
EAI Endorsed Transactions
on Scalable Information Systems Research Article

 1

EAI Endorsed Transactions on
Scalable Information Systems

Volume 11 | Issue 6 | 2024

A New Hybrid COA-OOA Based Task Scheduling and

Fuzzy Logic Approach to Increase Fault Tolerance in

Cloud Computing

Manoj Kumar Malik1,*, Dr. Vineet Goel2 and Dr. Abhishek Swaroop3

1Assistant Professor, Bhagwan Mahavir University, Surat, Gujarat 395007, India.
2Professor, Bhagwan Mahavir University, Surat, Gujarat 395007, India
3Professor, Bhagwan Parshuram Institute of Technology, New Delhi, Delhi 110089-India.

Abstract

INTRODUCTION: Technology is made available to customers worldwide through a distributed computing architecture

called cloud computing. In the cloud paradigm, there is a risk of single-point failures, in order to prevent errors and gain

confidence from consumers in their cloud services, one problem facing cloud providers is efficiently scheduling tasks.

OBJECTIVES: High availability and fault tolerance must be offered to clients by these services. Fuzzy logic and hybrid

COA-OOA are used in this study proposed fault-tolerant work scheduling algorithm. Jobs given by users and virtual

machines are considered as input for this proposed approach.

METHODS: The given tasks are initially scheduled utilizing the FIFO order. Then, it is rescheduled utilizing the Hybrid

Coati Optimization Algorithm (COA) - Osprey Optimization Algorithm (OOA) for scheduling the task based on priority.

RESULTS: This scheduled job is assigned to the VM for further execution. If the jobs are not executed successfully, then

fault tolerant mechanism is carried out. Faults are recognized by employing fuzzy logic in this proposed approach.

CONCLUSION: This proposed approach attains 62 sec response time, 61 sec of makespan and 98% success rate. Thus, this

proposed approach is the best choice for efficient task scheduling with fault tolerant mechanism.

Keywords: cloud computing; task scheduling; fault tolerant; COATI optimization; osprey optimization; fuzzy logic.

Received on 9 February 2024, accepted on 19 May 2024, published on 26 June 2024

Copyright © 2024 Malik et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-SA 4.0,

which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original

work is properly cited.

doi: 10.4108/eetsis.6086

1. Introduction

The future of domestic and international computing

technology rests on cloud computing. The quick growth of

web-based applications and the rise of internet consumption

have forced the development of cloud computing technology.

In addition to its accessible expansion of grid computing,

parallel, and outdated distributed, it provides consumers with

pay-per-use solutions which give them access to scalable and

dynamic virtual resources which they may utilize through the

*Corresponding author. Email: manojkumarmalik.bmu@gmail.com

internet on demand [1]. Due to the accessibility of affordable

and dependable resources at various times, it also offers a

lifeline for many fresh start-ups. Utilizing many qualities

such as heterogeneity, on-demand service, flexibility, and

others, cloud computing technology meets all of a user's

computing requirements [2]. Regarding job scheduling and

resource allocation rules, it has the capacity to handle the

volume of data. Workflow and task scheduling are two

important methods in cloud computing which offer the

assignment of responsibilities to the suitable resources to

carry out [3].

https://creativecommons.org/licenses/by-nc-sa/4.0/

 Manoj Kumar Malik, Vineet Goel and Abhishek Swaroop

2

A crucial component of cloud computing, efficient task

scheduling is employed to achieve high performance in a

cloud context. Workflow technology promises to provide

solutions to those cloud computing problems particularly job

scheduling and fault tolerance. Researchers are pursuing this

approach to increase the cloud environment's efficiency [4].

The fraction of task requests sent to the virtual machine (VM)

is chosen according to their runtime context using task

scheduling. Several methods have been explored to increase

the dependability of cloud computing. In order to provide

fault tolerance, fault tolerant scheduling is developed, which

distributes multiple copies of each work to various computer

nodes. In the context of cloud computing, failures are to be

anticipated [5]. The performance delivery of cloud resources

is known to fluctuate. A fault-tolerant scheduling strategy that

accounts for performance variances, resource fluctuations,

and environmental breakdowns is crucial. Applications will

inevitably experience an increasing number of component

failures as they use cloud resources for extended periods of

time. The execution of the tasks assigned to the failing

components is impacted by task failures once they have

occurred [6]. As a result, clouds need a fault-tolerant system.

When a cloud scheduler exhibits fault tolerance, it means that

it can protect and maintain the scheduled task delivery even

in the event of cloud system failures.

One of the most important components in guaranteeing the

resilience, reliability, and availability of operating

applications and essential services in the cloud environment

is fault tolerance. Various factors, such as RAM overload,

power outages, server crashes, virtual machine failure, or a

lack of bandwidth, might cause tasks to fail [7]. Redundancy

in time or failure of hardware and software are also factors in

fault tolerance. The majority of programs can be enhanced

and optimized with the aid of the checkpoint technique, but

at the cost of considerable latency [8]. Several jobs have

employed a range of tactics, such as task recurrence and

hardware redundancy, for the management of fault

occurrence, eliminate delay, and keep stagnant entities [9].

The above-mentioned techniques have undesired

characteristics and downsides, include the need for repeated

execution, which takes more time and resources, particularly

more electricity. Redundancy is still favoured in the

infrastructure as a service cloud computing context since

response speed is so crucial [10].

The most sophisticated algorithm for creating fabricated

championships is the League Championship Algorithm

(LCA) [11]. It employs a number of unrealistic or idealistic

methods prior to developing the model-based computational

intelligence algorithm (CIA) [12]. A comparison using state-

of-the-art intelligence algorithms and simulation outcomes

demonstrates an optimization strategy which quickly

congregates global optimal. The functionality is prepared for

scheduling with failure tolerance in the cloud computing

environment and avoids localized trapping [13]. As a result,

the cloud system developed a job scheduling method based

on LCA for overall optimization [14]. Various fault-tolerant

strategies have also been effectively implemented in real-

world contexts these studies also examined the challenges

and possibilities of the method. The primary flaw in all of

these methods is that they do not simultaneously take into

account the VM, SLA, and VM scheduling resources when

outlining their assignment algorithm for multiuser scheduling

[15]. SLA and VM scheduling must therefore be taken into

account throughout the task-scheduling process to guarantee

effective task processing and network stability. In this

approach, hybrid task scheduling and fuzzy logic approach

for increasing fault tolerance are designed.

The main contributions of this work are given below:

• A novel hybrid COA-OOA based task scheduling

and fuzzy logic the design of cloud computing is a

strategy to improve fault tolerance.

• Virtual machines and tasks given through clients are

considered as input for this proposed approach.

• Hybrid Coati Optimization Algorithm (COA) and

Osprey Optimization Algorithm (OOA) are utilized

for scheduling the task in a queue.

• The fuzzy logic algorithm is designed using fuzzy

rules is an expert-based fault detection system built

on a cloud infrastructure.

• Fuzzy system is also utilized in this proposed

approach in order to produce a suitable reaction that

will raise the fault tolerance.

The remaining portions of the paper are arranged as

follows: Section 2 reviews the various fault tolerant task

scheduling algorithms. The proposed methodology and its

architectures are described in Section 3. Experiments and

results obtained using this methodology are provided in

Section 4. Finally Section 5 concludes the entire work.

2. Literature review

In cloud computing, consumers receive transparent,

automatically allocated resources whenever they need them.

Failures during task execution are no longer unintentional;

rather, they are a typical occurrence in cloud computing

environments. Numerous techniques are developed for fault

tolerant task scheduling. In that, few approaches are

reviewed.

Malik et al. [16] recommended a unique Hybrid Grey Wolf

and Ant Lion Model (HGW-ALM) with a lively standby

replication (LSR) technique to improve the cloud computing

paradigm. Additionally, the HGW-ALM model forecasts a

host, and the selected host continues to operate utilizing the

LSR approach if any of the hosts' capacity is insufficient for

their task. The tolerant mechanism also effectively processes

the checkpoint strategy. By reaching a high throughput of

6000 bps, this method produced improved results. However,

this strategy has a long processing time.

A cooperative scheduling approach based on task

admission and delay evaluation (CSADE) was created by Zuo

et al. [17]. In order to schedule as many operations as possible

to the edge while preserving QoS, a unique dynamic delay

model in the source management advised in order to precisely

anticipate the normal delay. The fault-tolerant system was

activated and the scheduling approach was adjusted in

response to resource node failures with emergency job

scheduling. This CSADE can dramatically decrease the rate

 A New Hybrid COA-OOA Based Task Scheduling and Fuzzy Logic Approach to Increase Fault Tolerance in Cloud

Computing

3

of QoS violations and average delay time. But this tactic

doesn't yield better outcomes.

A novel Ant Colony Optimization (ACO) by familiarizing

Reinforcement Learning (RL) was designed by Nalini and

Khilar [18]. It was developed in combination with fault

tolerance to achieve a short make-span and make the process

of scheduling resistant to errors. When compared to ACO

adoption alone, this strategy produces results that are around

60% better. But the system's efficiency was poor.

Saxena et al. [19] developed a Fault Tolerant Elastic

Resource Management (FT-ERM). This method uses high-

availability in servers and virtual machines to approach the

problem discussed above from a different angle. Through

experimentation with two real-world datasets, this framework

was evaluated and contrasted with the most advanced. When

compared to not using FT-ERM, VM migration is scaled back

by 88.6% and service availability is increased by 34.47%

respectively. However, this strategy took security into

account.

Self-adaptive learning differential evolution based optimal

PM selection method for fault tolerance (SALDEFT) was

suggested by Karthikeyan et al. [20]. To raise the system's

performance, robustness and effectiveness, the SALDEFT

technique also includes five distinct mutation updating

strategies. Subsequently, this strategies effectiveness and

system performance were evaluated using fifteen benchmark

functions. However, this strategy was seen to have a

disadvantage in that the system's complexity rate increased.

For a QFWMS study, Montage and Cybershake, two real-

time scientific procedures, were taken into consideration. The

QFWMS cuts cost by 6.19% and make-span by 8.86%. An

energy-efficient fault-tolerant based scheduling architecture,

however, was not taken into account in this case.

Salil Bharany et al, [21] studied different fault tolerance

mechanism used for improving reliability and throughput in

cloud computing. Also, this study analysed the performance

of various machine learning and deep learning algorithm used

for fault detection along with its challenges. Salil Bharany et

al, [22] analysed the impact of higher energy consumption

within cloud data centers and its influence on cloud

environment. Techniques included in this study were VM

Virtualization and Consolidation, Power-aware, Bio-inspired

methods, Thermal-management techniques, and an effort to

evaluate the cloud data center’s role in reducing energy

consumption and CO2 footprints.

 According to the literature, numerous systems are

designed for fault-tolerant task scheduling in cloud

computing environments. Based on the above-mentioned

articles several significant problems are arises in effective

fault tolerance task scheduling. High processing time [16],

doesn't produce better outcomes [17], system performance

was low [18], security was not considered [19], high

complexity rate [20] and energy efficiency was considered

[21]. In order to overcome these issues, hybrid optimization

based task scheduling and fuzzy logic based fault tolerance

approaches are developed in a cloud computing environment.

3. Proposed methodology

The term "cloud computing" refers to a distributed computer

architecture that offers services to users globally. Exceptional

fault tolerance and availability are required when providing

these services to customers, but the cloud paradigm still

leaves room for single-point failures. Because of this, one

difficulty that cloud providers have is efficiently planning

jobs to avoid errors and gain users trust in their cloud

services. The FIFO merely queues processes based on the

order in which they arrive in the ready queue; the first planned

task will be carried out first. For work scheduling and fault

tolerance solutions, a hybrid optimization methodology and

fault-based methodologies are devised. The workflow of the

proposed approach is given in Figure 1.

Users

FIFO based scheduling

Task Rescheduling

Hybrid

COA-OOA

Priority based scheduling

Fault tolerant

Fuzzy rules

Based fault

detection

Appropriate fault

tolerant mechanism

using fuzzy system

Effective data

sharing

Figure 1. Proposed Approach Workflow.

Several virtual machines (VM) and the various tasks

submitted are first set up for the purpose of task scheduling

and execution by various users. These submitted tasks are

initially arranged in a queue based on the First in First Out

order (FIFO). The tasks in a queue are then rearranged

utilizing hybrid Coati Optimization (COA) -Osprey

Optimization Algorithm (OOA) techniques to enhance task

scheduling behaviour by taking into account variables like

makes pan, cloud's execution time and cost. This hybrid

technique uses the behaviour of both optimizations. In

contrast to the OOA, which offers the best global optimum

solutions, the COA offers the best local optimal solutions. A

fuzzy logic approach is then used to identify the issues. The

fuzzy fault detection system discovers any existing defects by

abiding by the criteria. Following the identified issue with the

 Manoj Kumar Malik, Vineet Goel and Abhishek Swaroop

4

necessary specifications, the fault tolerance mechanism then

reacts properly to balance the system load. An expert

developed the proposed rules based on a genuine cloud

system and fuzzy rules for a fuzzy fault detection system.

Three fuzzy values none, risk, and danger will be used as the

system's output to decide whether or not a failure will occur

in a physical node. Using a fuzzy system, an appropriate

reaction will be generated to raise the tolerance against the

fault after determining the system's status and locating the

issue's source.

The 𝑛 number of job requests 𝐽1, 𝐽2, 𝐽3, … 𝐽𝑛 are the

upcomings of multiple cloud users. These tasks need 𝑚

number of computational resources 𝑅1, 𝑅2, 𝑅3, … , 𝑅𝑚 in the

form of virtual machines 𝑣𝑚1, 𝑣𝑚2, 𝑣𝑚3, … , 𝑣𝑚𝑚 with

various capabilities for processing task requests. With the

goal of processing user applications fast and maximizing

revenue for service providers through the effective use of

computational resources, the best resources are chosen for

end users based on their requirements and budget.

3.1. Hybrid COA-OOA for Task Scheduling

Initial FIFO order is used to group the user's submitted jobs

in a queue. Then, employing a hybrid optimization technique,

these jobs are rescheduled for improved results. The

suggested framework is divided into three sections. Through

cloud brokers, job schedulers and cloud users can

communicate. The task scheduler's duty is to identify the

ideal resource for carrying out a task. Users of the cloud can

access resources at the data centre.

3.1.1. Coati Optimization
A COA is a recently proposed meta-heuristics method that

mimics the traits of coatis that exist in nature. The

fundamental goal of COA is to mimic two crucial coati

behaviours: their approach when pursuing and hunting

iguanas and their ability to avoid being pursued by hunters.

Coatis, sometimes known as coatimundis, are omnivorous

mammals that eat both small vertebrates and invertebrates as

prey. Especially noteworthy is that the green iguana plays a

big role in the coati's diet. Because they are arboreal animals,

coatis usually forage for inguanas in trees and frequently hunt

in packs. It's possible that the coati's hunting tactic entails

some members of the group climbing trees to scare the iguana

into leaping to the ground while others quickly attack it.

Coatis are susceptible to attacks from hunters and huge

raptors despite their successful predation strategies. The COA

algorithm seeks to replicate the behaviours of coatis [23].

3.1.2. Osprey Optimization
Fish-eating raptors that are nocturnal and have a vast

geographic range are the osprey, often known as the sea

hawk, river hawk, or fish hawk. With a wingspan of 127–180

cm, ospreys weigh between 0.9 and 2.1 kg and measure 50–

66 cm in length. Below are the osprey's physical

characteristics:

• The upperparts are a rich glossy brown, the

underpants are in pure white, and there are irregular

brown streaks on a white breast.

• The head is white, but the mask which surrounds the

eyes and goes to the corners along the neck is black.

• The colour of the translucent nictitating membranes

is a light blue, while the irises on the eyes fluctuate

in colour from golden to brown.

• The beak is black with a blue cere, while the feet are

white with black claws.

• Ospreys have tiny tails and extended, slender wings.

Being a piscivorous bird, fish makes up around 99% of the

osprey's diet. It often catches live fish that are between 25 and

35 cm long and 150 to 300 g in weight. Though, this captures

fishes between 2 kg to 50 g in weight. Osprey can spot

underwater objects thanks to their keen vision. The

whereabouts of the fish underwater is discovered by the

osprey when it is flying between 10 and 40 meters over the

surface of the water. Subsequently, this moves towards fish,

places its foot in the water and dives in to get it. After catching

a meal, the osprey moves it to a nearby rock and starts to

consume it [24]. The strategy of ospreys for fishing also

transporting its catch to an appropriate area for consumption

is a brilliant natural behaviour that can provide inspiration for

developing a novel optimisation algorithm.

3.1.3. Steps involved in the Hybrid COA-OOA
approach
This article presents a heuristic technique built on a Coati

optimization and an Osprey optimization. The four steps in

the proposed hybrid technique are initiation, fitness function,

updating, and termination. In order to offer the best option,

the updating component of the COA is replaced with the

OOA method. Step by step process of this proposed hybrid

approach is given below:

Step 1: Initialization

Various virtual machines that are dispersed around the data

centre are the resources that are initialized in this first phase

together with a set of tasks.

𝐽 = 𝐽1, 𝐽2, … , 𝐽𝑛 (1)

𝑉𝑀 = 𝑉𝑀1, 𝑉𝑀2, … , 𝑉𝑀𝑛 (2)

Where 𝐽 indicates the number of jobs and 𝑉𝑀 indicates the

number of virtual machines.

Step 2: Objective Function

The major goal is to cut down on wait times and increase

resource efficiency for suppliers of cloud services. The

objective function is computed using the formula below:

Makespan: It is the entire duration of a task plan or the

amount of time from the start of the tasks to the completion

of processing for all of the tasks.

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = ∑ 𝐹𝑡𝑖
𝑛
𝑖=1 (3)

Where 𝐹 is the task's completion time at time 𝑡(𝑛).

 A New Hybrid COA-OOA Based Task Scheduling and Fuzzy Logic Approach to Increase Fault Tolerance in Cloud

Computing

5

Execution time: The system's time spent carrying out a

certain task is measured as the completion time of that task.

𝐸𝑡 =
𝑆𝑡

𝑃𝑃𝑣
 (4)

Where the task's dimension is 𝑆𝑡, its computational

capability is 𝑃𝑃𝑣 , and its running time is 𝐸𝑡 on the virtual

machine, VM(n).

Cost: Total expense incurred in planning a task.

𝐶𝑜𝑠𝑡 = ∑ 𝐸𝐶𝑡𝑖,𝑟𝑛
𝑛
𝑖=1 (5)

Where 𝐸𝐶𝑡𝑖,𝑟𝑛 denotes the expense of performing the task

𝑡𝑖 on resource 𝑟𝑛.

The following is the fitness equation for the suggested

algorithm:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑀𝑖𝑛 (𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 + 𝐶𝑜𝑠𝑡) (6)

Step 3: Updation

Each iteration value is updated to find the best optimal

value. Updation of each iteration solution is done by using

both exploration and exploitation.

Ospreys are strong predators with excellent vision that

enables find fish submerged. Once the have located the fish,

they round it and hunt it down. The primary stage of the

updating in the population of OOA depicted centred on the

modelling of osprey's typical behaviour. By simulating the

osprey's attack on fish, the osprey's location within the

hunting area is significantly altered, which increases OOA's

exploratory capacity in finding the optimal spot and avoiding

local optima. Underwater fishes are the terms used in OOA

design to describe the placements of other ospreys with

higher objective function values for each osprey in the

hunting area.

An attack on one of these fish occurs when the osprey, at

random, finds its location. Applying (7) to the simulated

movement of the osprey towards the fish yields an alternative

position for the matched osprey. If the new position of the

osprey raises the quantity of the objective function, it replaces

its present position, as per (8).

𝑥𝑖,𝑗
𝑃1 = {

𝑥𝑖,𝑗
𝑃1, 𝑙𝑏𝑗 ≤ 𝑥𝑖.𝑗

𝑃1 ≤ 𝑢𝑏𝑗

𝑙𝑏𝑗 , 𝑥𝑖,𝑗
𝑃1 < 𝑙𝑏𝑗

𝑢𝑏𝑗, 𝑥𝑖,𝑗
𝑃1 > 𝑢𝑏𝑗

 (7)

𝑋𝑖 = {
𝑋𝑖
𝑃1, 𝐹𝑖

𝑃1 < 𝐹𝑖
𝑋𝑖 , 𝑒𝑙𝑠𝑒

 (8)

Where based on the initial OOA phase, 𝑋𝑖
𝑃1 represents the

ith osprey's new position. Its objective function value is 𝐹𝑖
𝑃1,

and 𝑋𝑖
𝑃1 is its jth dimension.

An alternate position for the matching osprey is obtained

by applying (7) to the osprey's simulated movement towards

the fish. As stated in (8), the osprey's new location takes the

place of its current location if it increases the quantity of the

objective function. The OOA design first uses Eqn. (9) to

establish a new random position for every member of the

population that is "suitable for eating fish" in order to mimic

this natural activity of ospreys. Then, if the value of the goal

function is increased in this new site, it replaces the previous

placement of the related osprey in accordance with Eqn. (10).

𝑥𝑖,𝑗
𝑃2 = {

𝑥𝑖,𝑗
𝑃2, 𝑙𝑏𝑗 ≤ 𝑥𝑖.𝑗

𝑃1 ≤ 𝑢𝑏𝑗

𝑙𝑏𝑗 , 𝑥𝑖,𝑗
𝑃1 < 𝑙𝑏𝑗

𝑢𝑏𝑗, 𝑥𝑖,𝑗
𝑃1 > 𝑢𝑏𝑗

 (9)

𝑋𝑖 = {
𝑋𝑖
𝑃2, 𝐹𝑖

𝑃2 < 𝐹𝑖
𝑋𝑖 , 𝑒𝑙𝑠𝑒

 (10)

Where, 𝑋𝑖
𝑃2 is the new position of the ith osprey based on

the second phase of OOA, 𝑥𝑖,𝑗
𝑃2 is its jth dimension. 𝐹𝑖

𝑃2 is its

objective function value.

Step 4: Termination

Once the best, most ideal answer has been found, the

procedure is terminated. If the best is chosen, the process is

complete; otherwise, proceed to step 2 again. Using this

hybrid approach, the tasks are scheduled in the queue. The

flow chart for the hybrid COA-OOA algorithm is given in

Figure 2.

Start

Generative initial position

of Coati

Determine the fitness

function using eqn. (6)

Update the best agent that

has low makespan and

high cost

Update agent based on

OOA algorithm using Eqn.

(8) & (10)

Max

iteration

No

Best solution

Figure 2. Flow chart of hybrid COA-OOA algorithm.

3.2. Fuzzy based Fault Tolerant Approach

Considering the variability of faults also failures in cloud

computing, can lead to a virtual machine malfunction, which

stops the machine from working. It's possible that a runtime

fault will prevent a virtual machine (VM) from responding

for running instructions for an undertaking or that a user

 Manoj Kumar Malik, Vineet Goel and Abhishek Swaroop

6

request failure will cause a job to fail to execute. Time

checking, migration, and task reprinting techniques used for

rising mistake acceptability in the current study.

3.2.1. The Fuzzy Fault Detection System

A defect can be detected by the suggested fuzzy system based

on the physical node's input parameters. The following are the

system's input parameters.

• Response time: The response time average for all

VMs on a physical node will be used to determine

this metric.

• Load density: The ratio of assigned duties to all tasks

is the value for this physical node attribute.

• Throughput: Million instructions per second (MIPS)

is a measure of a virtual machine's processing

power.

A fuzzy inference mechanism is employed in identifying

the occurrence of fault, and each physical node's parameter

values will be individually computed in accordance with the

previously mentioned requirements. For better analysis, both

the fuzzy models' input parameters for fault tolerance and

fault detection in this work are normalized. By dividing the

largest value, normalization is accomplished. Numerous tests

are run on the cloud system under test in order to determine

the maximum value for each parameter.

The fault detection input parameters procedure are

collected by the monitoring element of the aforementioned

system. The fuzzification component, which is accountable

for fuzzifying the values of each input parameter in

accordance with the identified fuzzy sets, must be used in

order to use the inference system. The fuzzy system's output,

which shows how reliable a certain node is translated into real

numbers using the de-fuzzify component. This system's

output, which is defined by three fuzzy values labelled

"None," "Risk," and "Danger," determines whether or not a

problem occurs in a physical node. In the context of the

development of the suggested system for the independently

physical evaluation of physical nodes, the fuzzy detection of

the faults system's output reveals the cause of the error. If a

failure occurs, the inputs required to produce the response as

well as the result generated by this system will be received by

the fault-tolerant expanding fuzzy system [25].

The single way to calculate the reaction time criterion will

be discussed below because of the reasoning to determine

which input parameters are comparable. The technique of

determining how many more parameters to fuzzy is

comparable to calculating the reaction time criterion. Three

"Low," "Middle," and "High" fuzzy sets are used to describe

the fuzzy value of reaction time. Response time is a fuzzy

variable that can be represented as a rectangular function of

membership along threshold values r, s, as well as t. The input

variable 𝑟𝑡 indicates the result of this function. Eqns. (11) to

(13), which specify the value of this criterion's degrees of

membership function, are used.

𝜇𝐿𝑜𝑤(𝑟𝑡) = {

0 𝑖𝑓 𝑟𝑡 ≥ 𝑠
𝑠−𝑟𝑡

𝑠−𝑟
 𝑖𝑓 𝑟 ≤ 𝑟𝑡 < 𝑠

1 𝑖𝑓 𝑟𝑡 < 𝑟

 (11)

𝜇𝑀𝑖𝑑(𝑟𝑡) =

{

0 𝑖𝑓 𝑟𝑡 < 𝑟
𝑟𝑡−𝑟

𝑠−𝑟
 𝑖𝑓 𝑟 ≤ 𝑟𝑡 < 𝑠

𝑡−𝑟𝑡

𝑡−𝑠
 𝑖𝑓 𝑠 ≤ 𝑟𝑡 < 𝑡

0 𝑖𝑓 𝑟𝑡 ≥ 𝑡

 (12)

𝜇𝐻𝑖𝑔ℎ(𝑟𝑡) = {

0 𝑖𝑓 𝑟𝑡 < 𝑠
𝑟𝑡−𝑠

𝑡−𝑠
 𝑖𝑓 𝑠 ≤ 𝑟𝑡 < 𝑡

1 𝑖𝑓 𝑟𝑡 ≥ 𝑡

 (13)

For each output variable, there is a fuzzy set created during

the aggregation procedure that needs to be defuzzed.

Defuzzification is usually employed to isolate a precise value

that accurately describes a fuzzy set. Here, local

defuzzification is performed using the function 𝐷𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 ,

which is provided by Eqn. (14), in conjunction with the fuzzy

process used to calculate the membership functions.

𝐷𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝑟𝑡) =
∫ 𝑟𝑡𝜇(𝑟𝑡)𝑑𝑟𝑡
𝜔
0

∫ 𝜇(𝑟𝑡)𝑑𝑟𝑡
𝜔
0

 (14)

The suggested guidelines created by a professional based

on an actual cloud system for a problem detection system.

3.2.2. Increased fault tolerance through
the fuzzy system

Using a fuzzy system, an appropriate reaction will be

generated to raise the tolerance against the fault after

assessing the system's status and locating the issue's source.

The following are the system's input parameters.

State of Node: One of the three is represented by this

parameter. fuzzy states "None," "Risk," or "Danger" of the

physical node. Depending on the outcome of the fuzzy

system's fault detection, this parameter's value will be

established.

Lead time Job: Because of virtual machine collapse,

runtime error, or demand error, current job execution may

halt. Lead time task is the amount of time between the

system's reaction time and its current time.

Re-execute unsuccessful: The quantity of ongoing work re-

executions will be taken into account as the parameter's value

if the fault's cause is a demand request since subsequent

repetition raises system load.

VM throughput rate: When a VM fails, the total physical

power of the physical node is determined without taking into

account the fault machines and is then given to the fuzzy

system purpose of decision-making. The ratio of the entire

amount of calculations performed by the workload in the

backlog compared to the total capacity all VMs that are now

available is the value of this parameter.

The procedure of the arguments utilized for estimating the

input variables becoming a fuzzy value is carried out as High

 A New Hybrid COA-OOA Based Task Scheduling and Fuzzy Logic Approach to Increase Fault Tolerance in Cloud

Computing

7

fuzzy, Middle, and three Low sets. Use three strategies for the

final product in this case: migration, timing verification, and

task resubmission. The proposed rules are developed by an

expert for an unclear error detection system, such as a fuzzy

fault tolerance system, using an actual cloud platform. It is

evident from the rules that response execution and the

selection of nodes and virtual machines (VMs) for allocation

and migration are carried out in a conventional way and are

predicated on lower load densities. By use of a control

message, this system notifies the user of the request output

and deletes the active request for the scheduling mechanism.

The execution buffer data for the task that failed on the VM

is transferred to another VM via the migration approach at the

migration output via the checkpoint, and the new VM

responds in line with the data it obtains from the execution

buffer. The checkpoint portion's duty is completed, and more

data is transmitted to the cloud scheduling system [26].

It travels from the destructive physical node's queue to the

physical node with the least amount of load, either in a single

or multitasking migration mechanism. The number of

migrations should be kept to a minimum because increasing

the migration rate results in longer task response times and

computational cost. The volume of tasks moved to the total

tasks over time is the basis for calculating the migration rate.

The suggested method's pseudocode is shown in Algorithm

1.

- Algorithm 1: Pseudocode for proposed task

scheduling with fault tolerant

- Input: Number of jobs and VMs

- {

- VM=𝑉𝑀1, 𝑉𝑀2, … 𝑉𝑀𝑛

- J=𝐽1, 𝐽2, … 𝐽𝑛

- # Task scheduling by hybrid COA-OOA

- {

- Initialize tasks and VM

- Calculate fitness using Eqn. (6)

- Updation using Eqn. (7) & (8)

- Compute the fitness

- If

- {

- fitness condition is satisfied

- End

- }

- Assign the scheduled jobs to VM.

- }

- #Fault detection

- {

- If

- {

- Task completed in assigned VMs

- End

- }

- Else

- {

- Fault identified

- }}

- #Fault tolerant mechanism

- {

- Apply the Fault Tolerant Fuzzy System

- }

- End

4. Result and discussion

The focus of the cloud computing methodology, which is all

about sharing data and computation, is on a scalable network

of nodes, which includes end users, computers, data centres,

and internet services. Task scheduling is a well-known

combinatorial optimization issue that is essential to

enhancing the efficiency of adaptable and dependable

systems. Cloud-based application services handle massive

amounts of data processing, such as social networking, web

hosting, and content distribution. Processing a lot of data is

necessary for these applications. In this paper, a hybrid COA-

OOA based task scheduling and fuzzy logic for fault

tolerance increase are developed. This proposed method is

simulated using Cloudsim simulation tool version 3.0,3,

Eclipse IDE, Version: 2021-06 (4.20.0).

Jobs given by various users and some, initially virtual

computers are set up for the execution procedure. The jobs

are first arranged in a queue utilizing FIFO order. These jobs

are then rescheduled according to their priority, such as cost

and expense. A hybrid COA-OOA approach is utilized as a

task scheduling algorithm. The jobs are allocated to the VM

for further processing. When tasks are not completed, fault

tolerant mechanism is carried out. The rules state that the

fuzzy fault detection system detects any existing faults and,

based on the fault diagnosis and necessary parameters, the

fault tolerance system responds appropriately to maintain

system load balance. A fuzzy system will be utilised to

develop a suitable reaction to enhance the tolerance towards

the fault after assessing the system's status and identifying the

source of the fault.

Table 1. Simulation parameters of the proposed work.

- Variables - Specifications

- Total no. of VM - 15

- Cost - 0.5-2

- Total no. of tasks - 100

- Architecture - X64

- RAM - 512 mb

- Host parameters - 6821 MIPS

- Host MIPS - 100000

- Task length - 1000-3000 MIPS

- Bandwidth - 2000 MIPS

Simulation parameters utilized in this proposed approach

is given in Table 1. 100 number of jobs and 15 VMs are

considered for this work.

 Manoj Kumar Malik, Vineet Goel and Abhishek Swaroop

8

Table 2. Simulation parameters of COA.

Parameters Values

Search agent 30

Iteration 100

Upper Limit 50

Lower Limit -50

Table 3. Simulation parameters of OOA.

Parameters Values

Lower limit -30

Upper Limit 30

Iteration 50

Search agent 50

Table 2 shows the modelling parameters of COA.

Similarly, the simulation parameters utilized for the OOA

approach is given in Table 3. Search agent, iteration, upper

limit and lower limit are the simulation parameters utilized.

Scenario 1: In case of healthcare data monitoring huge

number of task with varying importance level and length is

simultaneously sent to cloud for processing. So, design of

efficient task scheduling algorithm is essential for prioritizing

the task and assigning based on its length, cost and execution

time. Table 4 illustrates the task scheduling processing in

healthcare applications.

Table 4. Process of Task Scheduling for Healthcare Data

using proposed hybrid COA-OOA

No. of

Task

T1 T2 T3 T4 T5 T6 T7

Length

of task

1000

00

600

00

500

0

380

00

120

00

900

00

760

00

Makes

pan

0.47 0.92 0.7

7

0.65 0.84 0.72 0.99

Cost 0.74 1 0.9

8

0.87 0.98 0.78 0.94

VM VM6 VM

4

V

M1

VM

3

VM

1

VM

5

VM

2

ET 60 20 0.4 8 5 40 15

WT 4.5 2 0 0 0 3 `1.4

Performance of this healthcare oriented task scheduling

algorithm is validated using some of the metric such as total

cost, response time, resource utilization, success ratio and

failure rate. Performance validated through varying the

number of task is given in table 5.

Table 5. Performance validation of proposed model varying

number of task

Numb

er of

task

Tot

al

cost

Respon

se time

Resourc

e

utilizati

on

Failur

e rate

Succe

ss

ratio

500 72 42 5 15 40

1000 88 65 12 7 30

1500 105 77 18 20 55

2000 123 95 24 23 75

2500 137 102 43 35 24

Performance of the model get varied based on number of

assigned task. Moreover resource utilization, response time

and total cost is minimal for lesser number of task rather than

higher one. Therefore, as number of task increases the

performance get declined.

4.1. Comparison Analysis

The proposed Hybrid Task Scheduling and Fuzzy based Fault

Tolerance (HTSFFT) approach is compared with existing

algorithms called Effective Hybrid Fault Tolerant Task

Scheduling (EHFTS), Dynamic Clustering League Algorithm

(DCLCA) and Deadline Based Scheduling Algorithm

(DBSA). Resource utilization, execution time, total cost,

scheduling time, makespan, response time, success ratio,

turnaround time, and failure rate. Waiting time and

throughput are the performance statistics utilized to evaluate

the proposed and existing approaches.

Figure 3. Total cost metrics comparison.

Figure 4. Analysis of Turnaround Time.

 A New Hybrid COA-OOA Based Task Scheduling and Fuzzy Logic Approach to Increase Fault Tolerance in Cloud

Computing

9

A comparison of Total cost statistic comparison is shown

in Figure 3. The total cost utilized for the proposed HTSFFT

algorithm is 72 $. It is low when compared to other existing

approaches EHFTS, DCLCS and DBSA, which takes a total

cost of 85 $, 112 $ and 123 $, respectively. Similarly, Figure

4 depicts the turnaround metric examination of various task

scheduling algorithms. 16 sec, 22 sec, 37 sec and 49 sec are

turnaround time taken by proposed HTSFFT and existing

EHFTS, DCLCS and DBSA algorithms. This indicates that

HTSFFT has a low cost and turnaround time when compared

to other algorithms.

Figure 5. Resource utilization metric evaluation.

Figure 6. Examination of scheduling time.

Figure 5 depicts the resource utilization metric evaluation.

Different task scheduling algorithms such as HTSFFT,

EHFTS, DCLCS and DBSA has a resource utilization of 9%,

13%, 19% and 26%. This explains that the proposed approach

uses low resources. Similarly, scheduling time of proposed

and existing algorithms is illustrated in Figure 6. 202 sec, 236

sec, 247 sec and 258 sec are the scheduling time utilized by

HTSFFT, EHFTS, DCLCS and DBSA algorithms. This

indicates that the proposed HTSFFT has a low scheduling

time.

Figure 7. Success Ratio Comparison.

Figure 8. Analysis of Execution Time.

Figure 7 illustrates the success ratio metric analysis of

proposed and existing algorithms. Various task scheduling

algorithms named as HTSFFT, EHFTS, DCLCS and DBSA

has a success ratio of 98%, 95%, 88% and 84%, respectively.

Likewise, Execution time taken by different algorithms by

changing the number of jobs is given in Figure 8. The

execution time of the proposed HTSFFT is 247 sec. It is lower

than other algorithms such as EHFTS, DCLCS and DBSA

which has an execution time of 266 sec, 289 sec, 344 sec and

379 sec for 100 jobs. When amount of jobs increases the

execution time taken by both proposed and existing

algorithms are also get increased.

Figure 9. Response time of evaluation.

 Manoj Kumar Malik, Vineet Goel and Abhishek Swaroop

10

Figure 10. Examination of Makespan.

Response time comparison between the suggested and

current approach are depicted in Figure 9. 62 sec, 70 sec, 78

sec and 93 sec are the response time taken by proposed

HTSFFT and existing EHFTS, DCLCS and DBSA

algorithms when a number of nodes considered is 100. The

response time gets increased with the amount of tasks

increases. Similarly, Figure 10 illustrates the Makespan

evaluation of proposed and existing approaches. HTSFFT has

a makespan of 61 sec, it is lower than existing EHFTS,

DCLCS and DBSA algorithms which has a makespan of 70

sec, 88 sec and 109 sec, respectively.

Figure 11. Waiting time metric comparison.

Figure 12. Evaluation of Failure rate.

Analysis of proposed and existing algorithms in terms of

waiting time is shown in Figure 11. HTSFFT takes 186 sec of

waiting time, while the existing EHFTS, DCLCS and DBSA

takes 202 sec, 216 sec and 239 sec, respectively for 100

number of jobs. When the amount of jobs increase the waiting

time will also get increased for both proposed and existing

approaches. Figure 12 evaluates the failure rate of task

scheduling algorithms. 2% is the failure rate of the proposed

HTSFFT. But the failure rate produced by EHFTS, DCLCS

and DBSA algorithms are 5%, 12% and 16% accordingly, it

get increased when the number of nodes increases.

5. CONCLUSION

One of the quickly developing technologies that is affecting

the IT sector and driving businesses to move their corporate

infrastructures to cloud environments is cloud computing. It's

challenging to schedule tasks and allocate resources in a

cloud environment in a way that optimizes system

performance by allocating them earliest and with the least

amount of delay. In cloud computing, scheduling fault-

tolerant jobs becomes an NP-hard issue because of the

intricacy of the cloud, real-time task mapping with virtual

machines, and virtual machines mapping with the host

machine. In distributed computing structures, replication and

resubmission are two of the most important and well-known

multiple failure tolerance methods. Many algorithms based

on replication or resubmission have been suggested over the

past few years. Few of them, particularly in cloud systems,

take into account these two strategies in tandem. An effective

hybrid COA-OOA based fault tolerant and fuzzy logic based

fault tolerance was developed. Different jobs submitted by

users and several virtual machines were given as input in this

proposed approach. The given jobs were initially arranged in

a queue based on FIFO order. These tasks were then

rescheduled based on the hybrid Coati optimization algorithm

(COA)-Osprey optimization algorithm (OOA) by considering

various parameters such as makespan, execution time and

cost of the cloud. In this hybrid approach, the COA provides

the best local solutions and OOA provides the best global

solutions. The errors are then identified using the fuzzy logic

approach. After determining the system's status and locating

the fault's cause, a system that was fuzzy was utilised to

provide a suitable reaction to increase the endurance against

the fault. This proposed approach produces 62 sec response

time, 61 sec of makespan and 98% success rate. Execution

time achieved using proposed algorithm for 100 task is 380

sec. So, the jobs given by users were executed properly

without any failure using this proposed method. Though the

job are scheduled based on time and cost but the importance

of job is not taken into account which is quite crucial for some

application like healthcare which can be considered as future

work.

Acknowledgement

Funding: The authors declare that no funds, grants, or other

support were received during the preparation of this

manuscript.

Conflict of Interest: The authors declared that they have no

conflicts of interest to this work. We declare that we do not

have any commercial or associative interest that represents a

conflict of interest in connection with the work submitted.

Availability of data and material: Not applicable

Code availability: Not applicable

 A New Hybrid COA-OOA Based Task Scheduling and Fuzzy Logic Approach to Increase Fault Tolerance in Cloud

Computing

11

Author contributions: The corresponding author claims the

major contribution of the paper including formulation,

analysis and editing. The co-authors provides guidance to

verify the analysis result and manuscript editing.

Compliance with ethical standards: This article is a

completely original work of its authors; it has not been

published before and will not be sent to other publications

until the journal’s editorial board decides not to accept it for

publication.

References

[1] Kanwal S, Iqbal Z, Al-Turjman F, Irtaza A, Khan MA.

Multiphase fault tolerance genetic algorithm for vm and

task scheduling in datacenter. Information Processing &

Management. 2021 Sep 1;58(5):102676.

[2] Ghanavati S, Abawajy J, Izadi D. Automata-based

dynamic fault tolerant task scheduling approach in fog

computing. IEEE Transactions on Emerging Topics in

Computing. 2020 Oct 26;10(1):488-99.

[3] Ali A, Iqbal MM, Jamil H, Qayyum F, Jabbar S,

Cheikhrouhou O, Baz M, Jamil F. An efficient dynamic-

decision based task scheduler for task offloading

optimization and energy management in mobile cloud

computing. Sensors. 2021 Jul 1;21(13):4527.

[4] Ali A, Iqbal MM, Jamil H, Akbar H, Muthanna A,

Ammi M, Althobaiti MM. Multilevel central trust

management approach for task scheduling on IoT-based

mobile cloud computing. Sensors. 2021 Dec

24;22(1):108.

[5] Ali A, Iqbal MM. A cost and energy efficient task

scheduling technique to offload microservices based

applications in mobile cloud computing. IEEE Access.

2022 Apr 28;10:46633-51.

[6] Rezaeipanah A, Mojarad M, Fakhari A. Providing a new

approach to increase fault tolerance in cloud computing

using fuzzy logic. International Journal of Computers

and Applications. 2022 Feb 1;44(2):139-47.

[7] Khaldi M, Rebbah M, Meftah B, Smail O. Fault

tolerance for a scientific workflow system in a cloud

computing environment. International Journal of

Computers and Applications. 2020 Oct 2;42(7):705-14.

[8] Velliangiri S, Karthikeyan P, Xavier VA, Baswaraj D.

Hybrid electro search with genetic algorithm for task

scheduling in cloud computing. Ain Shams Engineering

Journal. 2021 Mar 1;12(1):631-9.

[9] Manikandan N, Gobalakrishnan N, Pradeep K. Bee

optimization based random double adaptive whale

optimization model for task scheduling in cloud

computing environment. Computer Communications.

2022 Apr 1;187:35-44.

[10] Malik MK, Joshi H, Swaroop A. An effective fault

tolerance aware scheduling using hybrid horse herd

optimisation‐reptile search optimisation approach for a

cloud computing environment. Cognitive Computation

and Systems. 2023 Oct 10.

[11] Marahatta A, Xin Q, Chi C, Zhang F, Liu Z. PEFS: AI-

driven prediction based energy-aware fault-tolerant

scheduling scheme for cloud data center. IEEE

Transactions on Sustainable Computing. 2020 Aug

11;6(4):655-66.

[12] Zheng, H., He, J., Huang, G., Zhang, Y., & Wang, H.

(2019). Dynamic optimisation based fuzzy association

rule mining method. International Journal of Machine

Learning and Cybernetics, 10, 2187-2198.

[13] Liu, W. L., Gong, Y. J., Chen, W. N., Liu, Z., Wang, H.,

& Zhang, J. (2019). Coordinated charging scheduling of

electric vehicles: A mixed-variable differential

evolution approach. IEEE Transactions on Intelligent

Transportation Systems, 21(12), 5094-5109.

[14] Kabir, M. E., Mahmood, A. N., Wang, H., & Mustafa,

A. K. (2015). Microaggregation sorting framework for

k-anonymity statistical disclosure control in cloud

computing. IEEE Transactions on Cloud Computing,

8(2), 408-417.

[15] Li, Z. (2023). Exploring Significance of SPOC: A Path

to Modernization of Music Cloud Computing. EAI

Endorsed Transactions on Scalable Information

Systems, 10(6).

[16] Malik MK, Singh A, Swaroop A. A planned scheduling

process of cloud computing by an effective job

allocation and fault-tolerant mechanism. Journal of

Ambient Intelligence and Humanized Computing. 2022

Feb 1:1-9.

[17] Zuo L, He J, Xu Y, Zhang L. CSADE: a delay-sensitive

scheduling method based on task admission and delay

evaluation on edge–cloud collaboration. Cluster

Computing. 2023 May 29:1-8.

[18] Nalini J, Khilar PM. Reinforced ant colony optimization

for fault tolerant task allocation in cloud environments.

Wireless Personal Communications. 2021

Dec;121(4):2441-59.

[19] Saxena D, Gupta I, Singh AK, Lee CN. A fault tolerant

elastic resource management framework toward high

availability of cloud services. IEEE Transactions on

Network and Service Management. 2022 Apr

26;19(3):3048-61.

[20] Karthikeyan L, Vijayakumaran C, Chitra S, Arumugam

S. Saldeft: Self-adaptive learning differential evolution

based optimal physical machine selection for fault

tolerance problem in cloud. Wireless Personal

Communications. 2021 May;118:1453-80.

[21] Bharany, S., Badotra, S., Sharma, S., Rani, S., Alazab,

M., Jhaveri, R. H., & Gadekallu, T. R. (2022). Energy

efficient fault tolerance techniques in green cloud

computing: A systematic survey and taxonomy.

Sustainable Energy Technologies and Assessments, 53,

102613.

[22] Bharany, S., Sharma, S., Khalaf, O. I., Abdulsahib, G.

M., Al Humaimeedy, A. S., Aldhyani, T. H., ... &

Alkahtani, H. (2022). A systematic survey on energy-

efficient techniques in sustainable cloud computing.

Sustainability, 14(10), 6256.

 Manoj Kumar Malik, Vineet Goel and Abhishek Swaroop

12

[23] Ahmad Z, Nazir B, Umer A. A fault‐tolerant workflow

management system with Quality‐of‐Service‐aware

scheduling for scientific workflows in cloud computing.

International Journal of Communication Systems. 2021

Jan 10;34(1):e4649.

[24] Dehghani M, Montazeri Z, Trojovská E, Trojovský P.

Coati Optimization Algorithm: A new bio-inspired

metaheuristic algorithm for solving optimization

problems. Knowledge-Based Systems. 2023 Jan

10;259:110011.

[25] Dehghani M, Trojovský P. Osprey optimization

algorithm: A new bio-inspired metaheuristic algorithm

for solving engineering optimization problems.

Frontiers in Mechanical Engineering. 2023 Jan

20;8:1126450.

[26] Nazari Cheraghlou M, Khademzadeh A, Haghparast M.

New fuzzy-based fault tolerance evaluation framework

for cloud computing. Journal of Network and Systems

Management. 2019 Oct;27:930-48.

