as 

seen in this picture. For better decision-making, more 

effective resource allocation, and the continuous evolution 

of projects, this analysis is a must-have tool for decision-

makers. Figure 6 is a go-to tool for producers in today's 

dynamic industrial landscape as they strive for increased 

productivity, profitability, and competitiveness. The 

efficiency ratio is increased by 97.7 % while using the 

suggested approach, HMI-IoMT, as compared to the 

current methods. 

 

Figure 6. Analysis of efficiency 

 

Figure 7. Analysis of Performance 

To evaluate the effectiveness and achievement of IMS, it is 

necessary to look at the performance measures presented in 

Figure 7: Analysis of Performance. Insights on 

manufacturing process efficiency, bottlenecks, and 

improvement opportunities can be uncovered by 

manufacturers through the analysis of these indicators. 

Figure 7 makes it easy to compare results over time or 

between several assembly lines, which helps decision-

makers keep tabs on performance patterns and base their 

choices on data. Using the all-encompassing image shown 

in this figure, producers are able to improve product 

quality, streamline processes, and better satisfy consumer 

demands. It is a great way to see how well past methods 

and technology worked, which can help direct investments 

and efforts for future improvements. With a ratio of 98.9 

and the use of HMI-IoMT, Figure 7 is very important for 

businesses to maintain their competitive edge and 

accomplish their performance objectives in today's fast-

paced production environment.  
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Figure 8. Analysis of Productivity 

The findings of an examination into the productivity of the 

intelligent manufacturing system are shown in Figure 8, 

which was titled "Productivity Breakdown." It is possible 

for manufacturers to make use of these measurements in 

order to determine what aspects of their production 

processes need improvement and figure out how to 

increase overall productivity. The comparison of data from 

many shifts, lines, or facilities may also be helpful in 

identifying possibilities for improvement and procedures 

that are being performed very well. With the whole 

information that is shown in this image, it may be able to 

produce more while simultaneously reducing waste, 

reducing downtime, and increasing throughput. Once all is 

said and done, there will be monetary rewards as well as 

enhanced productivity. In addition, you will be able to 

follow performance patterns over time and get information 

on the impact that certain approaches or technologies have 

on output. This information may be found on the website. 

It is highly vital to have Figure 8 to accomplish 

productivity objectives with a ratio of 95.7% employing 

HMI-IoMT and to keep up with the fast-paced industrial 

environment that exists today.  

.  

 

Figure 9. Analysis of Interoperability 

Interoperability Analysis is shown in Figure 9, which 

illustrates the connectivity and interoperability of a variety 

of technologies that are used in autonomous manufacturing 

environments. It is clear that the various components of the 

manufacturing ecosystem are able to communicate with 

one another and understand one another in this particular 

case. As a consequence of this, the various components are 

given the opportunity to collaborate with greater efficacy. 

Standardization of data exchange, the ability to combine 

systems, and connectivity across different platforms are all 

indications that interoperability is present. These kinds of 

interoperability criteria may be used by manufacturers in 

order to assess the effectiveness and efficiency of their 

networked systems.  

 

Figure 10. Analysis of Security and privacy 

Based on the information shown in Figure 9, the purpose is 

to identify issues with interoperability and then implement 

modifications that will make different systems more 

compatible with one another and boost connectedness. This 

study attempts to assist businesses in accomplishing a 

number of objectives, including making more effective use 

of the resources they already possess, enhancing their 

operational efficiency, and simplifying their operations. In 

the future, further investments in technology and 

infrastructure will be required in order to achieve the goal 

of increasing the level of cooperation and interoperability 

that exists within the industrial establishment. In order for 

this process to be successful, improved interoperability, 

which is now at 96.9%, is essential. The use of intelligent 

manufacturing technologies is essential to the success of 

this strategy.  

Figure 10, which is titled "Analysis of Security and 

Privacy," provides a comprehensive description of the 

security measures that are used by information 

management systems (IMSs) in order to avoid cyberattacks 

and hide sensitive data. The following are some of the 

security and privacy indicators that are shown in this 

image: data encryption methods, access restriction 
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systems, and the findings of vulnerability assessments. By 

using these metrics, manufacturers are able to evaluate 

their security procedures and determine the vulnerabilities 

that exist inside their systems. It is possible to accomplish 

secure compliance with legal requirements and avoid 

liabilities by closely monitoring the legislation and 

standards pertaining to data privacy and security. There is 

a possibility that manufacturers may make use of the results 

of the inquiry in order to take precautionary measures that 

will enhance data protection, comfort is concerned about 

security, and improve the protection of key resources.  

Table 1. This is a legend. Caption to go above table 

Metrics analysis IIoT AI-CM HMI-

IoMT 

Efficiency 41.2 30 97.7 

Performance 44.8 35.5 98.9 

Productivity 50.8 39.8 95.7 

Interoperability 57.5 42.2 96.9 

Security and Privacy 60 39.1 99.6  

 

An effective means of informing stakeholders about the 

company's security posture and building confidence with 

clients, business associates, and government bodies. Figure 

10 is vital for 99.6 % of IMSs in modern digital times to 

guarantee integrity and security. 

Both the findings and the argument demonstrate the extent 

to which a great number of significant factors for the 

development of IMSs were thoroughly studied. We need to 

look at Figures 6–10 to get insights on efficacy, 

performance, productivity, interoperability, security, and 

privacy if we want to enhance operations, raise 

competitiveness, and maintain data integrity. Figures 6–10 

are below.  

IIoT, AI-CM, and HMI-IoMT are the three domains that 

make up this metrics study. There are many more domains 

that make up this research. Performance, efficiency, and 

productivity are evaluated across the board, in addition to 

security and privacy concerns. IIoT has a score of 41.2%, 

which indicates that it has a decent performance in terms 

of resource usage. On the other hand, AI-CM has a score 

of 30%, which is lower. HMI-IoMT, on the other hand, has 

an Efficiency score of 97.7 percent, which suggests that it 

makes great use of the resources that it has. However, HMI-

IoMT 98.9% demonstrates remarkable operational output, 

in contrast to AI-CM 35.5% and IIoT's 44.8%. Similar 

patterns can be seen in the statistics regarding productivity: 

IIoT stood at 50.8%, AI-CM stood at 39.8%, and HMI-

IoMT stood at 95.7%. The presence of interoperability is 

indicative of a robust connection across all platforms, with 

the IIoT recording 57.5%, AI-CM recording 42.2%, and 

HMI-IoMT recording 96.9% on the list. The Security and 

Privacy ratings of IIoT (60%) and AI-CM (39.1% and 

99.6%, respectively) illustrate that both systems provide 

effective security for sensitive data in IMS. This is the last 

point, but it is significant nevertheless.  

Visual representations and analysis may be of assistance to 

manufacturers in accomplishing their objectives, 

monitoring patterns of performance, and identifying areas 

in which they may make improvements. The significance 

of data-driven solutions is brought to light by these results, 

which may be used to facilitate continuous improvement 

and successfully traverse the complexity of current 

production processes. 

5. Conclusion 

One of the unique approaches to intelligent manufacturing 

systems that has been presented in this article is the HMI-

IoMT. This technology has the potential to enhance 

processes, as well as boost productivity and ensure safety 

in industrial settings, by establishing a connection between 

the HMI and the IoM. A number of important concerns, 

including privacy, security, interoperability, performance, 

and efficiency, were brought to light by the comprehensive 

investigation. Whether or not the integration of HMI and 

IoMT is effective is determined by a considerable number 

of factors. It is possible for producers to evaluate the 

current production settings, identify areas that have the 

potential to be improved, and strategically aim their efforts 

by using this information.  

In the future, it is projected that there will be further 

research and development carried out in this particular 

field. Real-time decision-making, system integration, and 

the overall user experience might all be improved by 

increasing the amount of money invested in research into 

innovative HMI designs and IoMT technology.  

The integration of cloud and edge computing has the 

potential to further improve data analytics and predictive 

maintenance. There are further pressing concerns that need 

fixing, such as data security, privacy, and compliance with 

regulations. Ongoing efforts to establish robust 

cybersecurity measures, conform to industry standards, and 

promote collaboration among all stakeholders are 

necessary to maintain the security and safety of HMI-IoMT 

systems. 
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