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Abstract 
In the realm of Unmanned Aerial Vehicles (UAVs) for civilian applications, the surge in demand has underscored the need 
for sophisticated technologies. The integration of Unmanned Aerial Systems (UAS) with Artificial Intelligence (AI) has 
become paramount to address challenges in urban environments, particularly those involving obstacle collision risks. 
These UAVs are equipped with advanced sensor arrays, incorporating LiDAR and computer vision technologies. The AI 
algorithm undergoes comprehensive training on an embedded machine, fostering the development of a robust spatial 
perception model. This model enables the UAV to interpret and navigate through the intricate urban landscape with a 
human-like understanding of its surroundings. During mission execution, the AI-driven perception system detects and 
localizes objects, ensuring real-time awareness. This study proposes an innovative real-time three-dimensional (3D) path 
planner designed to optimize UAV trajectories through obstacle-laden environments. The path planner leverages a 
heuristic A* algorithm, a widely recognized search algorithm in artificial intelligence. A distinguishing feature of this 
proposed path planner is its ability to operate without the need to store frontier nodes in memory, diverging from 
conventional A* implementations. Instead, it relies on relative object positions obtained from the perception system, 
employing advanced techniques in simultaneous localization and mapping (SLAM). This approach ensures the generation 
of collision-free paths, enhancing the UAV's navigational efficiency. Moreover, the proposed path planner undergoes 
rigorous validation through Software-In-The-Loop (SITL) simulations in constrained environments, leveraging high-
fidelity UAV dynamics models. Preliminary real flight tests are conducted to assess the real-world applicability of the 
system, considering factors such as wind disturbances and dynamic obstacles. The results showcase the path planner's 
effectiveness in providing swift and accurate guidance, thereby establishing its viability for real-time UAV missions in 
complex urban scenarios. 
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1. Introduction

Unmanned Aerial Vehicles (UAVs), commonly known as 
drones, have emerged as indispensable assets in the 
aerospace and related sectors due to a confluence of 
compelling qualities. Among these, cost-effectiveness, 
accessibility, and mission versatility stand out 
prominently. UAVs present an economically viable 
alternative, offering a substantial reduction in operational 
costs compared to traditional manned aircraft. Their 
accessibility is unparalleled, allowing for rapid 
deployment and maneuverability in diverse environments. 

The versatility of UAVs extends across an array of tasks, 
transforming them into valuable tools for applications 
such as package delivery, law enforcement surveillance, 
disaster management, infrastructure inspection, 
agriculture mechanization, rescue operations, and military 
intelligence. Beyond their cost-effectiveness and 
versatility, UAVs bring forth additional attributes that 
contribute to their preference in various sectors. One such 
attribute is their enhanced safety profile, as UAVs 
eliminate the need for human pilots to be exposed to 
potentially hazardous conditions. This aspect is 
particularly crucial in tasks involving disaster response, 
hazardous material monitoring, or surveillance in 
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challenging terrains. The reduced risk to human life 
positions UAVs as ideal candidates for missions where 
safety is paramount. 

Furthermore, UAVs offer a unique aerial perspective, 
enabling them to access hard-to-reach or remote areas that 
may be inaccessible or hazardous for ground personnel. 
This aerial vantage point proves invaluable in scenarios 
such as search and rescue operations, wildlife monitoring, 
and environmental surveying. The ability to capture high-
resolution images and real-time data from above 
facilitates informed decision-making, making UAVs 
instrumental in research, monitoring, and assessment 
tasks. UAVs also exhibit environmental benefits, 
contributing to sustainable practices in various industries. 
Their lower carbon footprint compared to traditional 
aircraft aligns with the growing global emphasis on eco-
friendly technologies. In applications like precision 
agriculture, UAVs play a pivotal role in optimizing 
resource usage, reducing environmental impact, and 
enhancing overall efficiency. Moreover, the agility and 
adaptability of UAVs make them well-suited for dynamic 
and evolving situations. Their ability to be rapidly 
deployed and reconfigured for different missions 
enhances operational flexibility. This trait is particularly 
advantageous in scenarios where swift responses are 
imperative, such as emergency services, law enforcement, 
or monitoring rapidly changing conditions. 

During ongoing research on Unmanned Aerial Vehicles 
(UAVs), the integration of Artificial Intelligence (AI) and 
advanced computer vision technology has ushered in a 
new era of capabilities, particularly in the domain of route 
planning and navigation. As UAVs find increased 
applications in cluttered and dynamic environments, the 
traditional reliance on Global Positioning System (GPS) 
for vehicle localization faces limitations. In response, 
researchers [1] have turned to a fusion of sophisticated 
sensors, including visual cameras, Inertial Navigation 
Systems (INS), and GPS [2], to achieve precise UAV 
localization and navigation. The synergy of these sensor 
inputs [3] has proven crucial for overcoming challenges 
posed by obstacles in the UAV's flight path, such as trees, 
buildings, and other impediments. Computer vision 
technology has been pivotal in elevating the capabilities 
of UAVs beyond mere localization. It empowers UAVs 
not just to pinpoint their position but also to detect and 
navigate around obstacles. This is achieved through the 
implementation of high-performance computers capable 
of rapid data processing, enabling the development of 
intricate vision-based navigation algorithms. Researchers, 
including Abdulla Al-Kaff [4], Wagoner et al. [5] and 
Lidia et al. [6], have dedicated efforts to exploring and 
analyzing these algorithms, which contribute to 
autonomous navigation, precise control, effective object 
tracking, and obstacle avoidance. 

Concurrently, the integration of AI into UAV navigation 
systems has revolutionized route planning. AI imparts 

humanoid perception to UAVs, enabling them to operate 
semi- or fully autonomously. Studies by Su Yeon Choi 
and Dowan Cha [7] delve into the historical development 
of AI in UAVs, shedding light on control strategies, 
object recognition, and machine-learning-based path 
planning and navigation methods. This infusion of AI 
equips UAVs with the ability to learn from their 
environment, make decisions, and adapt their navigation 
strategies based on real-time data, fostering a level of 
autonomy previously unattainable. The symbiosis 
between AI and computer vision technologies assumes 
paramount importance in civilian applications of UAVs, 
where challenges in wildlife monitoring, disaster 
management, and search and rescue operations demand a 
sophisticated and adaptable approach. Christos and 
Theocharis [8], Luis F. Gonzalez et al. [9], and Eleftherios 
et al. exemplify how the incorporation of AI and 
computer vision capabilities into UAVs facilitates the 
resolution of specific challenges inherent in these diverse 
domains. The culmination of these technological 
advancements empowers UAVs with heightened 
environmental awareness, paving the way for more 
effective and collision-free path planning. The challenges 
associated with real-time path planning, including the 
integration of multiple sensors, data synchronization, and 
computational burdens, are addressed by researchers like 
Valenti et al.[10] and Yuncheng et al. [11] Moreover, Yan 
et al.'s [12] exploration of a deep reinforcement learning 
technique for real-time path planning in dynamic 
environments represents a promising avenue, despite 
considerations regarding the assumption of predetermined 
global situational data and the absence of real-flight 
testing. 

In a bid to further mitigate computational burdens, this 
study proposes an innovative approach by integrating the 
fastest object detection algorithm with a light-weight 3D 
path planner based on YOLO (You Only Look Once). 
Renowned for its speed, YOLO enhances the efficiency of 
real-time path planning, thereby addressing the challenges 
associated with intensive computational requirements on 
companion computers dedicated to UAV localization, 
obstacle detection, and 3D path planning. The 
comprehensive report unfolds the proposed methodology, 
outlines the hardware and software components, and 
explores the configurations that contribute to optimizing 
UAV performance in dynamic and cluttered 
environments. The incorporation of these cutting-edge 
technologies not only enhances the capabilities of UAVs 
but also marks a significant stride toward realizing their 
full potential in a myriad of real-world scenarios.  

2. Methodology

In the quest to enable real-time object detection and 3D 
path planning on a companion computer embedded in a 
UAV, a pivotal stride involves the seamless integration of 
the fastest object detection algorithm and a 3D path 
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planner that imposes minimal computational burden. 
YOLO (You Only Look Once) [13] has emerged as the 
algorithm of choice for object detection, attributed to its 
exceptional speed. Beyond its fundamental role in 
detecting objects, YOLO also furnishes critical 
localization information for the detected objects. 
Leveraging this data, the proposed 3D path planner 
orchestrates the computation of a collision-free trajectory 
for the UAV by strategically utilizing the relative 
locations of detected objects [14]. While bearing a 
semblance to the A* path planning algorithm in 
incorporating a heuristic function for cost minimization, 
the proposed 3D path planner strategically departs from 
the conventional exhaustive search for consecutive 
collision-free nodes and the storage approach employed 
by A*. Departing from the traditional A* methodology, 
the proposed planner maps the current UAV location to a 
specific set of nodes positioned strategically between 
consecutive obstacles. This strategic mapping is based on 
factors such as the UAV's size and the gap between 
successive obstacles. A Euclidean function is ingeniously 
employed as the heuristic function in this 3D path 
planner, thereby enhancing its computational efficiency. 

The modifications introduced in the proposed 3D path 
planner [15], departing from the conventional A* 
algorithm, are meticulously designed to address key 
challenges inherent in real-time collision-free path 
planning for Unmanned Aerial Vehicles (UAVs) 
navigating through cluttered environments. A critical 
adjustment involves strategically reducing the exhaustive 
search typically undertaken by the traditional A* 
algorithm. This reduction aims to optimize computational 
resources, crucial for UAVs requiring swift decision-
making capabilities. Furthermore, enhancements in the 
storage method have been implemented to minimize 
memory usage, recognizing the constraints often 
associated with UAVs' onboard computational 
capabilities. Unlike the traditional A* approach, the 
proposed planner strategically maps the UAV's current 
location to a select number of nodes between consecutive 
obstacles. This strategic node mapping, influenced by 
factors such as UAV size and gap between obstacles, 
streamlines the path planning process, enabling quicker 
decision-making and trajectory computation. 
Additionally, the heuristic function, crucial for cost 
minimization in both A* and the proposed planner, 
undergoes a specific adaptation. The introduction of a 
Euclidean function as the heuristic enhances 
computational efficiency, simplifying cost estimation and 
guiding the UAV toward collision-free paths. These 
modifications collectively ensure that the 3D path planner 
is not only adept at generating optimal paths but also 
tailored to the unique characteristics and constraints of 
UAVs, making it a robust solution for real-time 
applications in dynamic and complex environments. 

Moving forward, the subsequent step involves an in-depth 
evaluation of the proposed 3D path planner within a 

simulated environment. This evaluation is facilitated by 
software tools, with Gazebo 3D dynamic environment 
simulator taking center stage. Originally tailored for 
algorithm assessment within the realm of robotics [16-
18], Gazebo excels in providing realistic rendering of the 
environment in which the UAV navigates. Furthermore, 
the simulator boasts an array of simulated sensors, 
augmenting its capabilities for conducting comprehensive 
tests. To augment the evaluation process, a meticulously 
designed simulated cluttered 3D environment within 
Gazebo serves as the testing ground. This simulated 
environment not only mirrors real-world challenges but 
also allows for an iterative assessment of the proposed 3D 
path planner's performance across successive 
development stages. In this simulated environment, the 
3D path planner interacts with the Gazebo simulator, 
navigating the UAV through the intricacies of the 
designed 3D space. The simulator incorporates various 
sensor inputs, simulating real-world scenarios, and 
facilitating the testing of collision-free path planning 
under different conditions. This iterative process ensures 
that the proposed 3D path planner is robust and adaptive, 
capable of handling the dynamic challenges presented in 
cluttered environments. Thus, the synergy between the 
YOLO algorithm, the innovative 3D path planner, and the 
Gazebo simulator underscores a comprehensive approach 
to developing and validating a real-time, collision-free 
path planning system for UAVs. 

3. Software and Hardware Tools

The employment of Software-In-The-Loop (SITL) 
simulation stands as a widely adopted practice for 
assessing algorithmic performance during the 
developmental phase, offering a streamlined and cost-
effective alternative to real-flight testing scenarios, 
thereby mitigating potential risks and avoiding the 
financial and temporal implications of actual crashes. In 
the developmental and evaluative phases of the 3D path 
planner, an amalgamation of open-source software 
components, including the px4 flight control firmware, 
Gazebo simulator, and Robot Operating System (ROS), 
was seamlessly integrated. Gazebo, revered for its 
dynamic 3D model simulation environment, proved 
particularly adept at facilitating tasks such as obstacle 
avoidance and computer vision, enriched by simulated 
sensors that faithfully replicate the functionality of real 
UAV onboard sensors. The YOLO object detector, 
endowed with its Darknet architecture and encapsulated 
within the ROS framework, played a pivotal role by 
disseminating crucial information pertaining to obstacles 
present in the UAV's navigation environment. 

For the rigorous validation of the YOLO object detector 
[19–25], a meticulous process involved capturing images 
of 3D models of simulated objects within the Gazebo 
environment, encompassing diverse backgrounds and 
varying lighting conditions. The implementation of the 
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3D path planner algorithm, serving as the impetus for the 
px4 flight controller to issue actuator commands to the 
quadcopter model ensconced within the Gazebo 
simulator, took shape as a dedicated ROS node. The 
hardware models emulated in this SITL Gazebo 
simulation included the iris quadcopter, a depth stereo 
camera, three ultrasonic sensors, and the LiDAR system, 
depicted in Figure 1. 

Each hardware component was assigned a distinct 
function within the simulation setup: the frontal camera 
adeptly captured environmental images, the LiDAR 
system collaborated with GPS for precise quadcopter 
altitude estimation, and the ultrasonic sensors diligently 
detected lateral obstacles during both take off and rolling 
manoeuvres. The 3D path planner seamlessly extracted 
relevant information from these sensors within the 
Gazebo simulator, facilitated by the Gazebo_ros packages 
that empower sensors to publish their valuable data. 
Importantly, the entire simulation framework operated on 
a desktop computer, and the comprehensive software 
specifications of this system are meticulously detailed in 
Table 1. This holistic simulation environment ensures a 
robust testing ground for the iterative development and 
validation of the 3D path planner algorithm, offering 
insights into its performance dynamics and adaptability to 
a diverse array of scenarios and challenges within 
cluttered environments. 

4. Machine Learning Implementation for
3D path planner

The preeminent challenge in the domain of autonomous 
navigation for Unmanned Aerial Vehicles (UAVs) 
revolves around the intricacies of crafting a meticulously 
planned, obstacle-free route from an initial point to a 
designated destination. This challenge assumes paramount 
significance, particularly in missions such as law 
enforcement, package delivery, and first aid interventions 
within urban landscapes, where the likelihood of 
encountering obstacles is significantly heightened. A 
noteworthy observation pertains to the adaptation of 
numerous path planning algorithms originally designed 
for ground robots, predominantly residing in a two-
dimensional (2D) space. The adaptation of these 
algorithms to the three-dimensional (3D) environment 
that aerial vehicles operate within introduces 
complexities, demanding high-performance onboard 
computers. 

The intricacy arises from the demanding nature of 
designing 3D path planners, imposing a substantial 
computational burden. Mathematically, this 
computational demand is encapsulated by the algorithmic 
complexity, often expressed as a function of input size (n) 
and denoted by Big O notation (O(f(n))). The obstacle-
free 3D path planning process, which involves tasks such 
as graph creation, cost minimization, and heuristic 

prioritization, contributes to this algorithmic complexity. 
The critical challenge posed by this complexity is its 
potential impact on the UAV's maximum cruising 
capability. Numerous well-established 3D path planning 
algorithms are deployed to address this challenge, 
leveraging mathematical frameworks to optimize 
navigation strategies. These include A* with its variants, 
Rapidly–Exploring Random Tree (RRT) along with its 
variants, Probabilistic Road Maps (PRM), Artificial 
Potential Field (APF), and Genetic or Evolutionary 
algorithms. The underlying mathematical formulations of 
these algorithms involve equations and functions designed 
to navigate the UAV through intricate spatial 
configurations while minimizing computational resources. 

In contrast, node/grid-based algorithms differ by 
exhaustively exploring consecutive nodes. A prime 
example is the A* algorithm and its variants. In the 
pursuit of an obstacle-free path, these algorithms ingest an 
environmental image, discretize it into grid cells 
encompassing the UAV's current (start) location and the 
designated goal. The A* algorithm employs two critical 
functions for prioritizing cells to be visited: the cost 
function, computing the distance from the current cell to 
the next, and the heuristic function, calculating the 
distance from the next cell to the cell harbouring the goal. 
The prioritization of cells is accomplished by minimizing 
the sum of these two functions. In the context of a 3D 
search, the cost function calculates distances from the 
current cell to all 26 neighbouring cells, while the 
heuristic function gauges the distance from these 26 cells 
to the cell housing the goal. However, in cluttered 
environments with intricate occlusions, the necessity for 
highly dense grid cells amplifies the computational 
burden, potentially leading to suboptimal path selections. 
The intricacies of 3D path planning underscore the 
ongoing pursuit for algorithms that can efficiently 
navigate UAVs through dynamic and complex terrains 
while optimizing computational resources and ensuring 
optimal paths in cluttered environments. 

Pioneering a transformative approach to UAV navigation 
entails the comprehensive training of an on-board 
computer, empowering it to swiftly identify objects and 
adeptly execute collision avoidance manoeuvres within 
the intricate tapestry of its navigational environment. This 
paradigm shift mirrors the cognitive strategies deployed 
by humans to avoid collisions, drawing a direct analogy 
between the computational intelligence of a human brain 
and the artificial intelligence ingrained in the on-board 
computer of a UAV. The significance of rigorous training 
for the on-board computer becomes evident as it seeks to 
emulate and, ideally, surpass the collision avoidance 
prowess exhibited by human operators. 

Going beyond the fundamental capability of detecting 
objects and establishing their relative locations in relation 
to the UAV, the companion computer assumes the 
responsibility of discerning the specific types of detected 
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objects. The YOLO (You Only Look Once) object 
detection algorithm, seamlessly integrated into the 
companion computer's framework, excels in this regard. 
Its multifaceted functionality extends beyond mere 
detection, offering insights into the categorization of 
objects based on their distinct types. This level of 
sophistication is imperative because effective collision 
avoidance strategies hinge on an intricate understanding 
of the nature of the detected obstacles. 
 
A pivotal consideration in collision avoidance is the 
diversity of objects encountered in the UAV's 
navigational path. Different objects demand distinct 
strategies for evasion, taking into account factors such as 
their physical characteristics and spatial configurations. 
For instance, the avoidance mechanism for an open 
obstacle like a window drastically differs from that 
tailored for a closed obstacle, such as a tree. Recognizing 
the need for a nuanced approach, our 3D path planner has 
been meticulously designed to encompass these 
sophisticated capabilities. 
 
The 3D path planner stands as a testament to our 
commitment to elevating UAV navigation to new heights. 
By seamlessly integrating object detection insights from 
the YOLO algorithm, our planner not only identifies and 
locates obstacles but also categorizes them based on their 
specific types. This wealth of information is leveraged to 
tailor collision avoidance strategies, ensuring the UAV's 
safe passage through its dynamic environment. The fusion 
of advanced object detection and categorization 
capabilities within the 3D path planner exemplifies our 
dedication to pushing the boundaries of UAV navigation, 
ultimately enhancing its safety, efficiency, and 
adaptability across diverse operational landscapes. 

5. Results 

During the developmental phase of the path planner, a 
series of performance tests were meticulously conducted 
to validate its functionality and efficacy. In the initial 
stage of performance evaluation, computer-simulation-
based tests served as a crucial precursor to real-world 
flight assessments. These simulated tests provided a 
controlled environment where the path planner's 
algorithms and functionalities could be rigorously 
scrutinized and refined. The utilization of advanced 
software tools allowed for a detailed examination of the 
planner's response to various scenarios, enabling the 
identification and rectification of potential issues in a risk-
free virtual setting. The implemented software tools 
played a pivotal role in these simulation-based tests. Their 
integration and seamless operation were critical to 
replicating real-world scenarios and validating the path 
planner's performance under diverse conditions. 
 

5.1. SITL Results 

Two Gazebo simulation environments, designed to 
replicate real-world conditions, were constructed with 
front and top views specifically tailored for testing the 
path planner. These simulated settings served as 
controlled arenas where the path planner's functionalities 
could be rigorously assessed and fine-tuned before real-
world deployment. The front view (Fig. 1) simulation 
provided a comprehensive representation of the UAV's 
navigational perspective, allowing for the evaluation of 
the path planner's decision-making capabilities in 
response to various obstacles and environmental nuances. 
This view facilitated a detailed analysis of the planner's 
performance in terms of object detection, path planning, 
and collision avoidance from the frontal aspect. 
Simultaneously, the top view (Fig. 2) simulation offered a 
bird's-eye perspective, providing a holistic view of the 
UAV's trajectory and interactions within the environment. 
This vantage point enabled a thorough examination of the 
planner's efficiency in navigating through complex 
terrains, detecting obstacles, and strategically planning 
paths from an overhead standpoint. 

 
The Gazebo world is subdivided into distinct left and right 
sections, each characterized by a width (y-axis) of 10 
meters and a length (x-axis) of 30 meters. In the left 
section, the UAV is strategically positioned, and its 
mission entails navigating through the dynamically 
arranged obstacles to reach the designated landing pad 
situated in the right section. To simulate real-world 
challenges, path planner performance tests are conducted 
within this Gazebo environment, where poles and trees 
are randomly repositioned. This variability in obstacle 
placement ensures that the UAV's path alterations 
accurately reflect the adaptability and responsiveness of 
the path planner to dynamic scenarios. The ever-changing 
arrangements of obstacles prompt the UAV to adjust its 
trajectory, validating the robustness of the path planner 
under varying conditions. 
 

 
 

Figure 1. Gazebo environment (Front view) 
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Figure 2. Gazebo environment (Top View) 

The Gazebo world incorporates 3D models of diverse 
obstacles crucial to mimicking real-world scenarios. 
These obstacles include pedestrians, open windows, poles, 
tunnels, trees, and two consecutive nets. The selection and 
design of these obstacles are meticulously aligned with 
potential threats encountered during UAV missions 
related to in-house first aid, law enforcement surveillance 
of suspects, and door-to-door package delivery services in 
urban settings. By introducing these diverse obstacles, the 
simulation environment emulates the challenges faced by 
the UAV during its mission, necessitating strategic 
navigation around or through these obstacles en route to 
the targeted location, exemplified by the landing pad. This 
comprehensive testing approach ensures the efficacy of 
the path planner in addressing real-world complexities 
and enhances its reliability in executing mission-critical 
tasks in urban environments. The comprehensive 
simulation infrastructure, illustrated in Figure 3, 
orchestrates the seamless interaction between various 
components.  

Figure 3. Infrastructure of SITL 

Figure 4. Pass-by poles      

Figure 5. Pass-by pedestrian 

The core element is the 3D path planner, implemented as 
a ROS node, establishing communication with the PX4 
module named Mav_main. This collaboration is 
facilitated by MAVROS, which acts as a bridge, 
connecting the ROS topics of the path planner with the 
MAVLink messages of the PX4 firmware. MAVROS not 
only serves as a conduit between ROS topics and 
MAVLink messages but also holds an additional 
advantage in managing coordinate transformations 
between the ROS frame and the PX4 Flight Control Unit 
(FCU) frame. While ROS operates within the East–
North–Up (ENU) frame, the FCU employs the North–
East–Down (NED) frame. MAVROS adeptly handles this 
coordinate transformation, ensuring consistent and 
accurate communication between the path planner and the 
PX4 firmware. Within the PX4 firmware, a crucial 
module called simul_mav facilitates interaction with the 
3D model of the UAV within the Gazebo world. This 
interaction is governed by the simulator MAVLink 
protocol, which orchestrates the exchange of messages 
between the PX4 firmware and the Gazebo simulator. 
This intricate communication framework ensures that the 
simulated UAV model in Gazebo accurately responds to 
the commands and inputs from the PX4 firmware, 
creating a realistic and dynamic simulation environment 
for thorough testing and validation of the 3D path planner. 

The livestreamed videos from the ground control station 
for UAVs were meticulously recorded for subsequent 
analysis. Specifically, snapshots of the video frames at 
key moments, such as instances of attitude or altitude 
changes aimed at avoiding obstacles, were captured and 
are now presented for examination (Fig 4-5). These 
snapshots offer a visual insight into the UAV's dynamic 
response and navigation strategies implemented by the 3D 
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path planner in real-time scenarios. By reviewing these 
recorded moments of critical manoeuvres, a detailed 
assessment of the path planner's effectiveness in obstacle 
avoidance and adaptive decision-making during attitude 
and altitude adjustments can be conducted.         

6. Conclusion

In summary, this paper introduces a novel approach to
real-time collision-free path planning for UAVs by 
seamlessly integrating the YOLO object detection 
algorithm with an innovative 3D path planner. The YOLO 
algorithm's speed and localization capabilities contribute 
vital information to the proposed 3D path planner, which 
strategically departs from traditional A* methods to 
address challenges in cluttered environments. The planner 
optimizes computational resources by reducing exhaustive 
searches, refining storage methods, and employing a 
Euclidean heuristic, demonstrating its efficiency. The 
comprehensive evaluation in Gazebo, coupled with the 
synergy between YOLO, the path planner, and the 
simulator, underscores the system's robustness for 
dynamic and complex UAV navigation. 

Furthermore, the paper sheds light on the significance 
of a holistic simulation environment, leveraging Software-
In-The-Loop (SITL) simulation tools like px4, Gazebo, 
and ROS for comprehensive algorithmic assessment. The 
detailed integration of these tools in a simulated cluttered 
3D environment ensures rigorous testing, addressing real-
world challenges faced by UAVs. Additionally, the paper 
explores the computational complexities inherent in 3D 
path planning and highlights the adaptability of the 
proposed planner to diverse scenarios, offering an 
efficient solution for collision-free navigation. The fusion 
of advanced object detection, categorization, and path 
planning capabilities within the proposed system signifies 
a pioneering step toward enhancing UAV safety, 
efficiency, and adaptability in complex operational 
landscapes. 

In the concluding section, the paper emphasizes the 
pivotal role of performance tests, encompassing 
simulation-based evaluations. The Gazebo simulations 
meticulously replicate dynamic scenarios, illustrating the 
planner's adaptability to obstacles, such as poles, trees, 
and nets, in an urban environment. The paper underscores 
the responsiveness and effectiveness of the 3D path 
planner through livestreamed video analysis, providing 
visual insights into the UAV's real-time response and 
navigation strategies. This comprehensive research effort, 
combining cutting-edge algorithms, simulation tools, and 
performance tests, positions the proposed system as an 
innovative and efficient solution for real-time collision-
free path planning, marking a significant contribution to 
the field of autonomous UAV navigation. 
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