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Abstract 

This paper presents a novel approach to enhance the success rate and accuracy of speaker recognition and identification 
systems. The methodology involves employing data augmentation techniques to enrich a small dataset with audio 
recordings from five speakers, covering both male and female voices. Python programming language is utilized for data 
processing, and a convolutional autoencoder is chosen as the model. Spectrograms are used to convert speech signals into 
images, serving as input for training the autoencoder. The developed speaker recognition system is compared against 
traditional systems relying on the MFCC feature extraction technique. In addition to addressing the challenges of a small 
dataset, the paper explores the impact of a "mismatch condition" by using different time durations of the audio signal 
during both training and testing phases. Through experiments involving various activation and loss functions, the optimal 
pair for the small dataset is identified, resulting in a high success rate of 92.4% in matched conditions. Traditionally, Mel-
Frequency Cepstral Coefficients (MFCC) have been widely used for this purpose. However, the COVID-19 pandemic has 
drawn attention to the virus's impact on the human body, particularly on areas relevant to speech, such as the chest, throat, 
vocal cords, and related regions. COVID-19 symptoms, such as coughing, breathing difficulties, and throat swelling, raise 
questions about the influence of the virus on MFCC, pitch, jitter, and shimmer features. Therefore, this research aims to 
investigate and understand the potential effects of COVID-19 on these crucial features, contributing valuable insights to 
the development of robust speaker recognition systems. 
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1. Introduction

In recent years, considerable strides have been made by 
research scholars in advancing the field of speaker 
recognition and identification [1]. This system, which seeks 
to identify speakers based on their voices, is commonly 
categorized into two groups: text-dependent and text-
independent [2]. Speaker recognition entails determining 

which trained speech sample best matches a speaker's voice, 
serving as a means of verifying or refuting a claimed 
identity. Traditional systems like Gaussian Mixture Model 
(GMM), i-vectors, and Hidden Markov Models (HMM) [3] 
have historically been employed for speaker recognition, 
with GMM, in particular, demonstrating notable success in 
creating accurate models. However, contemporary trends 
increasingly advocate for the adoption of deep learning 
approaches in speaker recognition systems. Among these, 
the Convolutional Neural Network (CNN) has gained 
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prominence [4]. Crafting an effective speaker recognition 
system poses various challenges, including speech signal 
variability, limited training data, computational complexity, 
and adverse recording conditions. Addressing these 
challenges necessitates a combination of robust algorithms, 
diverse datasets, meticulous system design, and continuous 
refinement based on feedback and evaluation. Speaker 
identification involves determining the identity of a speaker, 
with successful outcomes relying on natural-sounding 
recordings captured consistently using a specific instrument 
or system for identification purposes. The typical workflow 
for speaker identification encompasses two key stages: 
training and testing. During training, the system is trained 
using a dataset comprising diverse voices, and in the testing 
stage, the trained system is employed to identify voices from 
a separate set of test voices. To facilitate these tests, the 
establishment of a database containing various voices is 
imperative. 
  Speaker recognition systems are structured around two 
main stages: feature extraction and speaker classification, 
utilizing diverse speech characteristics. The features 
extracted during this process serve as the primary input for 
speaker identification. The inherent distinctiveness of human 
voices renders them valuable for various applications. 
Despite ongoing research in this field, challenges persist, and 
researchers are motivated to address them. One such 
challenge involves the impact of health conditions on speech 
features. To ensure the development of a robust speaker 
recognition system, it is crucial to employ speech features 
that remain unaffected by health conditions [5]. This paper 
specifically delves into the exploration of the impact of 
COVID-19 on speech features. COVID-19 has been 
observed to cause infections in the respiratory system, 
affecting the lungs, throat, vocal cords, and other organs 
involved in sound production. Consequently, it is pertinent 
to investigate the effects of this disease on three specific 
speech signal features: Mel-frequency cepstral coefficients 
(MFCC), pitch, jitter, and shimmer. Understanding these 
effects contributes to the broader goal of developing speaker 
recognition systems that can accommodate and adapt to 
diverse health conditions, ensuring reliability and accuracy 
in speaker identification processes.  This paper introduces a 
new algorithm utilizing convolutional autoencoder to tackle 
the challenge of achieving higher accuracy in speaker 
recognition. Despite previous attempts with various 
traditional methods, the desired level of accuracy has 
remained elusive. Acknowledging the limitations of existing 
approaches, this paper proposes a novel solution based on 
the convolutional autoencoder architecture. By harnessing 
the capabilities of convolutional neural networks and 
autoencoders, the proposed algorithm aims to surmount the 
hurdles faced by traditional speaker recognition systems. 

2. Objectives

The primary goal of this paper is to identify the optimal 
feature for constructing a speaker recognition system. To 
achieve this, speech samples from both healthy and 

unhealthy conditions of speakers are considered for 
comparison. The paper proposes an advanced speaker 
recognition system utilizing spectrogram as a feature, 
incorporating autoencoder technology. The key focus of this 
research is to develop a speaker recognition system with a 
small dataset, evaluating its performance in both matched 
and mismatched conditions. Remarkably, the paper aims to 
achieve this without employing any preprocessing on the 
data, ultimately targeting a speaker recognition system with 
exceptionally high accuracy. 
      Over recent years, significant progress has been made in 
the field of speaker recognition and identification [6]. This 
process involves determining the identity of a speaker based 
on their voice, categorized into text-dependent and text-
independent approaches [7]. The workflow typically consists 
of two stages: training, where the system is trained using 
diverse voice datasets, and testing, where the trained system 
identifies voices from a separate set of test voices. 
Establishing a database with varied voices is crucial for 
effective testing. 
Speaker recognition systems comprise feature extraction and 
speaker classification stages, utilizing diverse speech 
characteristics as primary inputs. Human voice 
distinctiveness makes it valuable for various applications, 
but challenges persist, including the impact of health 
conditions on speech features [8]. This paper focuses on 
exploring the effects of COVID-19 on specific speech signal 
features like Mel-frequency cepstral coefficients (MFCC), 
pitch, jitter, and shimmer. 
Recognizing the limitations of existing approaches, the paper 
proposes a speaker recognition system using a convolutional 
autoencoder. This approach aims to address challenges such 
as small dataset issues, optimal loss functions, considerations 
for different acoustic conditions, and domain robustness. The 
convolutional autoencoder is employed with a small dataset 
from five speakers, emphasizing a text-independent system. 
The paper also addresses the challenges faced by speaker 
recognition systems, including domain robustness, the 
impact of noise, and limitations in neural network 
architecture. It highlights the importance of utilizing 
different CNN architectures, feature extraction techniques, 
and training methods to enhance system performance [9]. 
In summary, the proposed methodology focuses on 
overcoming research gaps related to small datasets, loss 
functions, acoustic conditions, and domain robustness in 
speaker recognition. The use of a convolutional autoencoder 
is a novel approach to address these challenges and enhance 
the accuracy of speaker recognition systems. The paper 
details the methodology, experimental setup, results, 
conclusions, and future scope of the proposed model. 
In a related work [10], the focus shifts to developing an 
automatic speech recognition (ASR) system using a sparse 
autoencoder neural network inspired by Harris hawks' 
hunting behavior. This system, named Harris Hawks Sparse 
Auto-Encoder Networks (HHSAEN), outperforms existing 
ASR systems in terms of recognition accuracy using the 
TIMIT dataset. The paper emphasizes the challenge of 
extending the dataset for evaluating the system's 
effectiveness in different settings. 
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Another study [11] explores deep learning algorithms for 
voice emotion recognition, examining various publicly 
available databases and discussing challenges and limits 
associated with these datasets. The authors delve into CNNs, 
RNNs, and LSTM networks, presenting architecture and 
training methods while suggesting improvements in dataset 
diversity and model robustness. In [12], a method to modify 
the accent of non-native speakers using neural style transfer 
is proposed to improve speech recognition accuracy. The 
authors employ a deep neural network to learn the mapping 
between spectrograms of non-native and reference speakers, 
enhancing recognition accuracy on two datasets. 
Furthermore, [13] introduces a text-independent speaker 
identification system based on a CNN. The system utilizes 
MFCCs as input, achieving high accuracy rates with 
potential applications in security, surveillance, and forensics. 
The authors recommend modifications to the deep learning 
model for increased accuracy.In the context of 
communication aids, [14] presents a deep learning-based 
Arabic autoencoder speech recognition system for electro-
larynx devices. The proposed system addresses challenges of 
noise and limited data, outperforming other models in terms 
of accuracy and robustness. 
     Finally, [15] provides a comprehensive review of speaker 
identification techniques using AI and ML methods, 
discussing various AI techniques and addressing challenges 
in data preprocessing, feature extraction, and model 
selection. The paper concludes by suggesting research 
directions for improving accuracy and reliability. 
In conclusion, the existing literature highlights challenges in 
speaker recognition systems, including background noise, 
speaker variability, and dataset-related issues. The proposed 
system in this paper aims to address these challenges and 
enhance the accuracy and robustness of speaker recognition 
systems. 

3. Methods

3.1. Mel-frequency Cepstral Coefficients 
(MFCCs) 

Speech signals typically exhibit energy within the 5 KHz 
range, and their temporal characteristics demonstrate 
stationarity over short time intervals. To analyse the 
frequency content, the speech signal is divided into short-
duration time slots [16]. The Mel-frequency cepstral 
coefficients (MFCC) model emulates the human auditory 
system's frequency perception on a non-linear, logarithmic 
scale. In a comparative experiment, voice samples were 
collected from individuals in two conditions: healthy and 
affected by COVID-19, utilizing various mediums such as 
telephone recordings, voice messages, and social media 
videos. The MFCC processing involves six primary steps 
outlined below [17]. 
Frame Segmentation: The speech signal is divided into 
smaller frames of short duration to optimize processing. This 

allows for individual processing of each frame, as applying 
Fourier Transform to the entire signal may not yield optimal 
results. 
Windowing: To mitigate spectral leakage and emphasize the 
central portion of each frame, a windowing technique, like 
the Hanning window, is applied. This technique modifies the 
frame's amplitude to reduce unwanted artifacts. 
Discrete Fourier Transform (DFT) Calculation: Each 
windowed frame undergoes DFT application, transforming it 
from the time domain to the frequency domain. 

Figure 1. Mapping Frequency to Mel-frequency Scale 

Filter Bank Application: To accommodate the human ear's 
sensitivity to changes on the logarithmic scale, a series of 
20-40 triangular filters, referred to as filter banks, are
applied. These filters are evenly spaced on the Mel-scale,
approximating the human auditory perception of frequency.
The utilization of filter banks produces a spectrogram
representation of the signal.
Application of Log Scale: The output derived from the filter
banks undergoes a logarithmic transformation, converting
the filter bank outputs from a linear scale to a log scale. This
transformation aligns the representation with the
characteristics of the human auditory system. The outcome is
a set of log energies that accurately depict the distribution of
energy across different filter banks.

3.2. Fundamental frequency (Pitch) 

The term "pitch" in speech refers to the perceived frequency 
or the highness/lowness of a person's voice, primarily 
determined by the fundamental frequency (Fo) of the vocal 
cords' vibration during speech production. Pitch is linked to 
the subjective perception of a person's voice as either high or 
low, where higher fundamental frequencies correspond to 
higher pitch, and lower fundamental frequencies correspond 
to lower pitch. It serves as a crucial element in speech, 
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conveying information such as emotional expression, gender 
identification, and linguistic intonation. The fundamental 
frequency (Fo) is pivotal in speech production, as it is 
influenced by the vibration rate of the vocal cords when air 
passes through them. Each individual possesses a distinctive 
fundamental frequency, shaped by the biological 
characteristics of their vocal cords. Typically falling within 
the range of 100 to 400 Hz, females generally have a higher 
pitch compared to males. In the context of this study, our 
objective is to investigate the effects of COVID-19 on the 
fundamental frequency. This examination is conducted using 
the autocorrelation method for calculation. 

Figure 2. Pitch Vs Time sample graph 
3.3. Jitter 

In the realm of speech signal analysis, jitter refers to the 
variation or irregularity in the timing of consecutive periods 
of a speech waveform. It quantifies perturbations or small 
deviations in the duration of speech segments, such as 
fundamental periods or glottal cycles, offering a measure of 
the instability or irregularity in the vibration of the vocal 
folds during speech production [18]. 

3.4. Shimmer 

In the domain of speech signal analysis, shimmer refers to 
variations or fluctuations in the amplitude or intensity of 
consecutive glottal cycles or vocal fold vibrations. It 
quantifies perturbations or irregularities in the magnitude of 
the speech signal waveform, serving as a measure of the 
instability or variability in the amplitude of the voice signal. 
Shimmer can perceptually indicate rapid changes in vocal 
fold vibrations and may be associated with the perceived 
roughness or hoarseness of a person's voice [19]. 
       In this examination, Discrete Cosine Transform (DCT) 
is opted to process coefficients acquired from a filter bank. 
This decision was influenced by the noted high correlation 
among these coefficients. Specifically, we utilized the DCT 
to extract Mel-Frequency Cepstral Coefficients (MFCC) 
from two distinct conditions: healthy and infected. The 

Euclidean distance between healthy and infected speakers, 
measured between speech samples from the same speaker 
but in different conditions, is presented in Table 1. For 
comparison purposes, focus was on the first 13 MFCC 
coefficients. The Euclidean distance served as a metric for 
comparing the MFCC coefficients derived from the two 
conditions, with a distance of zero indicating no changes in 
the MFCC coefficients between the healthy and infected 
conditions. Based on analysis, the results are summarized as 
follows. Table 1 displays the Euclidean distance between 
healthy and infected speakers, measuring the distance 
between speech samples from the same speaker but in two 
different conditions: healthy and infected. 
Additionally, the comparison table for pitch frequencies in 
infected and non-infected conditions is provided below. 

Table 1. Results of MFCC Comparison 

Here, I: infected condition, H: Healthy condition 

Table 2.  Results of Pitch Comparison 

Here, I: infected condition, H: Healthy 
condition 

Table 3. Results of Jitter Comparison 

jitter (in H condition in 
%) 

jitter (in I condition in 
%) 

Speaker1  0.24 0.40 
Speaker2  0.18 0.39 
Speaker3  0.09 0.29 
Speaker4  0.17 0.48 
Speaker5  0.11 0.35 

Here, I: infected condition, H: Healthy 
condition 

Speaker1(
H) 

Speaker
2(H) 

Speaker
3(H) 

Speaker
4(H) 

Speaker
5(H) 

Speaker1(I) 
Speaker2(I) 
Speaker3(I) 
Speaker4(I) 
Speaker5(I) 

0.6675 - - - - 
- 0.7797 - - - 
- - 0.7845 - - 
- - - 0.5346 - 
- - - - 0.6290 

Pitch in Hz (in H 
condition) 

Pitch in Hz (in I 
condition) 

Speaker1 230.2440 255.669 
Speaker2 162.6453 188.7494 
Speaker3 268.9532 286.6102 
Speaker4 150.7534 179.0453 
Speaker5 235.9532 279.0934 
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Table 2 illustrates the calculation of pitch values for a 
speaker in both healthy and infected conditions using the 
autocorrelation method. Clearly, in the infected condition, 
there is a significant and drastic change in pitch values. 
Tables 3 and 4 provide jitter and shimmer values in both 
conditions, revealing notable differences. In the healthy 
condition, jitter values are low, whereas in the infected 
condition, these values have increased. The experiment was 
systematically repeated with five different speakers. 
     A parallel experiment was conducted to assess the impact 
of Covid-19 on the shimmer parameter, and the summary is 
presented in Table 4. The primary objective of this 
experiment was to identify a robust feature that remains 
consistent in both healthy and infected conditions. This 
sought-after feature could then be utilized to construct a 
resilient speaker recognition system characterized by high 
accuracy and precision values. 

Table 4. Results of shimmer Comparison 

shimmer (in H 
condition in dB) 

shimmer (in I condition in 
dB) 

Speaker1   1.9    3.9 
Speaker2   2.1    4.2 
Speaker3   3.2    3.8 
Speaker4   2.7    5.3 
Speaker5   1.8      5.1 

Here, I: infected condition, H: Healthy condition 

This study focused on crucial aspects of human speech, 
specifically examining MFCC coefficients, fundamental 
frequency, jitter, and shimmer due to their significance in 
speech production. In the initial experiment, it compared the 
MFCC coefficients of the same speaker under both healthy 
and unhealthy conditions, taking into consideration the direct 
impact of COVID-19 on the respiratory system. 
In the second experiment, investigated the fundamental 
frequency of the same speaker in healthy and unhealthy 
conditions. Given the common observation of throat 
inflammation during a COVID-19 infection, this study 
explored how such inflammation in the organs involved in 
fundamental frequency production could result in distinct 
measurements for the same speaker. 
The third experiment delved into jitter value analysis, where 
jitter represents the variability or irregularity in the timing of 
vocal folds during phonation. Health compromises, such as 
respiratory infections or conditions like COVID-19, were 
considered as potential contributors to increased jitter values. 
Factors such as inflammation or swelling in the respiratory 
system, including the vocal folds, were examined for their 
impact on vibration patterns and the overall voice quality. 
In the fourth experiment, the focus was on shimmer value 
assessment. Shimmer, indicating the cycle-to-cycle variation 
in amplitude during speech, was explored concerning 
compromised health. Conditions affecting the respiratory 

system, such as respiratory infections or lung diseases, were 
considered for their potential impact on airflow and 
subsequent variations in shimmer values. Vocal cord issues, 
including swelling, nodules, or paralysis, were also 
examined, as they can disrupt the regular vibration pattern of 
vocal cords and contribute to changes in shimmer values. 
Additionally, factors like muscle tension or weakness in the 
vocal tract, inflammation, and swelling in the vocal folds and 
surrounding tissues were studied for their influence on the 
coordination and control of vocal folds, further contributing 
to variations in shimmer values. 
Since the identified features, including MFCC coefficients, 
fundamental frequency, jitter, and shimmer, exhibit 
variations with the speaker's health condition, they prove to 
be unreliable indicators. Consequently, it is imperative to 
explore alternative features beyond the mentioned ones for 
the effective training of a speaker recognition system. 
The conceptual framework of this research is illustrated in 
Figure 3. A dataset containing voice recordings from five 
speakers was gathered in .wav format, featuring samples 
ranging from 3 to 10 seconds with a consistent sampling rate 
of 16 KHz. As the focus is on a text-independent system, 
diverse texts were utilized for both training and testing, 
enabling the model to learn speaker-specific attributes 
regardless of the spoken content. To address the small 
dataset size, a data augmentation approach was 
implemented, employing techniques like time stretching to 
introduce variations and expand the effective dataset size 
[20]. 
        In this work, specifically, the time stretching technique 
was applied to augment the small dataset of speech signals. 
This technique involves altering the duration of the speech 
signal without affecting its pitch, introducing variations in 
temporal characteristics. By applying time stretching, new 
instances of the same speech content were generated with 
different durations, effectively enlarging the dataset and 
providing additional training examples for the speaker 
recognition system. No preprocessing was applied to the 
voice samples collected from the speakers. Following the 
modification of the dataset, the next step involved converting 
all voice samples into spectrograms. Convolutional 
autoencoders excel with image inputs, and representing 
voice samples as spectrograms allows for effective 
utilization of this architecture. Therefore, all voice samples 
were transformed into spectrograms after the database 
modification. 
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            Figure 3. Proposed Framework 

Convolutional Autoencoders (CAEs) harness the capabilities 
of convolutional operators to effectively capture spatial 
information. In contrast to conventional methods that 
involve manual engineering of convolutional filters, CAEs 
empower the model to autonomously learn optimal filters 
that minimize the reconstruction error. This learning ability 
positions CAEs at the forefront of unsupervised 
convolutional filter learning. In the realm of computer vision 
tasks, CAEs demonstrate proficiency in acquiring concise 
and meaningful representations of input data by leveraging 
the learned filters. These acquired features can then be 
employed for various tasks, including classification or any 
undertaking requiring a succinct representation of the input. 
Although CAEs fall under the category of Convolutional 
Neural Networks (CNNs), a fundamental distinction sets 
them apart. CNNs are typically trained end-to-end, aiming to 
learn filters and amalgamate features for the classification of 
input data. On the contrary, CAEs specifically concentrate 
on learning filters tasked with extracting features used in the 
reconstruction of the input. This distinction underscores the 
unique purpose and objective of CAEs in comparison to 
traditional CNNs. 
The merits of utilizing convolutional autoencoders are 
manifold. They exhibit proficiency in extracting high-level 
features from raw audio signals, contributing to more 
accurate speaker recognition compared to conventional 
feature extraction techniques. Furthermore, CAEs effectively 
filter out noise and other distortions from audio signals, 

enhancing the robustness of speaker recognition systems in 
noisy environments. Additionally, speaker recognition 
systems employing CAEs do not necessitate physical contact 
with the user, rendering them non-intrusive and convenient 
to use. Another noteworthy advantage is the adaptability of 
convolutional autoencoders to new data, allowing them to 
accommodate new speakers and dialects. This adaptability 
ensures that the system can continually enhance its accuracy 
over time [21]. Therefore, the utilization of convolutional 
autoencoders in this proposed methodology serves to address 
existing research gaps. 

Figure 5. Voice Sample Visualization through Spectrogram 
Representation 

         As illustrated in the block diagram, all voice samples 
undergo conversion into spectrograms for training input. 
Figure 5 visually represents the voice sample transformed 
into a spectrogram. The activation function plays a pivotal 
role in determining system performance by introducing non-
linearity into cells. It decides the involvement of neuron cells 
and holds significance in decision-making processes. While 
various activation functions exist, such as sigmoid, the 
proposed model adopts Rectified Linear Unit (ReLU) after 
experimentation, with mean squared error chosen as the loss 
function. The convolutional autoencoder employed in this 
experiment consists of two parts: the encoder (depicted in 
Figure 6) and the decoder (depicted in Figure 7). Pooling 
layers facilitate feature minimization, enhancing 
computational efficiency. Additionally, normalization is 
applied in conjunction with the activation function 
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   Figure 6. CAE_Encoder 

 

   Figure 7. CAE_Decoder 

4. Results

Throat infections, such as those experienced during COVID-
19 or other respiratory illnesses, can induce alterations in 
pitch, Mel-frequency cepstral coefficients (MFCC), jitter, 
and shimmer features in human speech. These changes arise 
from several factors related to the impact of throat infections 
on the vocal apparatus. Inflammation caused by throat 
infections affects the vibratory characteristics of the vocal 
cords, thereby influencing the fundamental frequency or 
pitch of the voice. The inflammation also has implications 
for the resonant properties of the vocal tract, leading to 
variations in MFCC coefficients. Swelling of the vocal cords 
due to infections can disrupt their regular vibration, resulting 
in changes in pitch. The discomfort or pain associated with 

throat infections may prompt individuals to modify their 
vocal efforts, potentially causing alterations in pitch and 
MFCC coefficients. Additionally, congestion and increased 
mucus production linked to throat infections can impact 
vocal tract resonance and voice clarity, influencing pitch, 
MFCC coefficients, jitter, and shimmer.Throat infections can 
have broader effects on overall health, contributing to 
fatigue, weakness, and changes in respiratory function. 
These factors indirectly affect pitch and MFCC coefficients 
by influencing the coordination between the respiratory and 
vocal systems during speech production. It's crucial to note 
that the extent of these changes may vary based on the 
severity and type of throat infection, as well as individual 
differences in response to infections. Therefore, the analysis 
of pitch, MFCC features, jitter, and shimmer during throat 
infections provides valuable insights into the intricate effects 
of such infections on speech production and vocal health. 
However, based on the obtained results, these features 
appear to lack robustness for constructing an accurate and 
precise speaker recognition system. Consequently, further 
studies are warranted to identify more robust features within 
the speech signal. 
       The implementation of speaker recognition system 
based on CAE, utilizes the Python programming platform. A 
dataset comprising 50 voice samples from 5 distinct speakers 
has been collected. The dataset includes utterances ranging 
from 3 to 10 seconds, and diverse texts are employed for 
both training and testing. While the dataset encompasses a 
mix of languages, the primary focus is on developing a 
speaker recognition model based on the unique voice 
features of each speaker, making the language of utterances 
less impactful on the results. Each speaker exhibits 
distinctive characteristics, facilitating effective classification 
and achieving speaker recognition. To enhance the dataset's 
size for training and testing, an augmented dataset is 
employed. The entire dataset is partitioned into three sets: 
the training dataset, testing dataset, and validation dataset. 
Both training and testing experiments are conducted under 
two conditions - the matching condition and the 
mismatching condition. The matching condition occurs when 
the duration of training and testing utterances is the same, 
whereas the mismatching condition involves different 
durations. The accuracy curve for the matched condition is 
illustrated in Figure 8. 
       Throat infections, such as those observed in respiratory 
illnesses like COVID-19, can result in alterations to various 
aspects of human speech, including pitch, Mel-frequency 
cepstral coefficients (MFCC), jitter, and shimmer features. 
The underlying reasons for these changes are multifaceted. 
Inflammation induced by throat infections affects the 
vibratory characteristics of the vocal cords, leading to 
modifications in the fundamental frequency or pitch of the 
voice. Moreover, the inflammation can impact the resonant 
properties of the vocal tract, influencing MFCC coefficients. 
Vocal cord swelling caused by infections can disturb proper 
vibration, resulting in incomplete vocal cord closure or 
varying tension during vibration, ultimately causing pitch 
variations. Individuals experiencing discomfort or pain due 
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to throat infections may adjust their vocal effort by speaking 
with reduced intensity to alleviate discomfort, thereby 
affecting pitch and MFCC coefficients. Additionally, 
congestion and increased mucus production associated with 
throat infections can influence vocal tract resonance and 
voice clarity, leading to changes in pitches, MFCC 
coefficients, jitter, and shimmer. 

          Throat infections can have broader health 
implications, contributing to fatigue, weakness, and 
alterations in respiratory function, indirectly impacting pitch 
and MFCC coefficients by influencing the coordination of 
the respiratory and vocal systems during speech production. 
It's crucial to recognize that the extent of these changes may 
differ based on the severity and type of throat infection, as 
well as individual responses. Consequently, the analysis of 
pitch, MFCC features, jitter, and shimmer during throat 
infections offers valuable insights into the effects of such 
infections on speech production and vocal health. Despite 
these insights, further studies have revealed that these 
features are not sufficiently robust for constructing an 
accurate and precise speaker recognition system. 
Consequently, ongoing research is focused on identifying 
more resilient speech signal features.  
       Therefore, the spectrogram emerges as an alternative 
method for extracting features from speech signals. Unlike 
pitch, MFCC, jitter, and shimmer, the spectrogram provides 
a visual representation of the frequency content of a signal 
over time. By capturing the distribution of energy across 
different frequency bands, the spectrogram can offer a robust 
set of features that may prove more reliable for tasks such as 
speaker recognition. This approach leverages the time-
frequency representation to characterize the unique patterns 
within speech signals, potentially overcoming some of the 
limitations associated with other feature extraction methods. 
As research continues, the spectrogram stands out as a 
promising avenue for enhancing the accuracy and precision 
of speaker recognition systems.  
 

 
Figure 8. Accuracy Graph (Matched Condition) 

 
        Under matched conditions, the system has demonstrated 
a 92.4% accuracy rate. Figure 8 illustrates the accuracy 
curve in relation to the number of epochs, revealing that a 
smaller epoch rate is advisable for a smaller dataset. In 
Figure 9, the training loss and validation loss are depicted. It 
is essential for any system to achieve a perfect fit. 
Fortunately, there are no issues of overfitting or underfitting 

in this model. Figure 6 presents the curves for training loss 
and validation loss in the matched condition. 
 

 
Figure 9. Loss Graph (Matched Condition) 

Table 5. % Comparative Table of System Accuracy between 
Matched and Mismatched Conditions 

Training sample 
duration (sec) 

Testing sample duration (sec) 

        3                                     10 
             3                                
             10                           

     92.4                                 85.3 
      87.1                                  92 

The findings reveal that the system exhibits higher accuracy 
under matched conditions, where the test conditions align 
with the training conditions. Conversely, in the mismatched 
condition, characterized by significant differences between 
test and training conditions, the system's performance 
experiences a decline. Figure 10 provides a visual 
representation of the confusion matrix corresponding to the 
matched condition. 

 
Figure 10. Confusion Matrix 

 
Table 6 presents a comparative analysis between the 
proposed model and alternative methods. Figure 10 provides 
insights into the system's performance through a confusion 
matrix, illustrating the prediction rates for various labels, 
including Speaker1, Speaker2, Speaker3, Speaker4, and 
Speaker5. Under matched conditions, the system exhibits 
strong performance. However, in the case of mismatched 
conditions, the accuracy rate diminishes. Therefore, it is 
advisable to ensure uniform utterance lengths during both 
training and testing phases to enhance system performance. 
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Table 6. Comparative Analysis for the Proposed Model and 
Other Existing Approaches Using the Same Dataset 

Method AUC         CA       F1   Precision 
 SVM 0.785  0.877    0.839   0.815 
Random Forest 0.933  0.853    0.811   0.796 
proposed Model 0.969  0.953    0.974   0.960   

5. Conclusion

Examining pitch, MFCC feature jitter, and shimmer during 
throat infections offers valuable insights into the impact of 
such infections on speech production and vocal health. 
Despite this analysis, it has been determined from the results 
that these features lack robustness for constructing an 
accurate and precise speaker recognition system. As a result, 
further studies have been undertaken to identify a more 
resilient feature within the speech signal. In this research 
paper, a novel speaker recognition system is introduced, 
employing a convolutional autoencoder. The system 
demonstrated commendable success in matched conditions 
of utterances. However, its performance was found to be less 
satisfactory in mismatched conditions. Experimentation with 
various activation functions revealed that the ReLU 
activation function yielded superior results. Notably, the 
system utilized raw voice samples without preprocessing, 
showcasing resilience to background noise. A comparative 
analysis with established techniques like SVM and Random 
Forest, using the same dataset, showcased the proposed 
system's favourable accuracy rate, as indicated in Table 2. 
Evaluation metrics including Area under Curve, F1 score, 
CA, and precision were also compared. While prior studies 
in the related section predominantly employed MFCC 
features and clean datasets, this paper introduces novelty by 
representing speech signals as images through spectrogram 
conversion. Hence, the system used spectrograms as the 
feature for speech signals instead of MFCC. Additionally, a 
specifically collected dataset was utilized for this research. 
Experimental results identified a key challenge in the form 
of mismatched conditions between training and testing 
utterances. Thus, future research should address this issue to 
enhance the system's overall performance. Given that the 
system was tested with voices containing background noises, 
there is a potential avenue for improvement by exploring 
noise removal solutions. Furthermore, researchers are 
encouraged to explore the applicability of different types of 
autoencoders, such as denoising autoencoders and vanilla 
autoencoders. 
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