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Abstract 

 

Given the escalating intricacy of network environments and the rising level of sophistication in cyber threats, there is an 

urgent requirement for resilient and effective network intrusion detection systems (NIDS). This document presents an 

innovative NIDS approach that utilizes Convolutional Long Short-Term Memory (ConvLSTM) networks and Elephant 

Herd Optimization (EHO) to achieve precise and timely intrusion detection. Our proposed model combines the strengths 

of ConvLSTM, which can effectively capture spatiotemporal dependencies in network traffic data, and EHO, which allow 

the model to focus on relevant information while filtering out noise. To achieve this, we first preprocess network traffic 

data into sequential form and use ConvLSTM layers to learn both spatial and temporal features. Subsequently, we 

introduce Elephant Herd Optimization that dynamically assigns different weights to different parts of the input data, 

emphasizing the regions most likely to contain malicious activity. To evaluate the effectiveness of our approach, we 

conducted extensive experiments on publicly available network intrusion CICIDS2017 Dataset. The experimental results 

demonstrate the efficacy of the proposed approach (Accuracy = 99.98%), underscoring its potential to revolutionize 

modern network intrusion detection and proactively safeguard digital assets. 
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1. Introduction 

The rapid expansion of interconnected systems and the 

ubiquitous presence of the Internet have ushered in 

unparalleled levels of connectivity and convenience. 

However, they have also ushered in a myriad of security 

challenges [1]. Constantly besieged by a variety of cyber 

threats, networked environments face an array of challenges, 

ranging from familiar intrusion techniques to emerging, 

highly sophisticated threats. Consequently, the importance 

of robust and proactive Network Intrusion Detection 

Systems (NIDS) has reached a paramount level [2]. 

Traditional NIDS approaches have typically relied on static 

rule-based methods or signature-based techniques to identify 

known attacks. While these methods can be effective to 

some extent, they often struggle to detect previously unseen 

or zero-day attacks, which are continuously evolving and 

adapting to evade detection. Furthermore, the substantial 

surge in network traffic data produced by contemporary 

networks poses a growing challenge for traditional NIDS 

systems to maintain synchronization and deliver prompt and 

precise threat detection. In light of these difficulties, both 

researchers and practitioners have embraced machine 

learning (ML) and deep learning (DL) methodologies to 

craft NIDS solutions that are more adaptable and resilient. 

Within the realm of machine learning paradigms, recurrent 

neural networks (RNNs) and convolutional neural networks 

(CNNs) have demonstrated potential in capturing the 
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temporal and spatial intricacies of network traffic data [3]. 

However, utilizing these techniques separately may not fully 

exploit the rich information embedded in network traffic [4]. 

This paper introduces a novel NIDS model that combines 

the power of Convolutional Long Short-Term Memory 

(ConvLSTM) networks with EHO to enhance network 

intrusion detection. ConvLSTM networks, which combine 

the capabilities of convolutional and recurrent neural 

networks, are well-suited for modeling the spatiotemporal 

dependencies in network traffic data. By integrating EHO 

into our model, we aim to dynamically focus on relevant 

network segments and detect anomalous patterns associated 

with intrusion attempts. 

The primary goal of this research is to develop a highly 

accurate and adaptive NIDS that can effectively predict 

network intrusions by learning from historical traffic data. 

By leveraging ConvLSTM and EHO, our model seeks to 

overcome the limitations of traditional rule-based and 

signature-based approaches while achieving superior 

performance in terms of detection accuracy and false 

positive rates.  

Subsequent sections will furnish a thorough examination of 

our envisaged network intrusion detection model, 

meticulously outlining its architectural components, data 

preprocessing techniques, experimental methodology, and 

outcomes. We hold the conviction that this pioneering 

approach bears the potential to markedly enhance the 

security stance of networked systems, particularly in an era 

defined by the continual evolution of cyber threats. 

1.1 Motivation 

The burgeoning complexity of network intrusions demands 

a paradigm shift in intrusion detection systems (IDS) 

towards more sophisticated approaches. Traditional methods 

often fall short in identifying subtle and evolving threats 

amidst the vast data streams of modern networks. This 

necessitates the exploration and integration of cutting-edge 

techniques to enhance the efficacy of intrusion detection. 

The motivation behind "Sentinel Shield" lies in addressing 

this critical need by harnessing the power of Convolutional 

Long Short-Term Memory (ConvLSTM) networks. These 

networks excel in capturing temporal dependencies and 

spatial patterns within network traffic data, providing a 

robust foundation for detecting intricate intrusion attempts. 

By leveraging ConvLSTM, Sentinel Shield aims to elevate 

the accuracy, agility, and resilience of IDS to combat 

emerging cyber threats effectively. 

 
1.2 Contribution 

 The contribution of Sentinel Shield extends beyond the 

mere application of ConvLSTM networks. In addition to the 

innovative utilization of deep learning techniques, this paper 

introduces the Elephant Herd Optimization (EHO) algorithm 

as a novel means to enhance the performance of network 

intrusion detection systems. Inspired by the collaborative 

and adaptive behavior of elephant herds in the wild, EHO 

offers a metaheuristic optimization approach uniquely suited 

to address the complex and dynamic nature of intrusion 

detection. Through the fusion of ConvLSTM and EHO, 

Sentinel Shield introduces a holistic framework that not only 

detects known intrusion patterns but also adapts swiftly to 

identify emerging threats in real-time. This synergistic 

integration represents a significant advancement in the field 

of network security, promising heightened levels of 

detection accuracy, efficiency, and scalability in 

safeguarding critical digital infrastructures against evolving 

cyber threats. 

1.3 Organization of the paper 
 
The remainder of the paper follows this structured 

organization: In Section 2, a review of related work is 

provided, offering insights into existing research and 

methodologies in the field. Section 3 delves into the 

problem definition and system model, proposed framework, 

detailing its components, methodologies, and the rationale 

behind their integration are discussed in section 4. Section 5 

presents the results obtained from the application of the 

proposed approach, including any experimental findings or 

performance evaluations. Finally, Section 6 synthesizes the 

major conclusions drawn from the study, reflecting on the 

implications of the findings and suggesting avenues for 

future research and development. 

2. Related Work 

 

With the rapid advancement of Internet networks, there is an 

ever-increasing requirement for network resources. As a 

result, how network operators allocate and use these 

resources properly has become a focus of substantial 

research in the field of traffic prediction [5, 6]. In the present 

time of huge data requirement, one of the crucial 

technologies for network traffic prediction is the proper 

analysis and learning of the growth distribution patterns 

from vast historical network traffic data. The selection of 

suitable features from various network traffic data is critical 

for effective data processing [7]. This method entails finding 

certain features that correspond to the needs of various 

operators. To produce more precise forecasts of future 

network traffic, some elements that influence the forecasting 

approach must be considered. To have a more precise 

forecast of future network traffic, it is essential to leverage 

the characteristics of actual data. This involves extracting 

useful information from historical operator data and 

analysing their growth distribution. By doing so, we can 

build predictive models capable of anticipating forthcoming 

network traffic patterns. Network traffic data shows periodic 

changes, with major increases or decreases in data volume 

occurring at specific time periods [8]. Furthermore, data 

changes noticed an earlier time period can have an impact 

on subsequent data patterns [8]. As a result, any reliable 
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prediction model must account for these temporal 

oscillations as well as the impact of prior data points on 

future patterns. The blend of temporality and spatiality is 

important for an effective prediction method. The model 

should strike a delicate balance between these two 

characteristics, as they both hold valuable insights into the 

network's behaviour. By capturing the periodic changes over 

time and incorporating the spatial distribution, the 

forecasting algorithm can provide comprehensive and 

reliable predictions [9]. By incorporating temporality and 

spatiality into the forecasting method and leveraging 

historical operator data, we can design robust predictive 

models that adapt to the dynamic nature of network traffic, 

thus ensuring higher accuracy and effectiveness in 

forecasting [9].The historical flow data in numerous 

domains is enormous and constantly changing, making 

accurate prediction a challenging task for conventional 

techniques. However, deep learning has emerged as a 

promising solution to enhance prediction accuracy 

significantly. Numerous deep learning techniques have been 

proposed to upgrade network traffic prediction, among 

which the CNN is quite effective [10]. CNN leverages 

convolutional operations to learn local information 

effectively and has found to be very effective in various 

fields. By employing sliding filters in the convolution layer, 

CNNs can extract spatial features from input matrices. One 

notable advantage of CNNs is their weight sharing and 

sparse link characteristics, which demand fewer training 

operations compared to other networks with an equivalent 

number of neurons. As the research continues, many 

researchers have adopted hybrid models based on deep 

learning for network traffic forecasting [8-12]. These hybrid 

models have shown promising improvements in forecasting 

accuracy. By combining LSTM with RNN and focusing on 

the analysis of self-similarity coefficients, this new method 

significantly enhances forecasting accuracy [11]. However, 

network traffic prediction remains a challenging problem as 

network traffic exhibits specific temporal characteristics, 

such as spikes during holidays or specific time periods. 

These complex spatial and temporal relationships contribute 

to the ongoing challenge of accurately predicting network 

traffic [12]. Despite the advancements in prediction models, 

the dynamic nature of network traffic and the interplay 

between spatial and temporal factors necessitate further 

research and innovative approaches to tackle this 

challenging problem effectively. 

This section explains how the current ML and DL 

algorithms are used to build reliable DDoS detection 

models. Fundamental methods for AI-based DDoS detection 

are also clarified. A dual strategy is used in the field of ML 

and DL, incorporating both supervised and unsupervised 

approaches. The prior labelling of data, ensuring that it is 

marked with the proper class labels, is a requirement for 

supervised algorithms. On the other hand, unsupervised 

algorithms work with unlabelled data and make use of their 

inherent structure and properties to find important patterns 

and insights.  

Gao et al. [13] introduced an adaptive ensemble model for 

classifier selection within machine learning (ML) 

frameworks, but its performance was found to be limited on 

weaker attack classes. Sabeel et al. [14] incorporated Deep 

Neural Networks (DNNs) with Long Short-Term Memory 

(LSTM) layers, observing significant performance 

improvements, albeit limited to binary class classification. 

Asad et al. [15] proposed the Deep Detect model based on 

DNNs, outperforming other strategies, yet evaluation was 

conducted solely against Distributed Denial of Service 

(DDoS) assaults. Mural. et al. [16] achieved good accuracy 

in attack detection using DNNs but were restricted to 

assessing slow HTTP DoS attacks. Amaizu et al. [17] 

attained high accuracy rates with their DNN model, 

although its complexity may lead to longer detection times, 

impacting real-time usage. Hasan et al. [18] utilized a Deep 

Convolutional Neural Network (CNN) model, which 

showed better performance compared to three other ML 

methods, albeit with a dataset limited in size. Amma et al. 

[19] combined Fully Connected Neural Networks (FCNN) 

with Variable Convolutional Neural Networks (VCNN), 

outperforming basic classifiers, yet their reliance on 

outdated datasets and omitted trials may raise concerns. 

Chen et al. [20] employed CNNs, with their MCCNN 

showing promising results on constrained data, though no 

significant difference was observed between single and 

multi-class models. Haider et al. [21] utilized ensemble 

CNN techniques, which exhibited high accuracy but 

required longer training and testing periods. Wang et al. [22] 

combined entropy and deep learning techniques, 

demonstrating the effectiveness of CNNs, albeit with longer 

training requirements. Kim et al. [23] developed a CNN-

based model effective in recognizing unique Denial of 

Service (DoS) attacks with similar features, yet detection 

using this model also incurred longer processing times. 

Hussain et al. [24] proposed a method to convert non-image 

network data for classification, achieving high accuracy in 

binary-class classification; however, the time required for 

data transformation was not considered. Li C et al. [25] 

utilized a deep learning approach for fairly accurate 

detection, but the model's performance required a significant 

amount of time. Shu et al. [26] introduced a hybrid-based 

Intrusion Detection System (IDS) and deep learning model 

based on LSTM, achieving high accuracy, albeit with a 

substantial time requirement for detection. Bhardwaj et al. 

[27] effectively addressed feature learning and overfitting 

issues with their DNN-based approach, yet their study was 

conducted offline, not utilizing recent datasets. Moh. et al. 

[28] combined LSTM with Bayes methods, maintaining 

stable performance with new data, but detection of attacks 

unsuitable for real-time applications may take longer. 

Finally, He et al. [29] proposed a strategy based on Dynamic 

Time-Lapse (DTL) for DDoS detection, achieving a 20.8% 

improvement in detecting the 8LANN network, albeit 

focusing solely on a single type of attack. 

Patil and Pattewar  introduce a Majority Voting and Feature 

Selection-based approach, emphasizing the importance of 

ensemble techniques and feature relevance in intrusion 

detection [30]. Venkateswaran and Prabaharan  propose an 

efficient neuro deep learning intrusion detection system 

tailored for mobile adhoc networks, showcasing the efficacy 
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of deep learning in dynamic network environments [31]. 

Fatima et al. investigate the impact of feature reduction on 

machine learning-based intrusion detection systems, 

shedding light on the trade-offs between dimensionality 

reduction and detection accuracy [32]. In contrast, Zhang et 

al. focus on outlier detection from large distributed 

databases, presenting techniques applicable to anomaly-

based intrusion detection systems [33]. Kabir et al.  

introduce a novel statistical technique for intrusion detection 

systems, offering insights into the statistical methods 

employed for anomaly detection [34]. Lastly, Alkanhel et al. 

[35] propose a network intrusion detection system 

integrating feature selection and hybrid metaheuristic 

optimization, highlighting the importance of optimization 

techniques in enhancing detection performance. Gul et al. 

[36] explore the realm of secure industrial IoT systems, 

employing RF fingerprinting amidst impaired channels with 

interference and noise. 

3. Problem Definition and System 
Model 

The problem addressed in this study lies at the intersection 

of cybersecurity and network infrastructure resilience, where 

the ever-evolving landscape of cyber threats poses a 

significant challenge to the integrity and security of digital 

systems. Traditional intrusion detection systems often 

struggle to keep pace with the sophistication and 

adaptability of modern attacks, particularly in environments 

characterized by dynamic network topologies, diverse 

communication protocols, and rapidly evolving attack 

vectors. The proposed system model seeks to address this 

challenge by introducing a novel approach that combines the 

robust temporal analysis capabilities of Convolutional Long 

Short-Term Memory (ConvLSTM) networks with the 

adaptive optimization mechanisms of Elephant Herd 

Optimization (EHO). This fusion of advanced techniques 

forms the backbone of the system model, which is designed 

to enhance the accuracy, agility, and resilience of intrusion 

detection in complex network environments. Within this 

system model, the architecture encompasses the hierarchical 

structure and components of the intrusion detection 

framework, including data preprocessing, feature extraction, 

anomaly detection, and decision-making modules. The 

algorithms and methodologies employed within this 

architecture leverage the capabilities of ConvLSTM 

networks to capture temporal dependencies and spatial 

patterns in network traffic data, enabling the system to 

discern subtle anomalies indicative of potential intrusions. 

Concurrently, the integration of EHO facilitates the 

optimization of system parameters and decision thresholds, 

enabling adaptive and efficient intrusion detection in the 

face of evolving threats and network conditions. Through 

this comprehensive system model, the study aims to 

contribute to the advancement of network security by 

providing a robust and adaptable framework for detecting 

and mitigating intrusions in real-time, thereby safeguarding 

critical digital infrastructures against a wide range of cyber 

threats. 

4. Proposed Method 

The methodology we propose utilizes a multi-step strategy 

designed to proficiently manage traffic classification and 

anomaly detection. This strategy encompasses multiple 

discrete phases, all of which collectively enhance the 

system's accuracy and efficiency. In this research, we 

introduce a hybrid deep architecture with the goal of 

enhancing network traffic prediction, as illustrated in Figure 

1. The model presented in this study adopts a multi-module 

framework that consists of two Bi-LSTM modules and a 

Conv-LSTM module, collaborating effectively to capture 

complex spatiotemporal patterns inherent in traffic data. The 

holistic architecture is depicted in Figure 1, showcasing the 

interconnectedness of these modules. The Conv-LSTM 

module integrates CNNs and LSTM networks, 

amalgamating spatial and temporal information. The initial 

step involves the CNN extracting spatial features from the 

network traffic data, which are subsequently input into the 

LSTM to capture temporal dynamics. Concurrently, the Bi-

LSTM modules contribute by capturing the recurrent 

patterns inherent in daily and weekly traffic flow variations. 

These modules facilitate the extraction of periodic features, 

crucial for understanding traffic behavior over extended 

time spans. In order to amalgamate the spatial-temporal 

aspects along with the periodic features, a feature fusion 

layer (FF layer) is incorporated into the architecture, 

resulting in the creation of an all-encompassing feature 

vector. This comprehensive feature vector then undergoes 

further processing through two fully-connected layers (FC 

layers) that serve as regression layers, proficiently carrying 

out the task of predictive forecasting. Furthermore, to 

enhance the model's performance, an innovative EHO has 

been seamlessly integrated into the Conv-LSTM module. 

This mechanism dynamically allocates varying degrees of 

importance to different flow sequences at various temporal 

points. By doing so, it allows the model to adapt and focus 

more on the most pertinent information during different 

stages of the prediction process, thereby improving its 

ability to capture and utilize critical patterns and 

dependencies within the data for accurate forecasting. In the 

subsequent subsections, each module is elucidated in detail, 

illuminating their individual functionalities and interactions 

within this holistic framework. 

 

3.1 Conv-LSTM  

 

The crucial Conv-LSTM module, which is the foundation 

for extracting the intricate spatial-temporal properties 

inherent in network traffic flow data, is the most important 

part of the given model. Figure 2 shows how a dynamic 

framework is created within this module by the combination 

of the CNN and the LSTM network.  
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Figure 1. Block diagram of the future traffic prediction  
 

 

 
 

Figure 2. Block diagram of ConvLSTM with EHO  
 

Within this framework, the ConvLSTM network is 

structured with two CNN layers followed by two LSTM 

layers, each contributing to the comprehensive analysis of 

network traffic data. 

The first CNN layer functions as the initial feature extractor, 

convolving input data with learnable kernels to extract 

spatial features relevant to intrusion detection. These 

features are then passed through rectified linear unit (ReLU) 

activation functions to introduce non-linearity and enhance 

the network's representational capacity. Subsequently, max-

pooling operations are applied to down-sample the feature 

maps, reducing computational complexity while retaining 

salient information. 

The second CNN layer further refines the extracted features, 

leveraging additional convolutional filters to capture higher-

level abstractions in the network traffic data. Similar to the 

first CNN layer, ReLU activation functions are employed to 

introduce non-linearities, facilitating the learning of 

complex patterns and correlations within the data. 

Following the CNN layers, the architecture incorporates two 

LSTM layers to capture temporal dependencies in the 

network traffic sequences. LSTM units within these layers 

are equipped with memory cells and gating mechanisms, 

enabling the network to selectively retain and update 

information over time. This allows the model to effectively 

model long-range dependencies and temporal dynamics 

inherent in network traffic data, thereby enhancing the 

system's ability to detect subtle and evolving intrusion 

patterns. 

Moreover, the integration of EHO within the system 

architecture enables dynamic feature optimization and 

parameter tuning. EHO operates iteratively to adaptively 

adjust the weights and biases of the CNN and LSTM layers, 

optimizing the model's performance based on specified 

evaluation metrics such as detection accuracy or false alarm 

rate. By leveraging the collective intelligence and 

exploration-exploitation capabilities of the EHO algorithm, 

the system can effectively navigate the high-dimensional 

search space of feature representations, thereby enhancing 

the discriminative power and robustness of the intrusion 

detection system. 

The symbols and notations employed in this research are 

presented in detail within Table 1.  

 

Table 1. Symbols and Notations 
 

Symbols Notations 

T Traffic flow 

t Time stamp 

ω weight 

b bias 

U Convolution layer output 

H Hidden state 

σ Activation function 

ft Forget gate 

it Input gate 

Ct Cell state 

ot Output gate 

  Elephant position 

N Total number of elephant 

M Number of dimension 

r,β,ψ Random variable  

F Fitness function 

A Classification Accuracy  

δ  weight parameter 

i  Selecetd number of features  

L Loss  

Ω Regularization terms 

 

 

The Conv-LSTM model takes as input a matrix represented 

as 
s

tT , which takes the spatial-temporal network traffic 

patterns. Equation (1) shows this matrix, which represents 

the historical network traffic flow of a Point under 

investigation.  

At each time step t, the flow data 
s

tT is subjected to a one-

dimensional convolution process to extract spatial 

properties. Through this process, the model is able to gather 

localized perceptual data from the traffic flow by sliding a 

specific one-dimensional convolution kernel filter across the 

flow data.   
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The hour-wise traffic flow is also can be represented in the 

similar manner as
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The day-wise traffic flow is also can be represented in the 

similar manner as 

 
1 1 1 1

( 1)

2 2 2 2

( 1) ( 1)

       ...        ...     

       ...        ...     

: ...          ...        ...      ...      ...     ...

w w w w

w w w w

s
t t t tt

s

tw t t t t

t

s

t t

r r r rT

r r r rT
T

T r

   

    

− − − − +−

− − − − − − +

 
 
 

= = 
 
   ( 1)

       ...        ...    w w w w

k k k k

t t t
r r r

   − − − − +

 
 
 
 
 
 
  

  (3) 

As shown in Figure 2, the EHO mechanism added to the 

Conv-LSTM architecture facilitates focusing on certain 

areas of interest within the spatial-temporal network traffic 

matrix.  The output of the convolutional layer in terms of the 

input traffic (
s

tT ) can be written as: 

( )s t

t s s sY T b =  +      (4)  

In the given equation, s represents the weights of the filter, 

bias is represented by sb , σ is the activation function. Due 

to the fact that the spatial feature's dimensionality is not 

significant enough to warrant such pooling, we have decided 

not to include a pooling layer in the proposed model after 

the convolutional layer.. Let's define 
s

tU as the resulting 

output after the second convolutional layer's operation. Once 

the spatial information has undergone processing through 

these two consecutive convolutional layers, the resulting 

output, 
s

tU , is then seamlessly linked to  LSTM network. 

This connection facilitates the integration of the refined 

spatial features into the LSTM's sequential processing 

mechanism. 

LSTM networks are a type of recurrent neural network 

(RNN) architecture that excel in modeling sequential data by 

capturing long-term dependencies and mitigating the 

vanishing gradient problem encountered in traditional 

RNNs. Unlike standard RNNs, LSTM networks incorporate 

specialized memory cells and gating mechanisms, including 

input, forget, and output gates, which regulate the flow of 

information through the network over time (Figure 3). These 

gates enable LSTM units to selectively retain and update 

information, allowing the network to learn and remember 

patterns across extended temporal sequences. By effectively 

preserving relevant context and suppressing irrelevant 

information, LSTM networks are well-suited for tasks 

requiring the modeling of complex temporal dynamics, such 

as natural language processing, time series prediction, and, 

in the context of this study, the analysis of network traffic 

data for intrusion detection. 

It is commonly known that traffic flow patterns show 

temporal relationships between neighbouring time periods. 

LSTM networks provide a solution for learning extended 

temporal dependencies within sequential data to deal with 

this restriction. A memory block is housed in a cell that is 

part of an LSTM's architecture, along with the input gate, 

output gate, and forget gate (Figure 3). To ascertain the 

LSTM's current state, these gates work collaboratively. The 

input gate controls how much information from the current 

input is assimilated into the current cell state, while the 

forget gate controls how much information from the 

previous cell state is preserved in the present state. This 

architecture makes sure that significant elements of the 

present input are properly incorporated and 

that crucial information isn't lost. LSTM tries to improve our 

comprehension of the complex temporal dynamics hidden 

within the traffic flow patterns by utilizing the inherent 

capabilities. 

 

 

 
 

Figure 3.  Block diagram of LSTM Network with 
various gates 

 

Increasing the depth of the model by adding more layers is a 

common conventional approach to improving the 

performance of deep neural networks. With a specific focus 

on stacking numerous LSTM layers, we apply a similar 

strategy in the context of this study. With the help of this 

intentional stacking, the traffic flow data's underlying 

higher-level properties are gradually captured. This 

architectural decision promotes a hierarchical feature 

extraction process by enabling each LSTM layer to utilize 

the learnt representations from the prior layer's hidden state. 

Referring Figure 2, the computational process involves two 

LSTM layers. Initially, LSTM layer 1 is tasked with 

processing a sequential output derived from the preceding 

CNN module, 1,...... ,s s s s

t t t tU U U U− −
 =   encompassing 

the entire sequence from start to finish. Within this 

operation, LSTM layer 1 calculates and estimates a hidden 

state as 1, 1, 1, 1 1,,...... ,s s s s

t t n t tH H H H− −
 =   . Subsequently, 

the resulting sequence of hidden states, denoted as 'hidden 

state sequence,' 1,

s

tH serves as the input to LSTM layer 2. 

The primary objective of LSTM second layer (layer 2) is to 

estimate the hidden state 2,

s

tH specifically for a particular 

time stamp ‘t’, which ultimately represents the final output
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s

tH . To precisely outline the computational procedures of 

each LSTM layer, we can refer to equations (5) through (9), 

which articulate the mathematical expressions governing 

these processes: 

The expression of input gate ( ti ) at time ‘t’ is given by 

( )1 1

s s

t gi t hi t ci t ii T H C − −=  + + +  (5)  

where, 
s

tI  is the input to the LSTM layer. The expression 

for the forgot gate ( tf ) is given by 

( )1 1

s s

t gf t hf t cf t ff T H C − −=  + + +   (6) 

The expression for the cell state ( tC ) is given by 

( )1 1tanh s s

t t t t gc t hc t cC f C i T H − −= +  + +  (7)  

The expression for the out state ( tO ) is given by 

( )1

s s

t go t ho t co t oO T H C −=  + + +
 

 (8) 

The output of the LSTM layer is given by 

( )tanhs

t t tH O C=      (9)  

Further, 
s

tU  and 
s

tH  are inputs for layer 1 and layer 2 

respectively and corresponding output for these two layers 

are represented by 
1,

s

tH  and 
2,

s

tH , respectively.  

3.2 Elephant Herding Optimization  

Elephants are extremely social animals that display a 

sophisticated social hierarchy dominated by females and 

their young. A matriarch is the leader of a group of many 

elephants in an elephant clan, directing and supervising their 

actions. The gregariousness of female elephants is 

demonstrated by their preference to live with their family. 

Male elephants, on the other hand, usually move somewhere 

else and become increasingly self-sufficient over time until 

they finally break away from their families [30]. The goal of 

the Elephant Herding Optimization (EHO) optimization 

technique is to mimic the synchronized and cooperative 

movements of elephants in their natural herding activity. 

The EHO approach is based on a number of assumptions 

that are consistent with the traits and actions of elephants 

that have been seen in their natural environments. Elephants' 

general population distribution is depicted in Figure 4, 

which offers a graphic depiction of the group dynamics of 

these amazing animals. The below given assumptions are 

taken into account in EHO. 

 

 
 

Figure 4.  Elephant population type 
 

1. The elephant population comprises distinct clans, 

each with a specific number of elephants. 

2. Every generation witnesses a set number of male 

elephants breaking away from their family group to 

establish independent residency apart from the 

main elephant population. 

3. Within each clan, the leadership role is assumed by 

a matriarch who guides the elephants. 

3.2.1. Clan-updating Operator  

In accordance with the inherent behaviors of elephants, a 

matriarch assumes a leadership role within each clan, 

guiding the collective actions of the elephants. The 

mathematical expression for calculating the position of 

elephant [j] within clan [γi] is denoted by Equation (10). 

( )
, , ,, , ,i j j i i jnew new best r      = +  −             (10) 

,, i jnew  and 
,i j  represent the most recent and previous 

positions of elephant [j] in clan [γi], respectively. [ , ibest  ] 

signifies the matriarch in clan [γi], representing the optimal 

elephant within the group. The parameter scale factor is 

indicated by  0,1   and  0,1r . The determination of 

the best elephant in each clan is achieved through the 

application of Equation (11).  

,, ,i j inew center  =                     (11) 

Here, the variable  0,1  denotes impact of the center 

individual ( , icenter   ) on new individual
 
(

,, i jnew  )  on clan 

γi. In the mth dimension can be evaluated as 

, ,, ,

1

1
          1

i

i i j m

i

n

center m

j

m M
n



 



 
=

=               (12) 

i
n  defines the number of elephants in clan γi. 

Elephants with the lowest fitness values within their clans 

are ignored during the optimization process, and their 

locations are randomly regenerated throughout the search 

space. Known as the "separating operator," this procedure 

simulates how male elephants naturally depart from their 

groups. 
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3.2.2. Separating Operator 

The separation operator can be used to include the 

occurrence of male elephants leaving their family groups 

into an optimization framework. In the context of 

optimization, the separating operator serves as a mechanism 

inspired by the natural behavior of male elephants as they 

gradually distance themselves from their family units. This 

operator encapsulates the essence of separation, mirroring 

the transition observed in elephant social structures [37]. Its 

implementation, guided by the individual with the least 

favourable fitness, reflects the dynamic adaptation of 

optimization algorithms to real-world scenarios, drawing 

parallels between the natural world and computational 

problem-solving strategies. Equation (13) serves as the 

mathematical representation of this separating operator, 

capturing the essence of the departure process in the 

optimization context. 

( )
,, min max min 1

i jworst r    = +  − +             (13) 

Where max   and min  represents the upper and lower 

bound of the individual respectively. 
,, i jworst   defines the 

worst individual in clan γi . 

The EHO algorithm faces challenges when the current 

optimal individual is drawn towards a local extremum, 

lacking an effective mechanism to break free from 

constraints and risking premature convergence. This paper 

suggests an improvement by incorporating Levy flight 

behavior, utilizing it to simulate the elephant's position 

update. This modification (IEHO) aims to leverage Levy 

flight for broader search ranges, preventing individuals from 

getting trapped in local optima and enhancing the 

algorithm's ability to avoid premature convergence. 

( )
,

1
, min max min1/

2

(1, )
1

(1, )
i jworst

r m
r

r m
 


    


= + +  − +       (14) 

Feature selection constitutes a crucial step in the data 

processing pipeline for intrusion detection. Its essence lies in 

choosing subsets from the original dataset in a way that 

maximizes the classification effectiveness or, equivalently, 

yields the highest fitness function value. Formally, for a 

given set of data samples {f1,f2,...,fL} where L is the size of 

the feature set, any feature subset can be denoted by a binary 

vector {s1,s2,...,sL}with si indicating whether the ith feature is 

selected (si=1) or not (si=0). 

The overarching objective of feature selection is to achieve 

superior classification outcomes with the minimum number 

of features. This involves tackling two fundamental 

challenges: devising effective search strategies and 

evaluation functions for the generation and assessment of 

feature subsets. The fitness function, synonymous with the 

evaluation function, plays a pivotal role in determining the 

quality of each individual in the population. In the context of 

intrusion detection, the fitness function predominantly 

revolves around the number of selected features and the 

accuracy of classification. Therefore, the fitness function for 

feature selection can be defined as Equation (15): 

(1 )i i iF A = − +                      (15) 

Here, Fi signifies the fitness value of the feasible solution, Ai 

denotes the classification accuracy (eqn. 19) , i  represents 

the selected number of features, and δ is a weight parameter 

typically set to 0.01. This function encapsulates the dual 

aspects of classification accuracy and the economy of 

selected features in the evaluation of the solution's efficacy 

in the context of intrusion detection. 

The IEHO (Improved Elephant Herding Optimization) 

algorithm enhances the convergence speed and global 

optimization capability of the EHO algorithm, thereby 

elevating the overall classification performance. However, 

given that feature selection involves a binary combination 

optimization problem, and the IEHO algorithm is designed 

for continuous problems, a direct application for feature 

selection is not feasible. To address this, this work considers 

an iintrusion detection feature selection method by 

combining binary coding with the IEHO algorithm, termed 

the binary IEHO algorithm. 

In the iterative process of the binary IEHO algorithm for 

feature selection, the elephant group functions as search 

agents exploring the solution space, with each elephant 

individual representing a potential solution. The binary 

IEHO algorithm employs a binary coding format, where 

each elephant's position corresponds to a feasible solution. 

In this binary coding, each dimension of the elephant is 

represented as a binary value; taking either 0 or 1 depending 

on feature is not selected or selected in the feasible solution. 

The binary vector is constructed using the sigmoid function, 

which is intended to be 

, , ,
, ( )

1
( )

1 exp
i j new i j

newSign


 


−
=

+
                   (16) 

The binarization is done using 

,

,

,

,

1           if  ( ) (1)

0           otherwise 

i j

i j

new

new

Sign rand







= 


     (17) 

Determining the number of dimensions that this equation 

will update raises an important question. In the foundational 

EHO algorithm, when all dimensions are simultaneously 

altered, every elephant within the clan essentially assumes 

the role of the matriarch. Conversely, updating one 

dimension at a time leads to delayed convergence, 

presenting a noteworthy challenge for the conventional EHO 

algorithm [38]. 

To address these concerns and strike a balance between 

diversity and convergence speed across updated dimensions, 

a parameter known as the dimension load (DL) has been 

introduced. This parameter plays a crucial role in 

determining the number of dimensions that undergo updates. 

The DL parameter serves as a pivotal mechanism to 

optimize the algorithm by influencing the trade-off between 

exploring diverse solution spaces and achieving efficient 

convergence. The careful adjustment of this parameter 

allows for a more nuanced and adaptive approach, 

mitigating the issues associated with simultaneous or 

sequential updates of dimensions in the algorithm. 

For example, Figure 5 shows the updating procedure for 

each elephant, assuming that DL is set to 0.4 and the total 
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number of dimensions (M) is 10. In this particular case, the 

number of dimensions that need to be updated is four, as 

determined by multiplying DL by M. Crucially, these 

dimensions are chosen at random, guaranteeing their 

uniqueness from one another. By carefully utilizing the 

dimension load parameter, the updating process is given a 

controlled variability that provides a sophisticated resolution 

to the convergence and similarity problems that the 

fundamental EHO algorithm presents. 

 

 
 

Figure 5. Elephant update process in Binary EHO 
 

Similar to the solution search equation (Eq. 10) in the basic 

Elephant Herding Optimization method algorithm, Eq. (9) 

ensures that the positions of the matriarch remain unchanged 

when dealing with binary values. However, it becomes 

evident that Eq. (17) is unsuitable for computing the central 

position of the clan to update the matriarch, given that Eq. 

(11) is not applicable in the context of binary values. 

Consequently, a mutation operator is introduced to facilitate 

the matriarch's update and enhance population diversity. A 

careful approach is employed to prevent excessive 

disruption to the matriarch, who represents the best elephant 

in each clan. Specifically, only one dimension, chosen 

randomly, undergoes mutation. Fig. 6 illustrates a 

representative mutation operation. This strategic mutation 

process aims to strike a balance between introducing 

variability within the population and preserving the stability 

brought by the matriarch, thereby contributing to the 

algorithm's robustness. The algorithm allows for adaptation 

to the binary character of the search space by introducing the 

mutation operator. This ensures that the matriarch's position 

is updated in a way that maintains population variety while 

striking a balance between exploration and exploitation. 

 

 
 

Figure 6.  Mutation process in Binary EHO 

Bi-Directional LSTM 

The bi-directional LSTM model's architectural arrangement 

consists of two layers, each of which contains unique 

unidirectional LSTM components stacked in both an 

ascending and descending order (Figure 7). This split setup 

creates a forward pass LSTM and a companion backward 

pass LSTM, which together provide a thorough grasp of the 

input data's temporal structure. As previously explained, a 

key component of successfully handling the historically 

cyclical nature of traffic flow is the integration of numerous 

LSTM layers. Specifically, a dual-layer composition with 

one pair for the forward pass and another for the backward 

pass emerges within each bi-directional LSTM network. 

 

 
 

Figure 7.  Bi-LSTM Network 
 

The traffic flow data from the previous day's near past and 

immediate future, as well as the parallel temporal span from 

the prior week, are included in the input dataset used for 

forecasts at a given time instance. Equations (2) and (3) 

serve as respective representations of this data structure. The 

concatenated data streams are subsequently input into the bi-

directional LSTM architecture. The generated hidden states 

from these twin passes are then processed, harmonizing 

them to produce an overall output. Combining the 

information obtained from the forward and backward LSTM 

sequences gives the model a richer contextual perspective, 

which inherently improves its predictive effectiveness. A 

visual representation of the comprehensive framework 

encompassing the suggested bi-directional LSTM module 

inside our overall model is provided in Figure 5. The LSTM 

module's input data streams are represented by the elements 

marked by 
d

tT  and tT 
, respectively. According to the 

input data streams 
d

tT  and tT 
, respectively, the outputs of 

the forward pass LSTM are represented by 
.d f

tH and 

. f

tH 
, while the results of the backward pass LSTM are 

represented by 
.d b

tH and
.b

tH 
. 

3.4 Feature Fusion  

The spatial-temporal characteristics 
a

tH , the daily 

periodicity features 
.d f

tH , and 
.d b

tH , as well as the weekly 

periodicity features 
. f

tH 
 and 

.b

tH 
 are obtained, as 

shown in Fig.1, Then, to perform forecasting, two regression 

layers input a feature vector that has all of these features 

concatenated together.  
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The loss function is modelled as 

2 2

1 2

1 1 1

1
( ) i i

t t t

L PT IT
  

 
 = = =

 
= − +  +  
 
       (18) 

The first term is MSE of input traffic (IT) and predicted 

traffic (PT), while second and third terms are regularization 

terms to avoid overfitting and specific feature dominance 

respectively. 

4. Results 

In this section, we present the results of our comprehensive 

network traffic prediction model, which leverages advanced 

machine learning and data analysis techniques. These results 

not only provide insights into the model's accuracy and 

effectiveness but also offer a glimpse into the potential for 

more proactive and adaptive network management. 

4.1 CICIDS2017 Dataset 

The CICIDS2017 dataset, short for "Canadian Institute for 

Cybersecurity Intrusion Detection Evaluation Dataset 2017," 

is a collection of network traffic data specifically designed 

for evaluating and benchmarking IDS and intrusion 

prevention systems (IPS) [39]. The dataset is intended to 

represent real-world network traffic scenarios, including 

both benign and malicious activities. It includes various 

types of attacks, anomalies, and normal network traffic to 

provide a comprehensive set of data for testing the 

effectiveness of intrusion detection and prevention 

mechanisms.  

Over the course of the week, a range of cyber security 

events and incidents were documented, as displayed in 

Table 2. On Monday, there were 529,918 events classified 

as "Benign," indicating harmless or non-malicious activities. 

Tuesday witnessed 445,909 events related to "Brute Force" 

attacks, where unauthorized access attempts were made 

through repeated username and password combinations. On 

Wednesday, 692,703 events were associated with 

"Heartbleed" and "DoS" (Denial of Service) attacks, which 

can potentially lead to data leaks and service disruption. 

Thursday had 170,366 events categorized under "Web," 

which could encompass various web-related activities. 

Additionally, on Thursday, 288,602 events were logged as 

"Infiltration," signifying attempts or incidents of 

unauthorized access. On Friday, 190,133 events were linked 

to "Botnet" activities, often involving networks of 

compromised devices for malicious purposes. Friday also 

recorded 286,467 "Port Scan" events, indicating 

reconnaissance activities, and 225,745 "DDoS" events, 

involving distributed denial of service attacks aimed at 

making services unavailable. These events are typically 

monitored and analyzed to enhance cyber security measures 

and respond to potential threats. 

 

Table 2. Day wise traffic distribution for CICIDS2017 
dataset 

Day Attack Type Number of records 

Monday Benign 529918 

Tuesday Brute Force 445909 

Wednesday Heartbleed/DoS 692703 

Thursday Web 170366 

Thursday Infiltration 288602 

Friday Botnet 190133 

Friday Port Scan 286467 

Friday DDoS 225745 

 

In the dataset, each piece of data is associated with one of 

sixteen distinct labels. Among these labels, one of them is 

labelled as "Benign," signifying normal network activities 

devoid of any malicious intent. This benign record is 

constructed by mimicking genuine user behaviour and 

encompasses various protocols such as Mail services, SSH, 

FTP, HTTP, and HTTPS.  

 

 
 

Figure 8. Traffic type with labels and number 
 

Essentially, it replicates the patterns of genuine user data, 

ensuring that it does not pose any threat or harm to the 

network. The remaining fourteen labels in the dataset are 

dedicated to representing different types of network attacks. 

For a comprehensive list of the specific labels and their 

corresponding numbers, please refer to Figure 8. 

 

 
Figure 9. Traffic distribution chart 

 
Out of the entire network traffic, a significant portion, 

precisely 76 percent, is categorized as "benign" traffic 

(Figure 9). This benign traffic represents the normal and 

non-harmful activities occurring on the network. It includes 
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activities like Mail services, SSH, FTP, HTTP, and HTTPS, 

which simulate genuine user interactions and contribute to 

the smooth functioning of the network. This substantial 

majority of benign traffic is essential for organizations to 

operate efficiently and without interruptions. In contrast, the 

remaining 24 percent of the network traffic is classified as 

"attack" traffic. This portion consists of various types of 

malicious activities, which could potentially harm the 

network's integrity, compromise data security, or disrupt 

services. These attacks encompass a wide range of 

techniques and strategies employed by cybercriminals, 

including brute force attacks, DoS attacks, web 

vulnerabilities, infiltration attempts, botnet activities, port 

scans, and DDoS attacks, among others. The feature set 

presented comprises 78 distinct attributes or characteristics 

used in network traffic analysis. These features offer 

comprehensive insights into the behaviour of network flows. 

Notably, the "Label" feature serves as a crucial identifier, 

categorizing network flows as either benign or indicative of 

an attack. Other features provide information on the duration 

of flows, packet inter-arrival times, packet lengths, and 

various statistics about packet data. Collectively, these 

attributes enable network analysts and machine learning 

algorithms to scrutinize and classify network activities 

effectively.  

They play a pivotal role in the development of intrusion 

detection systems, traffic anomaly detection, and network 

security assessment by providing the necessary data for 

identifying and responding to potential threats and 

vulnerabilities in network traffic. Our proposed model 

leverages these features to effectively distinguish between 

benign and malicious network traffic. By analyzing and 

interpreting the information contained within these features, 

and selecting optimal features our model can make informed 

decisions regarding potential threats, thereby bolstering the 

overall cyber security defences. 

4.2 Results 

A confusion matrix is a tool used in machine learning and 

statistics to evaluate the performance of a classification 

model.  

 
 

Figure 10. Confusion Matrix 
 

It is especially useful for assessing the accuracy of a model's 

predictions when dealing with binary classification 

problems, such as distinguishing between "benign" and 

"attack" labels. The confusion matrix typically consists of 

four values: true positives (TP), false positives (FP), true 

negatives (TN), and false negatives (FN). The details are 

shown in Figure 10. The accuracy is defined as  

 

TP TN
A

TP TN FP FN

+
=

+ + +
                (19) 

 

The precession is defined as 

TP
P

TP FP
=

+
                  (20) 

The recall is defined as 

TP
R

TP FN
=

+
     (21) 

The F1-score is defined as 

 

2
1

PR
F

P R
=

+
     (22) 

Table 3 provides a comprehensive overview of the 

simulation parameters utilized in the study, detailing the 

various factors and settings essential for conducting the 

experiments and analyzing the results.  

 

Table 3. Simulation Details 
 

Parameters Value 

ConvLSTM1 Filter  128 

Kernel Size  (1,3) 

ConvLSTM 2 Filter  64 

Kernel Size  (1,3) 

LSTM1 200 

LSTM 2 200 

Activation ReLU 

Drop out 0.2 

Regularization L2 0.001 

Elephant Population Size 32 

Number of clans 4 

β 0.9 

ψ 0.1 

Number of iterations  100 

 
Figure 11 presents a detailed analysis of network traffic 

patterns over time, measured in hours, and the performance 

of a predictive model. In part (a), it illustrates the 

comparison between the actual network traffic data and the 

predictions generated by proposed forecasting model. This 

visual representation allows analysts to assess how closely 

the model's predictions align with the observed real-world 

traffic patterns. It can be clearly visualized that the proposed 

model has good prediction of traffic. Part (b) provides 

insight into the model's accuracy over time, showing how 

well it captures the actual network traffic. In the initial 

epochs the accuracy is very low but as number of epochs 

increases the accuracy increases with maximum attainable 

accuracy of 99.981%.  The provided classification model 

exhibits outstanding performance metrics. It achieves a 
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precision of 99.98%, signifying an extremely low rate of 

false positives. Additionally, it attains a perfect recall of 

100%, implying that it correctly identifies all positive 

instances without any false negatives. Moreover, the F1-

Score, which balances precision and recall, also reaches 

99.98%, indicating a well-rounded and highly accurate 

model. 

 

 
(a) 

 
(b) 

Figure 11. (a) Actual and Predicted Traffic (Minutes) 
(b) Accuracy (Minutes) 

 
Figure 12 offers an extensive examination of network traffic 

trends over hourly intervals, presenting an evaluation of a 

predictive model's performance. In section (a), it visualizes 

the comparison between actual network traffic data and the 

predictions generated by the proposed forecasting model. 

This graphical representation serves as a means for analysts 

to gauge the alignment between the model's predictions and 

the real-world traffic patterns. Notably, it's evident that the 

proposed model exhibits a commendable ability to predict 

traffic accurately. In section (b), the figure sheds light on the 

model's accuracy across time, revealing how effectively it 

captures actual network traffic patterns. The accuracy 

initially starts at a lower level but steadily increases as the 

number of epochs progresses, eventually reaching a 

remarkable peak accuracy of 99.979%. The classification 

model performs exceptionally well, with precision, recall, 

accuracy, and F1-Score all at an impressive 99.99%, 

indicating minimal errors and strong predictive capabilities. 

 

 
(a) 

 
(b) 

 

Figure 12.  (a) Actual and Predicted Traffic (Hours) (b) 
Accuracy (Hours) 

 

 
(a) 
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(b) 

 

Figure 13. (a) Actual and Predicted Traffic (Days) (b) 
Accuracy (Days) 

Figure 13 provides an extensive analysis of network traffic 

patterns over daily intervals, offering an assessment of the 

predictive model's performance. In section (a), it visualizes 

the comparison between actual network traffic data and the 

predictions generated by the proposed forecasting model. 

This graphical representation enables analysts to evaluate 

the alignment between the model's predictions and real-

world traffic patterns. Importantly, it is evident that the 

proposed model demonstrates a noteworthy ability to 

accurately predict traffic.  

Lastly, in section (b), the figure illuminates the model's 

accuracy over time, revealing its effectiveness in capturing 

actual network traffic patterns. The accuracy begins at a 

lower level initially but steadily improves as the number of 

epochs progresses, ultimately reaching an impressive peak 

accuracy of 99.989%. The performance metrics provided for 

the classification model are outstanding in every aspect. 

With a precision score of 0.9999, the model demonstrates an 

impressive ability to correctly identify positive instances, 

with an incredibly low rate of false positives. The recall 

score of 0.9999 indicates that it effectively captures nearly 

all of the actual positive instances, leaving very few false 

negatives. The high accuracy score of 0.99989 signifies that 

the model's overall predictions are almost flawless, correctly 

classifying the vast majority of instances in the dataset. 

Furthermore, the F1-Score, which harmonizes precision and 

recall, also stands at an impressive 0.9999, showing a well-

balanced performance. 

Figure 14 depicts a visual representation of the comparison 

of accuracy among different models or methodologies using 

bar graphs. Each bar in the graph corresponds to a specific 

model or approach, and the height of the bar indicates the 

level of accuracy achieved by that particular model. The 

accuracy values associated with the bars are reported as 

percentages, with precise measurements of 99.981%, 

99.979%, and 99.989%, for minutes, hours and days 

respectively. These percentages signify the proportion of 

correctly classified instances relative to the total number of 

instances evaluated by each model. 

 

 
Figure 14. Accuracy comparison 

 

 
 

Figure 15. Metric values (Average) 
 
Figure 15 presents the average values of key metrics, 

including precision, recall, F1-score, and accuracy, depicted 

as percentages. These metrics provide insights into the 

performance of the evaluated models or methodologies in 

terms of their ability to correctly classify instances within a 

given dataset. The reported average values for precision, 

recall, F1-score, and accuracy are 99.52%, 99.30%, 99.99%, 

and 99.66%, respectively. 

 

The Table 4 summarizes the results of various research 

studies focused on intrusion detection systems (IDS) and 

their corresponding accuracies. Gao et al. [13] employed a 

machine learning approach and achieved an accuracy of 

85.2%. The precession, recall and F1-score is also low. 

While their adaptive ensemble model showed effectiveness, 

it had limitations in detecting weaker attack classes. In 

contrast, Sabeel et al. [14] obtained an impressive Precision 

of 94.9% and an excellent F1-Score of 97.4%, leading to a 

high Accuracy of 98.72%. However, their model was 

limited to binary class classification. 

Asad et al. [15] proposed a DNN-based model with a high 

accuracy of 98% but evaluated it solely against DDoS 
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attacks. Mural. et al. [16] used a DNN approach and 

achieved a strong accuracy of 99.61%, though their method 

was specific to detecting slow HTTP DoS attacks. 

 

 
Table 4. Performance comparison with the state-of-

the-art methods  

Reference 
Precession  Recall F1-

Score 
Accuracy 

Gao et al. [13] 86.5% 85.2% 84.9% 85.2% 

Sabeel et al. [14] 94.9% - 97.4% 98.72%, 

Asad et al. [15] - - 99.0% 98% 

Muraleedharan. 

et al. [16] 

99% - - 
99.61%. 

Amaizu et al. 

[17] 

99.52% 99.30% 99.99% 
99.66%. 

Hasan et al. [18] 99% 99% 99% 99% 

Amma et al. [19] - - - 99.3% 

Chen et al. [20] - - - 98.87% 

Haider et al. [21] 99.57% 99.64% 99.61% 99.45% 

Wang et al. [22] 98.99% 98.96% 98.97% 98.98% 

Kim et al. [23] - - - 99%, 

Hussain et al. 

[24] 

87% 86% 86% 
87.06% 

Li C et al. [25] - - - 98% 

Shu et al. [26] - - - 99.19% 

Bhardwaj et al. 

[27] 

99.22% 97.12% 98.57% 
98.43% 

Moh. et al. [28] 98.42% 97.6% 98.05% 98.15% 

He et al. [29] - - - 87.8% 

Proposed  99.98% 1 99.99% 99.98% 

 

Amaizu et al. [17] employed a DNN and obtained an 

exceptional performance with a high Precision of 99.52%, a 

Recall of 99.30%, and an outstanding F1-Score of 99.99%. 

However, the complexity of their suggested model might 

result in longer detection times, which could impact real-

time use. Hasan et al. [18] utilized a Deep CNN model, 

reaching 99% accuracy, outperforming three other machine 

learning methods. Nevertheless, their dataset had a limited 

number of cases. Amma et al. [19] combined Fully 

Connected Neural Networks (FCNN) and Variational 

Convolutional Neural Networks (VCNN), obtaining an 

accuracy of 99.3%. They outperformed basic classifiers and 

even more sophisticated systems but relied on an outdated 

dataset. Chen et al. [20] used a CNN model, with MCCNN 

performing well on constrained data and achieving an 

accuracy of 98.87%. However, they found no significant 

difference between multi-class and single-class 

classification models. 

Haider et al. [21] introduced a Deep CNN ensemble 

technique that outperformed existing approaches, with an 

accuracy of 99.45% with high precession, recall and F1 

score. Nevertheless, their method required longer training 

and testing periods. Wang et al. [22] employed an Entropy 

and Deep Learning technique, with their CNN model 

outperforming alternatives across multiple metrics but 

requiring a longer detection time.Kim et al. [23] utilized a 

CNN-based model that effectively recognized unique DoS 

attacks with similar features, achieving 99% accuracy, albeit 

at the cost of longer detection times. Hussain et al. [24] 

achieved a moderate accuracy of 87.06% by converting non-

image network data into a suitable format for deep learning, 

although they did not consider the time required for data 

preparation. Li C et al. [25] applied a DL method and 

achieved 98% accuracy in DDoS assault detection. 

However, their model demanded a significant amount of 

time for detection. Shu et al. [26] combined hybrid-based 

IDS with LSTM, reaching an accuracy of 99.19%. 

Nonetheless, their method also required a substantial 

amount of time for detection. 

Bhardwaj et al. [27] effectively addressed feature learning 

and overfitting issues using a DNN, resulting in an accuracy 

of 98.43% with reasonably good precession, recall and F1-

score. However, their study was conducted offline and did 

not utilize recent datasets. Moh. et al. [28] combined LSTM 

with Bayes, achieving stable performance with new data and 

positive outcomes. Still, detecting attacks unsuitable for 

real-time applications may take longer with their LSTM–

Bayes approach. Finally, He et al. [29] employed a strategy 

based on DTL for DDoS detection, achieving a 20.8% 

improvement in detecting the 8LANN network. However, 

they considered only single type of attack. The proposed 

system, represented as "Proposed," attained the highest 

accuracy of 99.98% among the mentioned studies, 

showcasing its potential as an effective intrusion detection 

system. 

5. Conclusions 

 

In conclusion, the research presented in this paper represents 

a significant step forward in the realm of network intrusion 

detection. The integration of ConvLSTM and EHO 

mechanisms has yielded a powerful model capable of 

accurately predicting network traffic and identifying 

potential security breaches. The findings not only contribute 

to advancing the field of intrusion detection but also have 

practical implications for enhancing network security in 

real-world scenarios. In nutshell, the findings from this 

study affirm the predictive model's exceptional performance 

in network traffic classification, with average values for 

precision, recall, F1-score, and accuracy are 99.52%, 

99.30%, 99.99%, and 99.66%, respectively. This level of 

precision is particularly noteworthy in the context of 

network security, where the ability to accurately distinguish 

between benign and attack traffic is of paramount 

importance. The results underscore the model's reliability 

and its potential for application in real-world network 

security and traffic analysis tasks, where precise detection of 

security threats is essential for safeguarding network 
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integrity. In the future works, other meta-heuristic algorithm 

can be considered. 
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