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Abstract 

INTRODUCTION: Diabetic Retinopathy, Cataract and Glaucoma are the major eye diseases posing significant diagnostic 
challenges due to their asymptotic nature at their early stages. These diseases if not detected and diagnosed at their early 
stages may lead to severe visual impairment and even can cause blindness in human beings. Early detection of eye diseases 
showed an exceptional recovery rate. Traditional diagnostic methods primarily relying on expertise in the field of 
ophthalmology involve a time-consuming process. With technological advancements in the field of imaging techniques, a 
large volume of medical images have been created which can be utilized for developing more accurate diagnostic tools in 
the field. Deep learning (DL) models are playing a significant role in analyzing medical images. DL algorithms can 
automatically learn the features which indicate eye diseases from eye image datasets. Training DL models, however, requires 
a significant amount of data and computational resources. To overcome this, we use advanced deep learning algorithms 
combined with transfer-learning techniques. Leveraging the power of deep learning, we aim to develop sophisticated models 
that can distinguish different eye diseases in medical image data. 
OBJECTIVES: To improve the accuracy and efficiency of early detection methods, improve diagnostic precision, and 
intervene in these challenging ocular conditions in a timely manner. 
METHODS: The well-known Deep Learning architectures VGG19, InceptionV3 and ResNet50 architectures with transfer 
learning were evaluated and the results are compared. 
RESULTS: VGG19, InceptionV3 and ResNet50 architectures with transfer learning achieved 90.33%, 89.8% and 99.94% 
accuracies, respectively. The precision, recall, and F1 scores for VGG19 were recorded as 79.17%, 79.17%, and 78.21%, 
while InceptionV3 showed 82.56%, 82.38%, and 82.11% and ResNet50 has 96.28%, 96.2%, and 96.24%. 
CONCLUSION: The Convolutional Neural Network models VGG19, Inception v3, ResNet50 combined with transfer 
learning achieve better results than the original Convolutional Neural Network models 
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1. Introduction

Cataract, Glaucoma, and Diabetic Retinopathy (DR) are 
dangerous eye diseases which cause damage in the optic 
nerve and everlasting blindness in human beings. Diabetes 

*Corresponding author. Email: bhavadharini.rm@vit.ac.in 

sufferers frequently exhibit an increased glucose level within 
the body, which leads to various eye conditions, which 
include but are not limited to cataracts, diabetic macular 
edema, DR and glaucoma, amongst others. The International 
Diabetes Federation (IDF) stated that 1 in 8 adults will have 
diabetes by the year 2045, which also indicates a 
susceptibility to having such eye conditions. 
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Cataracts often develop due to factors such as aging and 
excessive exposure to sunlight when the proteins in the eye 
lens clump together, hindering light’s passage through the 
lens, resulting in unclear vision. Opacity and cloudiness 
within the inner lens of the eye are symptoms indicative of 
cataract disease. The use of fundus pictures for eye disease 
detection holds a specific importance in providing timely 
support to patients in underdeveloped areas [1]. An 
unidentified and untreated cataract in its early stages is the 
main cause of blindness, with nearly 18 million people losing 
sight in both eyes [4].  

DR is a complication arising from diabetes where 
prolonged high blood sugar levels in human body causes 
significant damage to the blood vessels within the retina, 
leading to vessel leakage [11]. Managing DR requires regular 
eye examinations, effective blood sugar control, and timely 
medical intervention. The traditional screening method for 
identifying DR is time-consuming, necessitating 
ophthalmologists identifying critical features from structural 
eye images [13]. DR poses a significant threat to the retina, 
involving structural changes such as microaneurysms (MAs), 
exudates (EXs), haemorrhages (HMs), and the development 
of additional blood vessels [15].  

Glaucoma is known as a “silent thief of sight". as it 
causes increased degeneration of nerve fibres where 
symptoms cannot be identified until the disease reaches an 
advanced stage, leading to gradual and irreversible vision 
loss. [24]. Glaucoma is also an irreversible neurodegenerative 
disorder, characterized by asymptomatic progression, 
resulting in sustained vision deterioration due to delayed 
detection [25]. 

The utilization of Deep Learning (DL) and Transfer 
Learning (TL) methods are extensive in the field of eye 
disease detection. They involve collecting images from 
diseased and normal eyes, which are then subjected to image 
pre-processing to minimize interference. The pre-processed 
images are subsequently fed into a DL architecture, 
optimizing input data to classify unseen eye datasets. The 
architecture effectively classifies and labels diseased eyes, 
providing specific information about the type of eye disease 
present. The TL approach, which involves utilizing a pre-
trained model often trained with vast datasets, enables the 
adaptation of knowledge from an existing task to a designated 
task. The TL approach is particularly beneficial when dealing 
with a limited number of images or aiming to reduce training 
time. The objective of the proposed work is to enhance the 
performance of Convolutional Neural Networks (CNN) 
models, recognizing that the overall effectiveness of the 
architecture can be influenced by the quality of images in the 
dataset. This research aims to refine and optimize deep 
learning methods for the accurate and efficient detection of 
various eye conditions.  

2. Literature Survey

Cataracts come in varied forms - nuclear, cortical, and 
posterior subcapsular - obstructing the visibility of the retinal 

structure which necessitates the urgent need for inexpensive 
diagnostic tools, particularly in rural areas. Macular Pigment 
(MP) measurement, critical for maintaining visual function, 
faces numerous challenges in clinical practice due to the 
complexities involved in assessment. Fundus reflectometry 
and autofluorescence spectroscopy are potential solutions, 
albeit with limitations when dealing with elder people facing 
cataracts. Artificial Intelligence (AI) aided measurement 
holds great potential in tackling these obstacles, facilitating a 
precise evaluation of MP for the efficient management of age-
related macular degeneration and visual impairments. The 
entire situation prompts heavy research and development 
efforts to provide practical solutions for cataract-related 
issues, emphasizing the critical need for improved detection 
and treatment strategies in the fight against visual 
impairments [1,2]. Increasing the depth of CNN architecture 
is beneficial for classification accuracy [3]. Deep 
convolutional networks have been evaluated (up to 19 weight 
layers) for largescale image classification. The residual 
learning framework was presented in [4] to enhance the 
performance of very deep neural networks. Authors have also 
explored ways to scale up networks by maximizing the 
efficiency of additional computational resources [5]. This 
was achieved through strategies such as appropriately 
factorized convolutions and rigorous regularization 
techniques. One study presents a two-phase strategy [6]: the 
Deep OCRN_IAO model identifies cataracts using retinal and 
lamp images, followed by BE_ResNet101 for type and grade 
classification. With an accuracy of 98.87%, specificity of 
99.66%, and sensitivity of 98.28%, the model shows 
significant enhancements in diagnosing cataracts. Research 
work has introduced an innovative approach using videos of 
lens scans from mobile phone slit lamps, enhancing accuracy 
and efficiency through YOLOv3-based positioning and 
classification [7]. The proposed algorithm demonstrates 
promise for real-time cataract grading, improving 
accessibility to screening services in rural and urban areas. 
Integrated with mobile slit lamps, it enables community 
health workers to extend screening services to patients' homes 
and rural health stations, lessening the burden of undiagnosed 
cataracts and related illnesses. 

Two deep learning models were discussed in aiding 
cataract diagnosis [8], leveraging a fundus dataset for 
automatic classification of normal and cataract images. The 
Mobile Net V3 Small model gives a  notable result of 8.26% 
accuracy improvement over the basic model after fine tuning 
and layer additions. When tested on these combined datasets, 
the Mobile Net V3 model achieves an average accuracy of 
around 96.62%. The proposed DCNN model [9] shows some 
robust performance, with accuracies of 97% for cataract 
classification and 98% for non-cataract images. Leveraging 
retinal fundus images post-G-filter enhances classification 
accuracy and stability, outperforming many existing 
methods. This approach holds great promise for real-time 
cataract detection and diagnosis, offering practical 
significance in early screening and diagnosis of eye diseases, 
with maybe some potential for broader application in the 
field. 
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 Globally, vision impairment affects millions, with 
cataracts a leading cause, especially in developing regions. 
By leveraging deep learning, the study enhances non-invasive 
cataract diagnosis, addressing rural healthcare challenges. 
Deep convolution networks effectively classify nonlinear 
fundus image combinations, improving classification 
accuracy despite limited datasets. Future efforts aim to refine 
cataract detection through deep learning advancements, 
enhancing eye healthcare accessibility and outcomes globally 
[10,11]. A novel, unique, and innovative approach combining 
the Deep Convolutional Neural Network (DCNN) with 
Random Forest (RF) is meticulously proposed cataract 
grading, achieving an excellent average accuracy of 90.69%. 
This method significantly enhances specificity and sensitivity 
indicators, enabling a more precise assessment of the patient's 
condition. This strongly suggests the enormous potential for 
a more cost-effective and simplified cataract diagnosis 
process, particularly in underserved regions, efficiently 
addressing critical healthcare needs with unparalleled 
accuracy and efficiency [12,13]. 

DR stands as a significant diabetes complication, causing 
irreversible damage to retinal blood vessels and potential 
blindness if left undetected. Early diagnosis is crucial, yet 
current treatments mainly focus on delaying sight 
deterioration. Advanced computer-based systems offer 
promise in early detection, surpassing manual methods and 
reducing time and cost burdens. DR images are classified into 
different stages and localization of the lesions on the retinal 
surface is performed by DL models. The first model, 
CNN512, achieved an 88.6%, accuracy on DDR and APTOS 
Kaggle 2019 datasets. Fusion of both models yields 89% 
accuracy, outperforming current standards. [14,15]. The 
manual detection of DR is extremely challenging due to its 
structural impact on the retina, which may cause 
microaneurysms, exudates, haemorrhages, and abnormal 
blood vessel growth. The transfer learning approach has been 
deployed for detecting and classifying DR in fundus images, 
for the purpose of feature extraction in binary and multiclass 
classification. The system achieved 97.8% and 89.29% 
accuracy, with the modified method reaching for binary 
classification and multiclass classification respectively 
[16,17]. Artificial Intelligence-based screening systems have 
become essential requirements for efficiently analysing 
Retinal Fundus Images (RFI) in less economically developed 
countries. With this aim, a novel lightweight CNN model was 
designed particularly for binary classification with a minimal 
computational cost, achieving notable metrics including 
98.6% area under the curve, 97.66% sensitivity, and 98.33% 
specificity. Additionally, an object detection model was 
trained to enhance retinal image suitability, achieving a mean 
average precision of 94.5% [18,19]. 

CNNs streamline medical image analysis, but training 
them remains challenging, particularly with predominantly 
easy-to-classify samples. A faster CNN model was used in 
training medical images by dynamically selecting 
misclassified negative samples during training, focusing on 
haemorrhage detection in fundus images. Integrated selective 
sampling reduces training time while maintaining high 

performance. Achieving 94.5% accuracy, CNNs outperform 
conventional approaches, with the potential for clinical 
integration to streamline diagnosis; promising to enhance 
medical image analysis workflows [20,21]. A two-step Deep 
Convolutional Neural Network (DCNN) algorithm can 
effectively pinpoint lesion locations and types within fundus 
images, concurrently providing severity levels of DR. By 
combining local and global networks, the feature learning 
process for DR analysis is significantly improved. Moreover, 
the introduction of an unbalanced weighting map serves to 
prioritize lesion patches for accurate DR grading, ultimately 
boosting algorithm performance. [22,23]. 

The TL model is integrated with the U-Net structure for 
optic cup segmentation and DenseNet-201 for characteristic 
extraction. DCNN approach classifies images to ascertain 
glaucoma presence, aiming to apprehend the situation in 
retinal fundus images. Performance metrics like accuracy, 
precision, recall, and the F1 score validate the model’s 
efficacy, with an accuracy of 98.82% in training and 96.90% 
testing [24,25]. A DL Polynomial Driven Glaucoma 
Classification Net (PDGC-Net)-based multi-stage was 
designed for detecting Glaucoma in fundus images. This 
model begins with noise estimation and reduction using 
polynomial coefficients. PDGC-Net made use of polynomial 
indeterminate blocks designed with CNN architectures for 
image classification, displaying high accuracy ranges on 
various fundus image datasets. Model elasticity is tested 
across PDGC-Net stages, and quantitative analysis against 
state-of-the-art CNN models affirms its efficacy for glaucoma 
screening. The study takes heed of the significance of noise 
estimation and reduction in image preprocessing and proudly 
showcases PDGC-Net's adaptability across diverse datasets 
[26,27]. The effectiveness of a profound learning ensemble 
approach employing ONH enface images from SLO in 
distinguishing Glaucoma patients from healthy humans was 
analyzed. The preliminary categorization was dependent on 
various clinical tests: intraocular pressure measurements, 
visual fields, Optical Coherence Tomography (OCT)-derived 
RNFL thickness, and ONH examination. A task-specific 
CNN structure was formulated for SLO image-based 
classification, outperforming other tested classifiers, 
including machine learning methods and RNFL thickness-
based ones. SLO images coupled with DL methods show 
potential in glaucoma diagnosis, especially in cases with 
limited data. Despite the limited dataset, the DL ensemble 
accomplished high accuracy, hinting at its potential in 
supporting glaucoma diagnosis. As people become older, the 
prevalence of glaucoma rises, demanding efficient diagnostic 
tools to counteract its impact on individuals and societies. 
Improved awareness and proactive management strategies 
are vital in addressing difficulties of glaucoma-related visual 
impairments and economic costs, improving early 
identification and treatment to mitigate disease progression 
[28-31]. 

Various ImageNet-trained models, including Visual 
Geometry Group 16 -(VGG16 and VGG19), InceptionV3, 
Residual Network (ResNet50), and Xception, were explored 
on fundus images for automatic Glaucoma assessment. Using 
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five public databases comprising 1707 images, the Xception 
architecture achieved significant performance improvements, 
yielding an average Area Under Curve (AUC) of 0.9605, 95% 
confidence interval of 95.92–97.07%, an average specificity 
of 0.8580 and sensitivity of 0.9346.  ACRIMA, containing 
705 labelled images, has been introduced as a new clinical 
database, the largest public database for glaucoma diagnosis, 
supporting the high specificity and sensitivity obtained. 
[32,33]. 

Recent research studies analyzed varied datasets 
comprising fundus images that represent four primary eye 
diseases: Diabetic Retinopathy (DR), Glaucoma, Myopia, 
and Normal. These works concentrated on automatic 
detection and analysis of eye diseases, paving the way for 
future improvements in clinical era and affected person care 
[34,35]. Authors explored small labelled statistics for 3 eye 
disorder predictions [36], which are, 1) vast class prediction, 
2) satisfactory-grained sickness sub-class prediction, and 3)
textual diagnosis technology. Challenges encompass small
record length, multi-project predictions, dealing with picture
versions, and hyper-parameter choice. Authors explored
these challenges inside a multi-task learning (MTL)
framework [37] and recommended a singular MTL-primarily
based trainer ensemble approach for know-how distillation.
On a dataset of 43,066 fundus photos from 3,502 patients,
7,212 photos were categorized and the rest were not labelled.
The proposed method achieved around 83% accuracy in Task
1 and had a 75% accuracy in recognizing key features within
the top 5 predictions for Task 2, even though only 15% of the
available labelled data was used. Robust and various retinal
photograph datasets, including the Indian Diabetic
Retinopathy Image Dataset (IDRiD), are crucial for the
improvement and evaluation of virtual screening packages
and associated algorithms, a result of microvascular retinal
adjustments brought on by using diabetes, and stand as a
leading motive of preventable blindness globally. Similarly,
Diabetic Macular Edema (DME) poses significant difficulty
related to DR. Deep Learning, encompassing various
machine learning techniques, demonstrates superior
performance in photograph processing, computer vision, and
pattern recognition as compared to traditional strategies
[38,39]. Eye diseases, especially Age-Related Macular
Degeneration (AMD), and DME pose large threats to vision,
especially in older individuals and diabetic patients. Early
detection through optical coherence tomography (OCT)
imaging is crucial. Various DL models like VGG-16, Mobile
Net, ResNet-50, Inception V3, and Xception have been
employed for retinal disease classification, attaining up to
96.21% checking out accuracy, assisting speedy analysis and
lowering costs for large-scale research. The capabilities of
ResNet-50 combined with the Random Forest class, has
confirmed a superior overall performance as compared to
modern methods with 96% and 75.09% accuracy on
Messidor-2 and EyePACS datasets [40,41]. OCT emerges as
a pivotal non-invasive diagnostic tool, supplying special
cross-sectional images of the retinal layers. With its ability to
come across retinal diseases and abnormalities, OCT aids
ophthalmologists in timely diagnosis and remedy-making

plans. However, the analysis of OCT images is time-
consuming for practitioners because of the multiple images 
generated per patient. Advanced Machine Learning models 
are utilize to categorize OCT images into 4 main categories: 
Choroidal Neovascularization (CNV), Diabetic Macular 
Edema (DME), Drusen, and normal retinas. Using binary 
CNN classifiers based on well-known models like VGG16, 
VGG19, ResNet50, ResNet152, DenseNet121, and 
InceptionV3, the models showed promising results. The best-
performing model achieved impressive metrics: 98.7% 
accuracy, 98.7% sensitivity, and 99.6% specificity. These 
models could serve as effective secondary tools for 
ophthalmologists, aiding in the quick and accurate analysis of 
OCT images. OCT is crucial for providing detailed cross-
sectional images of the retina, which are significant for 
detecting various retinal diseases [42,43]. 

Precise and timely examination increases the potential 
for effective treatment of DED and reduces risk of permanent 
vision loss. A DL approach using a new CNN model has been 
proposed. This model automates multi-class DED 
classification from retinal fundus images, tested on publicly 
available data, and achieved an accuracy of 81.33%, with 
100% sensitivity and specificity [44]. Early detection of DED 
through automated systems using machine learning offers 
substantial benefits over manual methods, reducing human 
error and improving efficiency. The survey [45] aims to 
provide valuable insights for researchers, healthcare 
professionals, and diabetic patients, highlighting 
advancements and challenges in automated DED detection. A 
DL based model has been tested [46]. The top two pretrained 
CNN models on ImageNet, incorporating fine-tuning, 
optimization, and contrast enhancement techniques, achieved 
88.3% accuracy for multi-class classification, significantly 
improving diagnostic efficiency and accuracy for 
ophthalmologists.  

Table 1 provides a comparison of different architectures 
and classifiers for the diagnosis of different diseases such as 
Glaucoma, DR, Cataract, and combinations of these diseases. 
Reviews of different architectures such as DenseNet, ResNet, 
U-Net, CNN and InceptionV3 are evaluated with classifiers
such as SVM, Softmax, Random Forest, KNN, etc for each
disease group.  Hypermetric parameters include Accuracy
(Acc), Precision (Pre), Recall (Re), Sensitivity (Sen),
Specificity (Sp), F1-score (F1), Area Under the Curve
(AUC), and Cohen's Kappa (Ka), where applicable. These
results vary across different models and diseases, with some
achieving high accuracy and comprehensive performance
metrics, while others may show lower accuracy or focus on
particular aspects like sensitivity or specificity. Additionally,
the table includes cases of mixed diseases, where models are
evaluated on a combination of eye disorders.
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Table 1. Comparison of results achieved in Literature survey papers 

Diseases Architecture Authors Results 
Cataract Dense net Jayachitra, S., et [1] Acc=89, Sen=75, Sp=82 

U Net Jayachitra, S., et [1] Acc=93.5, Sen=80, Sp=86 
Res Net 101 Saju et al[3] Acc=98.87, Sen=98.28,Sp=99.66, F1=95.68, 

Ka=97.83 
ACCV Hu ey al [4] Acc=94, Pre=95.8,Sen=92, Sp=96, F1=93.88 
Mobile Net V3s CETINAR et al [5] Pre=89, Re=93, F1=90, Acc=89 

Diabetic 
Retinopathy 

CNN512, YOLOV3 Alyoubi et al [11] Acc=89, Sen=89, Sp=97.3, AUC=97 
CNN Ghan et al [12] Acc=84, Pre=100, Re=100, F1=100 
Res Net Bilal et al [14] Acc=94,Pre=94.15,Sen=93.30, Sp=93.70, 

F1=93.65,AUC=97 
VGG13 Pinedo-Diaz et al [15] Acc=99.92, Sen=98.20, Sp=98.33, AUC=98.60 

Glaucoma U-Net, Dense Net-
201

Kashyap et al [21] Acc=98.82, Pre=98.02, Re=97.77, Sp=97.97, 
F1=97.87  

CNN Sandoval-Cuellar et al [22] Acc=93.22, Sen=94.14, AUC=93.98 
PDGC-Net Naidana et al [23] Acc=98, Sen=89, Sp=100 
DenseNet161 Schottenhamml et al [24] Acc=92.3 
InceptionV3 Sulot et al [25] Acc=96.2 

Mixed 
Diseases 

CNN 
Smaida et al [31] 

Acc=92.1 
Res Net 50 Acc=99.99 
Res Net-18 Acc=61 
Inception V3 Acc=77.5 
Alex Net, Res Net, 
VGG Net 

Nazir et al [32] Acc=95,75, Sen=94.75, Sp=94.90, AUC=97.85 

VGG 19 Chelaraim Ani et al [33] Acc=97.33 
Inception V3 Acc =94.86 
Res Net Acc=98.11 
VGG 16 ElSharif et al [37] Acc=92.95,Pre=93.50,Sen=93.20, 

Sp=92.70,F1=93.50,AUC=93.56, Ka=86.94 
Inception V3 ElSharif et al [37] Acc=91.03,Pre=91,Sen=91.16,  

Sp=90.91,F1=91,AUC=91.31, Ka=82.55 

3. Materials and Methods

The proposed work assesses the well-known CNN 
architectures VGG-19, Inception V3, ResNet50 and the same 
CNN models are evaluated using TL approach with the 
weights learnt from ImageNet dataset. Proposed models are 
evaluated using publicly accessible dataset that includes 
fundus images covering eye diseases such as cataract, 
diabetic retinopathy, glaucoma, and normal eye conditions.  

3.1. Dataset Description 

The dataset "eye_diseases_classification (Eye Disease 
Retinal Images)" from Kaggle is taken for evaluating the 
models. This dataset comprises approximately 1000 retinal 
images for each class: Normal, DR (Diabetic Retinopathy), 
Cataract, and Glaucoma. These images are gathered from 
diverse sources such as IDRiD, Ocular Recognition, HRF, 
among others. Table 2 shows the number of images in each 
eye disease class in dataset. 

Table 2: Dataset Description 
S.No. Types of Diseases Total images Training images Testing images 
1. Cataract 1038 830 208 
2. Diabetic Retinopathy 1098 878 220 
3. Glaucoma 1007 806 201 
4. Normal 1074 859 215 

3.2. VGG 19 

VGG 19 is a CNN architecture widely used in image 
classification and renowned for its simplicity and 

effectiveness in classification tasks. VGG 19, as shown in 
Fig.1, has a total of 19 layers consisting of 16 convolution 
layers followed by 3 fully connected layers.  Each 
convolutional layer uses a 3x3 filter, with a stride of one 
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and padding to preserve spatial information. The 
convolutional layers are stacked with rectified linear unit 
(ReLU) activations, accompanied with max pooling layers 
to reduce spatial dimensions. After every two convolution 
layers, spatial dimensions are reduced using Max pooling 
with a 2x2 window and stride of 2. The fully connected 
layers have 4,096 units and are followed by a SoftMax 
layer for categorization.  

Convolutional Layer Operation 

• For a given layer l, the operation of a convolutional
layer in VGG19 can be represented as shown in
Equation 1:

𝑌𝑌𝑖𝑖,𝑗𝑗,𝑘𝑘
(𝑙𝑙) = 𝜎𝜎 �∑ 𝑊𝑊𝑚𝑚,𝑛𝑛,𝑘𝑘 

(𝑙𝑙)
𝑚𝑚,𝑛𝑛 .𝑋𝑋𝑖𝑖+𝑚𝑚,𝑗𝑗+𝑛𝑛

(𝑙𝑙−1) + 𝑏𝑏𝑘𝑘
(𝑙𝑙)�          (1)

• 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑘𝑘
(𝑙𝑙)  rerpresents the activation on the k-th feature map

at position (i, j) in layer l.
• 𝑊𝑊(𝑙𝑙) denotes the weights, X(l-1) represents the

activations from the previous layer, and b(l)is the bias
term.

• 𝜎𝜎 denotes the activation function, typically ReLU.
ReLU Activation

• Applied element-wise, the ReLU activation function
can be represented as shown in Equation 2.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥(0, 𝑥𝑥)  (2) 

Fully Connected Layer 

• The output from the convolutional layers is flattened
and passed into fully connected layers.

• If W is the weight matrix and b is the bias vector, the
function can be represented as shown in Equation 3.

𝑦𝑦 = 𝑊𝑊 ⋅ 𝑥𝑥 + 𝑏𝑏  (3) 

Max Pooling Operation 

• Max-pooling in VGG19 can be represented as shown
in Equation 4.

𝑌𝑌𝑖𝑖,𝑗𝑗,𝑘𝑘
(𝑙𝑙) = 𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚,𝑛𝑛∈𝑅𝑅𝑠𝑠𝑋𝑋𝑖𝑖+𝑚𝑚,𝑗𝑗+𝑛𝑛

(𝑙𝑙−1)  (4) 

• Rs denotes the receptive field size

Figure 1. VGG19 Model Architecture 

3.3. VGG19 with Transfer Learning 

As shown in Fig.2, in VGG19 architecture with TL 
approach, the top layer of VGG19 has been eliminated, and 
new layers inclusive of a dense layer, batch normalization, 
and a flattened layer are integrated.  

Dense Layer: 

This is a fully connected layer that facilitates the model to 
learn complex relationships between features extracted 
from convolutional layers. Each neuron in this layer is 
connected to every other neuron in the preceding layer, 
allowing the model to capture intricate patterns and 
dependencies within the data. By learning these patterns, 
the model is highly adaptable to a wide range of tasks, from 
image classification to regression and beyond. Equation 5 
denotes the function of Dense Layer. 

𝑍𝑍 = 𝑊𝑊𝑥𝑥 + 𝑏𝑏    (5) 
Where, Z denotes output vector, W is the weight matrix, x 
is the input vector, and b is the bias vector.  

Batch Normalization: 

Batch Normalization helps in stabilizing and accelerating 
the training process by standardizing the inputs to a layer 
for each mini-batch. This allows the network to reach 
higher learning rates and reduces the number of epochs 
required, making the training smoother and faster. Batch 
normalization is a form of regularization, reducing the need 
for other regularization techniques such as dropout. It 
normalizes the input to each layer to have mean 0 and 
variance 1 and given by Equation 6. 

 (6) 
• Where 𝜇𝜇  and 𝜎𝜎2  are the mean and variance of the
batch, and 𝜖𝜖  is a small constant.

Flattening layer 

This layer bridges the gap between convolutional feature 
extraction and dense layer processing by transforming 
multidimensional output from the convolutional layer into 
a one-dimensional input. This effectively creates a feature 
vector that summarizes the most salient aspects of the data, 
ready for the final classification or regression tasks, and 
checks for correct data format for further learning. 
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Figure 2.  Modified VGG19 Model Architecture 

3.4 ResNet50 

ResNet50, short for Residual Network with 50 layers, 
represents a complex architecture in deep learning as 
shown in Fig.3. Developed by Microsoft Research, 
ResNet50 stands for its inventive use of residual 
connections, which deal with the vanishing gradient 
problem faced during training of Deep Neural Networks. 
This architecture consists of 50 layers, along with 
convolutional layers, pooling layers, and fully connected 
layers. Its residual blocks are an important part of this 
architecture, wherein shortcut connections allow gradients 
to go with the flow more directly during training. This 
architecture enables the development of deeper networks 
while retaining practicable complexity and avoiding 
degradation in accuracy. ResNet50 has validated at ahigh 
level in diverse applications including object recognition, 
object detection, and photo segmentation. The capacity to 
extract complex features from images have made ResNet50 
a significant model for deep learning networks. 

Residual Block Operation 

• The key operation in ResNet50 is the residual block,
given by Equation 7.

𝑌𝑌(𝑙𝑙) = 𝐹𝐹 �𝑋𝑋(𝑙𝑙), �𝑊𝑊𝑖𝑖
(𝑙𝑙)�� + 𝑋𝑋(𝑙𝑙)  (7) 

• F represents a series of convolutional layers with
batch normalization and ReLU activation functions.

• W_i^((l)) represents the learnable parameters of the
residual block in layer l.

Identity Shortcut 

• When the input and output dimensions are the same given
Equation 8.

 y = F(x, {Wi}) + x            (8) 

Projection Shortcut 

• When the input and output dimensions differ, a linear
projection 𝑊𝑊𝑊𝑊   is used as shown in Equation 9:

 y = F(x, {Wi}) + Wsx            (9) 

Bottleneck Architecture 

• Uses a stack of 1x1, 3x3, and 1x1 convolutions to reduce
computation as shown in Equation 10:

 y = W1(W2(W3x))            (10) 

• Where 𝑊𝑊1 is the 1x1 convolution reducing
dimensions, 𝑊𝑊2   is the 3x3 convolution, and 𝑊𝑊3 is the 1x1 
convolution restoring dimensions.

Figure 3. ResNet50 Model Architecture 

3.5 ResNet50 with Transfer Learning 

As shown in Fig 4, in this modified version of the ResNet50 
architecture, the top layer is replaced with additional 
layers. Two layers of batch normalization, a Dense- ReLU 
layer and a Dense-SoftMax layer are added. The new layers 
are: 

Batch Normalization Layers 

This layer can lead to faster convergence during training, 
by reducing internal covariate shift and allows each layer 
of the network to learn more independently of the others. 
It normalizes the activations of each layer to make training 
more stable and faster. 

Dense-ReLU Layer 

The dense layer helps the network understand complex 
relationships in the data by providing more parameters and 
flexibility in learning features. The non-linearity through 
ReLU activations allows the network to model more 
complex patterns and relationships existing in the data, 
enabling the network to learn and represent more intricate 
features.  Equation 11 shows the output obtained by 
combining the Dense layer with ReLU activation function. 

𝑚𝑚 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑧𝑧) = max(0, 𝑧𝑧) (11) 

Where z is the output from the Dense layer as defined in 
VGG19. 

Dense-SoftMax layer 
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Similar to the previous dense layer, this layer also captures 
more complex relationships in the data, transforming and 
combining features learned from previous layers into the 
final output. Also, the SoftMax layer ensures that the 
network outputs a probability distribution across possible 
classes, facilitating decision-making based on the highest 
probability class. 

Figure 4. Modified ResNet50 Model Architecture 

3.6 InceptionV3 

InceptionV3 as shown in Fig.5 represents a significant 
development in Convolutional Neural Network (CNN) 
architectures, especially designed for image classification 
and recognition tasks. Developed by Google researchers, 
InceptionV3 is renowned for its innovative use of inception 
modules, which permit the network to seize and technique 
features at more than one spatial scale. This model has a 
complex structure that includes various kernel sizes, 
permitting the model to extract coarse-grained features 
from input images. Furthermore, the structure employs 
auxiliary classifiers at some stage in training to mitigate the 
vanishing gradient problem. Its versatility, performance, 
and superior overall performance have made InceptionV3 
of significant imporance within the field of gaining deep 
knowledge for computer vision. 

Inception Module Operation 

• The operation of an inception module in
inceptionV3 involves concatenating feature maps
obtained from different convolutional filters as
shown in Equation 12.

𝑌𝑌(𝑙𝑙) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐(𝐶𝐶𝑐𝑐𝑐𝑐𝐶𝐶1𝑥𝑥1,𝐶𝐶𝑐𝑐𝑐𝑐𝐶𝐶3𝑥𝑥3,𝐶𝐶𝑐𝑐𝑐𝑐𝐶𝐶5𝑥𝑥5,𝑀𝑀𝑚𝑚𝑥𝑥𝑀𝑀𝑐𝑐𝑐𝑐𝑀𝑀)    (12) 
• Here, 𝑌𝑌(𝑙𝑙) represents the output feature map
• Concat denotes the concatenation operation

Auxiliary Classifier Operation 

• In InceptionV3, auxiliary classifiers are added to
combat the vanishing gradient problem and is
given as shown by Equation 13.
𝑌𝑌(𝑙𝑙) = 𝜎𝜎(𝑊𝑊(𝑙𝑙)𝑋𝑋(𝑙𝑙) + 𝑏𝑏(𝑙𝑙)                  (13)

• 𝑊𝑊(𝑙𝑙)and 𝑏𝑏(𝑙𝑙) represent weights and biases of the
auxiliary classifier.

Batch Normalization 

• Normalizes the input to each layer to have mean 0 and
variance 1 and given by Equation 14.

 (14) 
• Where 𝜇𝜇  and 𝜎𝜎2  are the mean and variance of the
batch, and 𝜖𝜖  is a small constant.

Figure 5. Inception V3 Model Architecture 

3.7 InceptionV3 with Transfer Learning 

As shown in Fig.6, in modified InceptionV3 architecture, 
the top layer has been removed to facilitate adjustments 
that enhance its functionality and adaptableness for specific 
requirements. The inclusion of a flattened layer serves to 
reshape the output of the previous layers right into a one-
dimensional array, preparing it to get into the next layers. 
Additionally, the adding of batch normalization layers 
allows the stabilization and acceleration of the training 
system via normalizing the input of every layer, which aids 
in mitigating problems including inner covariate shift and 
gradient vanishing or exploding. Furthermore, a dense 
layer has been introduced to permit the connections to learn 
difficult relationships and styles inside the function space, 
thereby improving its capability for classification or 
regression problems.  
Our modified version of InceptionV3 has 3 new layers 
added to the original model and has removed the top layer. 
These new layers are, 

Top layer removal: 
Removing the top layer allows flexibility in adapting the 
network to different tasks or datasets. It simplifies the 
architecture, making it easier to adjust and fine-tune for 
specific needs without being constrained by a fixed output 
layer. 

Flattening Layer: 
This reshapes the output of previous convolutional and 
pooling layers into a one-dimensional array. It leverages 
the hierarchical features learned by convolutional layers for 
more abstract representations in dense layers. 

Batch Normalization Layers: 
This layer improves the stability during training by 
reducing the internal covariate shift and allows for faster 
convergence. It normalizes the input of each layer by 
adjusting and scaling activations. 

Dense Layer: 
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This layer allows the network to model more complex 
decision boundaries and leads to improved accuracy on a 
challenging basis. It introduces more parameters and non-
linearity to the network. 

Figure 6. Modified InceptionV3 Model Architecture 

4. Results & Discussion

The models VGG-19, ResNet-50 and Inception V3 were 
evaluated with the dataset and the models have achieved 
the results depicted in Table 3. A comprehensive overview 
of training loss, training accuracy, validation loss, and 
validation accuracy for each model is shown. InceptionV3 
recorded the lowest accuracy score of 0.5757 with the 
highest loss score of 0.9734 and ResNet50 has the highest 
accuracy score of 0.9534 with the lowest loss score of 
0.1320.  

Table 3. Performance comparison of VGG-19, 
ResNet-50 and Inception v3  

Model Loss Accuracy Validation 
loss 

Validation 
accuracy 

VGG19 0.6430 0.7384 0.8139 0.6639 
ResNet50 0.1320 0.9534 2.6862 0.6550 

InceptionV3 0.9734 0.5757 0.9508 0.5704 

The modified models under consideration were 
implemented with varying numbers of epochs: 10 for 
InceptionV3, 20 for VGG19, and 50 for ResNet50. 
Following implementation, ResNet50 exhibited the highest 
accuracy at 0.9994 with an impressively low loss of 
0.0023. Table 4 provides detailed information on the 
training and validation loss, with training and validation 
accuracy data for each model.  
These metrics are essential for evaluating how well the 
models perform during training and their ability to 
generalize to new, unseen data. In terms of performance, 
InceptionV3 recorded the lowest accuracy at 0.898 and the 
highest loss at 0.2668, coupled with a validation loss of 
0.4303 and a validation accuracy of 0.8379. In contrast, 
ResNet50 demonstrated superior results with the highest 
accuracy of 0.9994, the lowest loss at 0.0023, a validation 
loss of 0.2995, and a validation accuracy of 0.9256. 

Table 4: Performance of VGG-19, ResNet-50 and 
Inception v3 models with TL approach. 

Model Loss Accuracy Validation 
loss 

Validation 
accuracy 

VGG19 0.2514 0.9033 0.3519 0.8769 
ResNet50 0.0023 0.9994 0.2995 0.9256 

InceptioV3 0.2668 0.898 0.4303 0.8379 

The achieved results of Table 3 and Table 4 have a 
significant difference, with increase in each model’s 
accuracy also decreasing loss. From this we can state that 
the modified models showed better performance than the 
original models. 

Figure 7. Loss and Accuracy during training and 
validation phases of Modified Inception V3 

Fig.7 shows a positive trend where the epochs progress, 
with both training and validation loss decrease, while 
training and validation accuracy increase. This shows that 
Inception V3 with TL approach is performing effectively, 
achieving an impressive accuracy of 0.898 with a loss less 
than 0.3 and validation accuracy of 0.8379 and validation 
loss of 0.4303. 

Figure 8. Loss and Accuracy during training and 
validation phases of modified VGG19 

Fig.8 shows how training loss decreases and accuracy 
increases with  number of epochs. This indicates that 
VGG19 with a TL approach performs effectively, with an 
accuracy of 0.9033 an loss less than 0.3 and validation 
accuracy of 0.8769 and validation loss of 0.3519. 
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Figure 9. Loss and Accuracy during training and 
validation phases of modified ReNet50 

Fig.9 provides a promising pattern where training and 
validation loss decrease while training and validation 
accuracy increase as the number of epochs progress. This 
shows that ResNet50 with a TL approach is demonstrating 
good performance, attaining an accuracy of 0.9994 with 
minimal loss, alongside a validation accuracy of 0.9256 
and validation loss of 0.2995. Given its higher accuracy, 
modified ResNet50 emerges as the preferable model when 
compared to modified InceptionV3 and modified VGG19. 

Table 5: Resulting Hyperparameters 

Model Precision Recall F1-
score 

ROC-
AUC 

VGG19 79.17 79.17 78.21 49.84 
ResNet50 96.28 96.2 96.24 49.60 
InceptioV3 82.56 82.38 82.11 51.29 

Table 5 compares the performance of three computer 
vision models—VGG19, ResNet50, and InceptionV3 with 
a Transfer Learning approach across key metrics. 
ResNet50 stands out with the highest precision, recall, and 
F1 score, indicating its superior ability to correctly classify 
positive instances. However, Inception leads in ROC-
AUC, showcasing a better overall classification 
performance. Modified VGG19 demonstrates competitive 
precision and recall but lags in F1 score and ROC-AUC. In 
summary, Modified ResNet50 excels in precision and 
recall, Modified Inception V3 performs well in overall 
classification, while Modified VGG19 falls slightly behind 
in certain metrics. The choice of the ideal model may 
depend on specific task requirements and the importance 
of precision, recall, and discriminative ability. Our 
modified architectural models, including ResNet50, 
VGG19, and InceptionV3, are designed to work effectively 
with the Ocular Disease Intelligent Recognition (ODIR) 
dataset, aiming to achieve maximum accuracy in 
diagnosing three specific eye diseases: cataract, diabetic 
retinopathy, and glaucoma. These models have been 
tailored to handle the complexities and variations within 
this dataset, ensuring robust performance and high 
accuracy. The enhancements made to these models not 
only optimize their performance for the ODIR dataset but 
also get enhanced well to other eye disease datasets. By 
incorporating advanced techniques such as data 
augmentation, dropout for regularization, and fine-tuning 
of pre-trained models, these models can adapt to different 
types of ocular images and disease patterns. 

4.1 Confusion Matrix: 

The confusion matrix indicates true positive and negative 
and false positive and negative predictions from the 
proposed model. This defines a model’s performance. 

True Positives (TP): These are times that the proposed 
model is correctly recognized as belonging to a selected 
class. 

True Negatives (TN): These are the times that proposed 
model predicted negative cases correctly. In multi-
magnificence class, TN is not generally used due to its 
extra applicability in binary category settings. 

False Positives (FP): These are times that the proposed 
model incorrectly labelled as belonging to a particular case. 

False Negatives (FN): These are instances that the 
proposed model is incorrectly labelled as not belonging to 
a specific magnificence. 

Figure 10. Confusion Matrix for modified VGG19 

Figure 11a. Confusion Matrix for modified ResNet50 
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Figure 12. Confusion Matrix for modified 
InceptionV3 

In Fig.10, the confusion matrix works as a comprehensive 
tool for assessing the model's performance, showcasing the 
count of true positive, true negative, false positive, and 
false negative predictions made by VGG19. It shows that 
for class-0: TP-62, TN-470, FP-146, FN-158 and for class-
1: TP-53, TN-384, FP-121, FN-169, and for class-2: TP-
36, TN-473, FP-179, FN-153, and for class-3: TP-72, TN-
397, FP-116, FN-98. This helps us to understand the errors 
made by the VGG19 model. 
In Fig.11, the confusion matrix works as a comprehensive 
tool for assessing the model's performance, showcasing the 
count of true positive, true negative, false positive, and 
false negative predictions made by ResNet50. It shows that 
for class-0: TP-36, TN-365, FP-118, FN-113 and for class-
1: TP-37, TN-358, FP-119, FN-117, and for class-2: TP-
37, TN-354, FP-129, FN-125, and for class-3: TP-42, TN-
347, FP-120, FN-129. This helps us to understand the 
errors made by the ResNet50 model. 
In Fig.12, the confusion matrix works as a comprehensive 
tool for assessing the model's performance, showcasing the 
count of true positive, true negative, false positive, and 
false negative predictions made by InceptionV3. It shows 
that for class-0: TP-56, TN-463, FP-152, FN-163 and for 
class-1: TP-53, TN-422, FP-138, FN-132, and for class-2: 
TP-52, TN-438, FP-137, FN-134, and for class-3: TP-71, 
TN-394, FP-145, FN-145. This helps us to understand the 
errors made by the InceptionV3 model. 

5. Conclusion

The study examined in detail the current status of methods 
for the detection of Diabetic Eye Disease (DED). After 
implementing models, we achieved a maximum accuracy 
of 99% in eye disease detection. The selected datasets were 
analysed from three aspects: 1) Datasets used, 2) Image 
preprocessing techniques applied, and 3) Classification 
methods used. The application of Convolutional Neural 
Networks (CNNs) and Transfer Learning in analysing eye 
images has shown promising results, outperforming 

traditional methods in terms of accuracy and efficiency. In 
our model Modified ResNet50 achieved a higher accuracy 
of 0.99, specifically 99.94%. CNN architectures with 
transfer learning have achieved an accuracy with more 
precision than the original models. In the referenced 
research papers, the reported accuracies underscored the 
efficiency of various models with transfer learning in the 
given task. The original models of VGG19, ResNet50, 
InceptionV3 recorded 73.84%, 95.34% and 57.77% 
accuracies respectively. However, the proposed model, 
leveraging transfer learning, outperforms the referenced 
benchmarks, surpassing the reported accuracies with 
90.33% for VGG19, 99.94 for ResNet50 and 89.80% for 
InceptionV3. This achievement positions the proposed 
model as more efficient for future applications, 
highlighting its enhanced performance and potential for 
further advancements in the field. 
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