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Abstract 

Detecting edges is a critical task in image processing, forming the backbone of many computer vision applications such as 
object recognition, image segmentation, and scene understanding. This paper introduces a novel edge detection method that 
synergistically combines Binary Particle Swarm Optimization (BPSO) with L0 Guided Filtering to address the challenges of 
detecting edges in noisy and complex images. The motivation for this approach stems from the need to enhance edge 
detection accuracy and robustness, particularly in environments where traditional methods struggle with noise and detail 
preservation. 
The innovation of our method lies in the integration of BPSO with L0 Guided Filtering. BPSO is employed to optimize the 
parameters crucial for edge detection by exploring the solution space efficiently through binary particles. This optimization 
process helps in selecting the most effective parameters that significantly influence edge detection performance. Once the 
optimal parameters are identified, they are utilized within the L0 Guided Filtering framework. L0 Guided Filtering is a 
sophisticated technique known for its ability to preserve fine image details while effectively suppressing noise and artifacts. 
By combining these two techniques, our method benefits from the efficient search capabilities of BPSO and the edge-
preserving properties of L0 Guided Filtering. 
The results of our experimental evaluations on benchmark datasets highlight the effectiveness of the proposed method. 
Compared to traditional edge detection techniques, our approach demonstrates superior edge localization, providing more 
accurate and well-defined edges. Additionally, it shows improved robustness to noise, making it particularly valuable for 
applications in challenging imaging conditions. The method’s ability to adapt to diverse image characteristics and its efficient 
parameter optimization contribute to its enhanced performance. 
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1. Introduction

In the realm of computer vision, edge detection stands as a 
fundamental and pivotal task, forming the cornerstone for 
numerous image processing applications. The ability to 

*Corresponding author. Email: newankushphd@gmail.com 

accurately identify and delineate edges within images is 
paramount for tasks such as object recognition, scene 
understanding, and image segmentation [1]. The pursuit of 
robust edge detection methodologies has spurred the 
exploration of innovative techniques that can navigate the 
challenges posed by diverse image characteristics, including 
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noise, variations in illumination, and complex structural 
details [2]. This paper introduces a novel approach to edge 
detection, amalgamating the strengths of Binary Particle 
Swarm Optimization (BPSO) [3] with the precision of L0 
Guided Filtering. Edge detection, as a computational 
challenge, requires a delicate balance between preserving fine 
details and suppressing noise, necessitating techniques that 
exhibit adaptability and resilience across a spectrum of image 
scenarios. BPSO, a variant of the well-established Particle 
Swarm Optimization (PSO) [4] algorithm, introduces a 
binary encoding scheme for particles exploring the solution 
space. This binary nature endows BPSO with an efficient and 
rapid convergence toward optimal solutions, making it a 
compelling candidate for parameter optimization in edge 
detection scenarios. The integration of BPSO within the 
framework of L0 guided filtering [5] seeks to harness the 
collective intelligence of particles to enhance the adaptability 
of the filter, ultimately refining the edge detection process. L0 
guided filtering, known for its edge preserving 
characteristics, provides a valuable foundation for our 
proposed methodology.  
This paper details the formulation, implementation, and 
evaluation of the BPSO Based Edge Detection under L0 
Guided Filtering. Through comprehensive experimentation 
on benchmark datasets, we explore the efficacy of our 
proposed approach, highlighting its potential to significantly 
advance the state of the art in edge detection. The integration 
of BPSO and L0 guided filtering not only contributes to the 
technical aspects of edge detection but also holds promise for 
enhancing the performance of computer vision systems 
across a multitude of applications. 

2. Literature Survey

The field of image processing continually evolves with the 
pursuit of enhanced techniques for edge detection—a critical 
task pivotal to numerous applications in computer vision. 
Classical methods such as Canny [6] and Sobel [7] have laid 
the foundation for edge detection, each with its strengths and 
limitations. However, contemporary advancements explore 
innovative approaches that transcend the conventional 
frameworks. This compilation delves into a diverse set of 
edge detection methods, ranging from classical to cutting 
edge, including those inspired by bio inspired paradigms like 
Ant Colony Optimization (ACO) [8] and fuzzy logic [9]. 
Additionally, it explores the integration of optimization 
algorithms such as Particle Swarm Optimization (PSO) with 
techniques like guided filtering and sharpening, showcasing 
the versatility and adaptability of these methods across 
various image processing scenarios. Each referenced method 
is examined in detail, shedding light on its unique 
contributions, strengths, and limitations, providing a 
comprehensive overview of the current landscape of edge 
detection methodologies. 

Canny Edge Detection [6]: The Canny edge detection 
method, proposed by John Canny, is a classical technique 
widely used in image processing and computer vision. This 

method is renowned for its ability to identify edges with high 
precision and suppress noise effectively. Operating in 
multiple stages, Canny edge detection involves gradient 
computation, non-maximum suppression, and edge tracking 
by hysteresis. Despite its effectiveness, one drawback is the 
acceptance of a significant number of false edges. This issue 
arises due to the method's reliance on convolutional kernels 
and its sensitivity to threshold parameters. 

Sobel Operator [7]: The Sobel operator, a classical edge 
detection method, is particularly known for its simplicity and 
computational efficiency. It operates by convolving an image 
with Sobel kernels to calculate the gradient magnitude. While 
Sobel is adept at highlighting edges, it possesses limitations. 
In certain scenarios, genuine edges may be erroneously 
discarded, leading to an incomplete representation of the 
image's structure. This drawback is attributed to the method's 
sensitivity to predefined thresholds, which can affect the trade 
off between sensitivity and specificity. 

ACO Based Edge Detection [8]: Edge detection 
techniques inspired by Ant Colony Optimization (ACO), as 
highlighted in reference [8], introduce a bio inspired 
paradigm into image processing. ACO algorithms mimic the 
foraging behavior of ants to optimize paths, and when applied 
to edge detection, they exhibit characteristics such as 
adaptability and robustness. The method referenced in [8] 
demonstrates minor sensitivity to noise, good preservation of 
edge connectivity, and the absence of double edges. This 
indicates its potential for providing reliable edge information 
while mitigating some of the limitations associated with 
classical methods. 

Fuzzy Edge Detection [9]: Fuzzy edge detection methods 
leverage fuzzy logic to address the challenges encountered by 
classical approaches. By incorporating fuzziness into the 
edge detection process, these methods aim to enhance 
adaptability and robustness in handling uncertainties. The 
fuzzy edge detection technique, as referenced by [9], is 
acknowledged for its moderate noise tolerance, good edge 
connectivity preservation, and a balanced approach to 
handling double edges. Fuzzy logic allows for a more flexible 
interpretation of image features, making it particularly 
valuable in scenarios where precise boundaries may be 
challenging to define. 

ACO+ Guided Filtering [10, 11]: The combination of Ant 
Colony Optimization (ACO) with guided filtering, as 
described in reference [10], presents an innovative approach 
to edge detection. Guided filtering, known for its ability to 
enhance image details while preserving edges, is 
synergistically integrated with ACO to leverage the strengths 
of both paradigms [11]. The referenced method achieves 
minor sensitivity to noise, good edge connectivity 
preservation, and the absence of double edges. This 
collaborative approach aims to harness the advantages of 
ACO for optimization while leveraging guided filtering for 
effective edge enhancement. 
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Fuzzy+ L0 Guided Filtering [12, 13]: The method 
introduced in reference [12] combines fuzzy logic with L0 
guided filtering, showcasing a novel strategy for edge 
detection. Fuzzy logic introduces adaptability to handle 
uncertainties, while L0 guided filtering contributes to edge 
preserving contrast enhancement [13]. The referenced 
method exhibits moderate sensitivity to noise, excellent 
preservation of edge connectivity, and the presence of 
significant double edges. This suggests a successful 
integration of fuzzy logic and guided filtering to achieve a 
balanced and robust edge detection outcome. 

PSO Based Edge Detection [14]: PSO, as applied to 
edge detection and referenced in [14], introduces a heuristic 
optimization approach inspired by the collective behavior of 
particles. This method leverages the collaborative exploration 
of solution space to enhance edge detection [15]. The PSO 
based edge detection method demonstrates moderate 
sensitivity to noise, average preservation of edge 
connectivity, and the absence of double edges. This suggests 
that PSO brings optimization capabilities to edge detection 
while maintaining a reasonable balance in handling noise and 
preserving edge structures. 

PSO+ 5% Sharpening Edge Detection: The variant of 
PSO edge detection with 5% sharpening, as referenced in the 
specific configuration [16], introduces a sharpening 
technique to enhance the edge detection outcome. The 
method achieves moderate sensitivity to noise, average 
preservation of edge connectivity, and the absence of double 
edges. The incorporation of sharpening aims to improve the 
clarity and definition of detected edges, showcasing the 
adaptability of PSO in accommodating additional image 
enhancement strategies. 

PSO+ 10% Sharpening Edge Detection: Similarly, the 
PSO based edge detection method with 10% sharpening, as 
outlined in [16], introduces a higher degree of sharpening to 
the edge detection process. This variant achieves moderate 
sensitivity to noise, good preservation of edge connectivity, 
and the absence of double edges. The increased sharpening 
level aims to further accentuate the detected edges, offering a 
configurable approach to address specific image processing 
requirements. 
Despite the effectiveness of soft computing methods in edge 
detection, the limitations of these techniques are 
acknowledged due to their reliance on a singular optimal 
solution, leading to the rejection of many true edges [8]. To 
mitigate these limitations, researchers have turned to guided 
image filtering as a complementary enhancement for weak 
edges [10, 14]. Recent advancements have also integrated 
guided image filtering with fuzzy based edge detection [12]. 
Given the shortcomings identified in the literature, our 
research article aims to address the following key 
requirements effectively: 

1. Improve edge connectivity.
2. Enhance the uniformity of edge width.

3. Minimize inaccuracies to achieve edge detection
results closely aligned with the ground truth.

Through this endeavor, we aim to contribute to the 
advancement of edge detection methodologies, striving for 
improved accuracy, connectivity, and qualitative analyses. 

Other State of the art methods [17-20]: 

The multi-stream and multi-scale fusion network proposed in 
[17] represents an advanced method in edge detection, aiming
to enhance the detection performance by addressing the
complexity of edge features and their variations across scales.
Edge detection with transformers represents a significant
advancement by leveraging the self-attention mechanisms of
transformer architectures to capture global context and
intricate edge details. However, this approach can be
computationally demanding and requires substantial training
data, making efficient model design and integration with
existing techniques important considerations for optimal
results [18].
Refined edge detection with a cascaded and high-resolution
convolutional network involves a sophisticated approach that
improves edge accuracy by utilizing a series of convolutional
layers arranged in a cascaded fashion. This approach
addresses challenges like detail loss and noise sensitivity,
providing more accurate and reliable edge maps [19].
An exclusive U-Net designed for fine and crisp edge
detection utilizes the U-Net architecture's strengths in
capturing detailed features through its encoder-decoder
structure and skip connections. However, this architecture is
very complex [20].

3. Introduction to PSO

PSO is an ingenious optimization algorithm rooted in the 
collective behavior of social organisms, particularly inspired 
by the coordinated movements observed in flocks of birds. 
The underlying principle of PSO is to emulate the 
collaborative and adaptive nature of these social entities, 
where individuals work together to navigate and discover 
optimal paths or locations. In the realm of PSO, the 
optimization process unfolds within a multi-dimensional 
search space. Each participant in the optimization, referred to 
as a "particle," embodies an individual entity within the 
swarm. The particle's position in this multi-dimensional space 
represents a potential solution to the optimization problem at 
hand. The movement of particles within the space is 
orchestrated by two fundamental components: personal 
experience and social interactions. 
Personal experience involves the particle's historical 
knowledge of its own best-performing positions. The 
algorithm assigns a fitness value to each particle based on the 
quality of its position in the search space. Social interactions 
come into play as particles exchange information about their 
optimal positions with neighboring particles. This 
collaborative information sharing enables the swarm to 
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collectively converge toward promising regions in the search 
space. 
The iterative nature of PSO allows particles to dynamically 
adjust their positions over successive generations, optimizing 
their solutions based on the feedback received from personal 
experiences and shared insights within the swarm. As a result, 
PSO demonstrates a remarkable ability to explore diverse 
regions of the solution space efficiently. 

Figure 1. Dynamics Unveiled: Illustrating Particle 
Velocity Update and Movement in a Schematic 

Diagram 

In the context of optimization, PSO represents each potential 
solution as a "particle" in a multi-dimensional search space. 
The movement of each particle is governed by two key 
components: personal experience and social interactions. 
Mathematically, the position of a particle i at iteration t is 
represented by 1 2( , ,..., )t t t t

i i i iDX x x x= where D is the 
dimensionality. The update equation for the velocity of each 
particle is given by: 

1
1 1 2 2( ) ( )t t t t

i i i i iV V c r Pbest X c r Gbest Xω+ = + − + −     (1) 

Here, t
iV is the velocity of particle i at iteration t, ω is the 

inertia weight, c1 and c2 are acceleration constants, r1 and r2 
are random values between 0 and 1, Pbesti is the best position 
the particle i has visited so far, and Gbest is the best position 
found by any particle in the swarm. 

1 1t t t
i i iX X V+ += +       (2) 

The algorithm iteratively refines the positions and velocities 
of particles, allowing the swarm to collectively converge 
toward optimal solutions. The procedure persists until a 
termination condition is satisfied, such as reaching a specified 
maximum number of iterations or attaining a satisfactory 
solution. 

4. Proposed Method

The block diagram delineating the architecture of the 
proposed guided L0 smoothing based edge detection 
technique is illustrated in Figure 1. This innovative approach 
is designed to enhance edge detection through a structured 
sequence of operations. The method revolves around three 
fundamental components within the guided L0 smoothing 
framework: the L0 smoothing filter, L0 gradient minimization, 
and guided filtering. 

L0 Smoothing Filter: The initial phase of the guided L0 
smoothing method involves the application of the L0 
smoothing filter to the input image. This filter plays a pivotal 
role in reducing noise and enhancing the overall smoothness 
of the image, contributing to a more robust foundation for 
subsequent processing steps. 

L0 Gradient Minimization: Following the L0 smoothing 
stage, the method incorporates L0 gradient minimization as a 
critical step. This process focuses on minimizing gradients 
within the image, aiming to preserve edges while attenuating 
unnecessary details. The emphasis on gradient minimization 
contributes to the extraction of salient features, laying the 
groundwork for precise edge detection. 

Guided Filtering: The guided filtering serves as a key 
element in the guided L0 smoothing method. This stage 
refines the image by leveraging guidance from an additional 
reference image, enhancing the overall coherency and 
preserving important edge information. The guided filter aids 
in achieving a fine balance between smoothing and edge 
preservation. 

PSO Based Edge Detection: Subsequently, the 
processed image undergoes a progressive stage where it is 
passed through a PSO based edge detection mechanism. This 
computational technique harnesses the principles of swarm 
intelligence to identify and highlight edges within the image. 
The PSO based edge detection step contributes to the 
finalization of the edge map. The collaborative integration of 
these components within the guided L0 smoothing 
framework, culminating in the PSO based edge detection, 
results in a comprehensive technique for robust and accurate 
edge detection. Figure 1 serves as a visual guide, 
encapsulating the sequential flow of operations and the 
interplay of components within this sophisticated method. 
This methodology aims to enhance the quality and precision 
of edge detection in the realm of image processing. 

4.1 L0 Guided Image Filtering 
Utilizing smoothness noise in an image can be mitigated 
through image smoothing, which reduces amplitude variation 
and aids in diminishing undesired edges. However, this 
process may inadvertently suppress some prominent edges. 
Various techniques have been proposed over time to achieve 
edge preserving smoothing [21, 22].  
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Figure 2. Block diagram for Guided L0 smoothing 
filtering and PSO based edge detection process 

Figure 3. Representation of 3×3 image block with pixel 
coding 

In a similar vein, guided image filtering was introduced [21]. 
Another method for edge preservation is the L0 smoothing 
filter [22]. A more refined filter, namely the Guided L0 
smoothing filter, was proposed by combining these two 
methods [22] (Figure 2). For a clearer illustration, 
considering a 3×3 block image with the central pixel 
positioned at (i, j), denoted as Pi,j,, and the values and 
positions of the surrounding pixels are depicted in Figure 3. 

4.2 L0 smoothing filter 
The number of the absolute difference in intensity values 
between neighbouring pixels can be expressed 
mathematically as

 { }, 1,( ) # , 0i j i jpg I i j P P−= − ≠  (3) 

The L0 norm of the gradient is the measure of the disparity in 
pixel values. The non-zero-pixel difference is denoted by ∆. 
In terms of pixel gradient (pg) for input pixel (Pi) and its 
smoothened version as *

iP the objective function can be 
written as 

( )2*min s.t., ( )i iI i
P P pg I− = ∆∑  

  (4) 
The, more appropriate objective function considering weight 
controlling parameter (γ) would be 

( )2*min  +  ( )i iP i
P P pg Iγ−∑   (5) 

4.3 L0 gradient minimization 
The L0 norm, when strategically optimized, offers a tailored 
approach to generate an output image characterized by 
piecewise constancy through L0 gradient minimization [18]. 
This optimization technique proves particularly effective in 
accentuating prominent edges by augmenting the abruptness 
of the transitions while simultaneously mitigating the 
influence of low amplitude structures. The formulation 
expressed in Equation 5, can be alternatively represented as 
follows: 

2*
02

min i i iI
P P Pγ− + ∇       (6) 

The notation iP∇  signifies the gradient of the function Pi. To 

handle the term 
0iP∇  effectively, an auxiliary variable ψ  

is introduced. Consequently, equation (6) can be transformed 
into the following minimization expression. This 
modification allows for a more flexible and nuanced 
optimization approach, facilitating a comprehensive 
treatment of the associated variables and enabling a refined 
exploration of the solution space. The introduction of the 
auxiliary variable ω serves to enhance the adaptability of the 
minimization process and contributes to a more intricate and 
expressive formulation of the mathematical model. 

2*
0 02,

min i i iP
P P P

ψ
β ψ γ ψ− + −∇ +       (7) 

Here, β is controlling parameter and the degree of 
smoothness is handled by γ. 

4.4 Guided filter 
The Guided smoothing filter emerges as a specialized edge 
preserving smoothing filter renowned for its exceptional 
performance, particularly in the proximity of edges [21]. One 
noteworthy aspect of its versatility lies in the ability to utilize 
an alternative reference image (Ig) to fulfill the guidance 
image prerequisite. This flexibility allows for customization 
based on specific requirements or considerations, enhancing 
the adaptability of the filtering process. 
To illustrate this concept further, let's refer to Figure 3. 
Within this context, we can focus on a chosen window ωu. 
The number of pixels in the chosen window is determined by 
a specific mathematical expression (eqn. 8), denoting the 
spatial extent over which the guided filter operates. This 
spatial consideration is crucial for understanding the local 
context in which the filtering takes place, contributing to the 
filter's effectiveness in preserving edges while smoothing the 
surrounding regions. 
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,
u

i jP P
ω

=∑ .    (8) 

The resulting image, guided by the specified parameters, is 
represented as follows:

 ( )1 ,
u u

out u i u
P i

I a I b
P ω∈

= +∑    (9) 

In the preceding equation, the values for au and bu are derived 
as follows: 

[ ]

[ ]

2

1

,u u

g i g i
P i

u
u

u i u g

I I E I E I
P

a

b E I a I

ω

σ ε
∈

 −  
=

+

 = −  

∑
   (10) 

In this context, the parameter ε serves as a regularization 
parameter. 

4.5 Guided L0 smoothing filter 
The concept of L0 gradient minimization, stands out as a 
technique that enhances image sharpness while preserving 
prominent edges [23]. In a complementary vein, X. Ding et 
al. proposed a novel extension known as the guided L0 
smoothing filter [24]. This innovative method integrates the 
principles of guided filtering with L0 smoothing, resulting in 
an advanced image processing approach that is adept at 
simultaneously sharpening the image and preserving 
dominant edges. The guided L0 smoothing filter, as delineated 
by Ding and collaborators, represents a synergistic 
combination of edge preserving qualities and smoothing 
efficacy, contributing to a refined and versatile tool for image 
enhancement [24]. 
Utilizing the expression uI , the parameter uΩ  is optimized 
through the following procedure: 

2

2 0
min     ( 1, 2,3....)

u

u u u uI u
δ

β λ∇ −Ω + Ω =  (11) 

In the given equation, the term Ωu  is defined as follows: 

0 uI
u

uI others

λ
β

 ∇ ≤Ω = 
∇



      (12) 

Now that both uΩ  and uI  are known, the next step involves 
evaluating 1uI + using: 

1

2 21 * 1

2 2
min

u

u u u u

I
I I Iβ

+

+ +− + Ω −∇  (13) 

Inserting eqn. 12 in eqn. 13 we get, 
2 2

2 2

1 1min .
1

u u u uI I I O I
uI

β+ ∗ +− + ∇ − ∗∇
+

(14) 

where, 

( )0 0 1,2,3........

1 0

u u
O

u

 Ω = == 
 Ω ≠

(15) 

The presented equation constitutes a convex optimization 
problem, and its solution can be obtained through the 
application of least squares and the Fast Fourier Transform 
(FFT) technique. A comprehensive elucidation of the 
approach is provided in [24], offering detailed insights into 
the methodology and the intricacies of employing least 
squares and FFT for the resolution of the convex optimization 
problem at hand. 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

1 1T
1

T u T u
r r x r x r y r yu

r T T
r r x r x r y r y

T I T T T T
I

T T T T T

β

β

∗

+ −
 + ∂ Ω + ∂ Ω
 =
 + ∂ ∂ + ∂ ∂ 

  (16) 

In the aforementioned expression, the inverse Fast Fourier 
Transform is symbolically represented as 1Tr

− , while the 
difference operators in the 'x' and 'y' directions are denoted by 
∂x  and ∂y respectively. These operators serve to compute 
partial derivatives with respect to the respective spatial 
coordinates, contributing to the overall formulation of the 
mathematical expression. 
Finally, using, uΩ and us we obtain 1us +  as 

( )

2 2

2 2

1 1min .
1

0 0 1,2,3........

1 0

u u u us s s O s
us

u u
O

u

β

 + ∗ +− + ∇ − ∗∇ +
  Ω = = = 

 Ω ≠

(17) 

The solution of equation (17) is: 
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
1 1

. .
T

1

T k T k
r r x r x r y r yk

r T T
r r x r x r y r y

T s T T O s T T O s
s

T T T T T

β

β

∗

+ −
 + ∂ ∗∇ + ∂ ∗∇
 =
 + ∂ ∂ + ∂ ∂ 

(18) 

Algorithm: 

Input: Image s∗ , guided image I ∗ , parameters λ, 0 max,β β
Get: 

1 1 1
0, , , 1I I s s uβ β∗ ∗← ← ← ← ,

do: 
Using uI , get uΩ for in (11); 
Using uI and uΩ , obtain 

1uI + in (13); 
Using us and uΩ , obtain 1us + in (17); 

,u uβ β← + + ; 
Until 0 maxβ β>  
Get smoothened image: s. 
Finally, the edge sharpened image can be obtained as 

0

Smoothening

[ ]S Ls s s s Gχ= + − ⊗


 (19) 

On the guided edge sharpened image with predefined 
threshold ‘T’ , the homogeneity is calculated as [25] (refer 
Figure 4) 
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0 0, ,max , { 1, , 1}, { 1, , 1}   if 

0 otherwise
i j L m n L

p

P G P G m i i i n j j j
H

 ⊗ − ⊗ ∈ − + ∈ − + > Τ= 


(20) 

The partial derivatives of the pixels in ‘x’ and ‘y’ directions 
can be evaluated as 

0 0
( ) ( 1, ) ( , )x L LP s P i j G P i j G∆ = + ⊗ − ⊗

0 0
( ) ( , 1) ( , )y L LP s P i j G P i j G∆ = + ⊗ − ⊗ (21) 

The gradient is obtained as 

( ) ( ) ( )22( , , ) ( ) ( )x yP i j s P s P s∇ = ∆ + ∆ (22) 

4.6 PSO Based Edge Detection 
Consider a scenario where a pixel displays a non-zero 
gradient, and envision this pixel as a prospective starting 
point for the initial position of a particle. In this context, 
pixels with non-zero gradients act as the instigators for the 
PSO algorithm, initiating a dynamic optimization process that 
seeks to refine and enhance the overall array of pixels for a 
specified objective or criterion. The crucial stages in PSO 
based edge detection encompass:  

1. Defining the procedure for encoding a particle;
2. formulating a fitness function and
3. Appraising the fitness of the arc.

This iterative process effectively refines the selection and 
placement of particles, optimizing the detection of edges 
within the image by iteratively adjusting their positions based 
on the fitness evaluations of the corresponding arcs. 

4.6.1 Encoding of Particles 
Every particle is given a numerical assignment within the 
range of 1 to 8, signifying the specific direction of movement 
from one pixel to the adjacent pixel in the computational 
process. This assignment serves as a directional indicator for 
the particle's traversal across the image grid, contributing to 
the overall dynamics of the algorithm. Consequently, a 
unique encoding 1 2 max, ,.......d d d is assigned to each 
particle in the population. 

Figure 4. Directions of Particle Movement (Total of 8 
Directions) 

In Figure 4, a depiction of the eight movement directions is 
provided. To elucidate, consider the starting point at pixel A; 
the ensuing movement proceeds in the direction of 2700 
degrees, as indicated in Figures 5. Referring to Figure 3, the 
encoding for pixel movement from position Pi,j to Pi+1,j is 
specifically represented as 5. Extending this principle, the 
systematic encoding of the entire arc is conducted by aligning 
the movement direction of the arc with the corresponding 
pixel coding (Figure 6). This method ensures a 
comprehensive and consistent encoding process for the entire 
trajectory of the arc. 

Figure 5. Illustration of a continuous edge arc between 
two points (A, B)  

Figure 6. Illustration of Encoding Scheme 

4.6.2 Arc characteristics 
In the realm of image processing, it's observed that pixels 
situated along a given edge consistently exhibit a relatively 
uniform intensity. This commonality in intensity levels along 
an edge forms the basis for leveraging two key characteristics 
when analyzing arcs within an image: homogeneity and 
uniformity. 
Homogeneity (Hf), in this context, refers to the degree of 
similarity or consistency in pixel intensities along an arc (f). 
When an arc possesses high homogeneity, it implies that the 
pixel values along the corresponding edge are relatively 
uniform, contributing to a cohesive and visually continuous 
appearance. This characteristic is instrumental in identifying 
and emphasizing regions where pixel intensity remains 
consistent signifying a clear and discernible edge. The Hf  in 
horizontal and vertical direction is given by 

k
k

f P
P f

H H
∈

= ∑  (23) 

In other directions (diagonal) is 
1
2 k

k

f P
P f

H H
∈

= ∑ (24)
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Uniformity, on the other hand, addresses the even distribution 
and regularity of pixel intensities along the arc. An arc 
demonstrating high uniformity implies that the variations in 
pixel intensities are consistent and well distributed, 
reinforcing the visual continuity of the edge. The uniformity 
attribute is crucial for ensuring that the detected edges exhibit 
a smooth and aesthetically pleasing quality, contributing to 
the overall clarity and perceptual coherence of the image. 
The Hf  in horizontal and vertical direction is given by 

1

1

1

L

k

A

f P P
k

U I I
+

−

=

= −∑  (25) 

In other directions (diagonal) is 

1

1

1

1
2

L

k

A

f P P
k

U I I
+

−

=

= −∑  (26) 

4.6.3 PSO algorithm's objective function 
 An objective function is devised in this context, embodying 
the twin qualities of homogeneity and uniformity. It is in 
horizontal and vertical direction is given by 

( ) 1
1 f

f f
f H

f f

H U
if F

F H e
otherise

−

 −  ≥  =  + 

−∞

 (27) 

In other directions (diagonal) is 

( ) 1
2 1 f

f f
f H

f f

H U
if F

F H e
otherise

−

 −  ≥  = +  

−∞

 (28) 

5. Results
The validity of the proposed method is evaluated using 
computer simulation. Simulation is done in MATLAB(R) 
2015 (a) with RAM of 4 GB. Both qualitative and quantative 
methods are used for the comparisons of results. The list of 
parameters and their value is shown in Table 1. 

Table 1. List of Parameters and Value 

Parameters Values 
ε 0.01 
χ 5%, 10% and 20% 
Population Size 20 
Directions 8 
Iterations 50 
Database BSD, Lena Image 

Using the Berkeley Segmentation Dataset (BSD) alongside 
the Lena image offers a robust approach for evaluating edge 

detection algorithms. The BSD dataset provides a diverse 
collection of images with varying complexities and textures, 
allowing for a thorough assessment of an algorithm's 
performance across different real-world scenarios. It includes 
ground truth edge maps that are crucial for quantitative 
evaluation of edge detection accuracy. In contrast, the Lena 
image, with its well-defined edges and smooth gradients, 
serves as a controlled benchmark for visual inspection and 
demonstration purposes. By combining the challenging 
conditions of BSD with the clarity of Lena, researchers can 
achieve a comprehensive evaluation of edge detection 
methods, balancing both real-world applicability and 
idealized test cases. 

Performance Metrics: 

Pratt’s Figure of Merit (FoM) 
The Pratt's FoM evaluates edge location exactness in edge 
detected image in comparison to ground truth image, by 
measuring the displacement of edge points that are detected 
from an ideal edge. The FoM is characterized by  

2
1

1 1
max( , ) 1 ( , )

edI

igt ed gt

FoM
I I d p Iµ=

=
+∑ (29)  

Here, 

gtI =  ideal edge points (ground truth) 

edI =  edge points detected 
d   = displacement of detected edges from ideal edges 
µ = scaling constant. 
F-Score
The F-Score is given by

2
2

TPF
TP FP FN

=
+ +

(30)  

Where TP is true positive and FP is false positive and FN is 
false negative. 

Figure 7. (a) Original Lenna Image (b) 5% Sharpened 
Image (c) 10% Sharpened Image (d) 20% Sharpened 
Image (e) Detached edges original image (f) Detached 
edges 5% sharpened image (g) Detached edges 10% 
sharpened image (h) Detached edges 20% sharpened 
image  
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Figure 7 presents a detailed exploration of the effects of 
different sharpening percentages on the well-known Lenna 
image. The original Lenna image acts as a reference point in 
panel (a), while subsequent panels (b) through (d) showcase 
the image sharpened at 5%, 10%, and 20%, respectively. 
These variations in sharpening percentages allow for a visual 
understanding of how enhancing image details impacts the 
overall clarity and sharpness. The detached edges extracted 
from both the original and sharpened images are highlighted 
in panels (e) through (h), providing a closer look at the 
accentuated features and boundaries. Importantly, the 10% 
sharpened image, as illustrated in panel (g), demonstrates a 
judicious equilibrium between heightened details and the 
mitigation of undesirable artifacts, culminating in an 
aesthetically pleasing result. It is noteworthy that in the 
original image, certain edges are erroneously dismissed, 
indicating a potential limitation in edge detection. This 
underscores the delicate trade-off in image sharpening, where 
excessive enhancement may lead to the exclusion of genuine 
edges. On the contrary, the 20% sharpened image, as depicted 
in panel (d), reveals a significant increase in noise. This 
heightened noise level becomes pronounced as a consequence 
of the intensified sharpening process, compromising the 
visual quality of the image by introducing unwanted artifacts. 
The observed trade-offs between sharpening levels shed light 
on the intricate balance required to achieve optimal image 
enhancement, where a 10% sharpening ratio emerges as a 
favorable compromise, striking a harmonious blend between 
heightened details and minimized artifacts. 

Figure 8. Histogram of Lenna image under various 
sharpening levels 

In Figure 8, we delve into a comprehensive analysis of the 
Lenna image's histogram across different sharpening levels. 
The histogram serves as a graphical representation of the 
pixel intensity distribution within the image, providing 
valuable insights into the impact of sharpening on the overall 
tonal characteristics. Each subfigure within Figure 8 
corresponds to a distinct sharpening level, ranging from 
subtle to more pronounced enhancements. 
As we examine the histograms, it becomes apparent how the 
pixel intensity values are redistributed with varying degrees 

of sharpening. Sharpening, by nature, tends to accentuate the 
contrast and fine details in an image. In the context of the 
Lenna image, the histograms depict how this sharpening 
process influences the spread of pixel intensities. 
Notably, as the sharpening levels increase, there is a 
discernible shift in the histogram towards higher intensity 
values. This shift signifies the augmentation of image details 
and the creation of more distinct tonal variations. However, 
it's crucial to observe whether this augmentation remains 
within a visually acceptable range or if it leads to undesirable 
artifacts such as clipping or saturation. 
Furthermore, by examining the histogram patterns across 
different sharpening levels, we gain a nuanced understanding 
of how pixel intensities are modified, helping us assess the 
overall impact on image tonality. This detailed histogram 
analysis in Figure 8 contributes to a comprehensive 
evaluation of the consequences of sharpening, allowing for 
informed decisions about the appropriate level of 
enhancement for achieving the desired visual outcomes. 
In Figure 9, an insightful comparison of state-of-the-art edge 
detection methods is presented, shedding light on the 
strengths and limitations of each technique. The Canny edge 
detection method is observed to be plagued by false edges, 
introducing inaccuracies in the delineation of edges. 

Figure 9. Comparison of the State-of-the-art edge 
detection methods 

Meanwhile, the Sobel method exhibits a tendency to reject 
correct edges, potentially leading to an underestimation of the 
true edge structure. The Fuzzy method, as depicted in the 
above-hat area, demonstrates vulnerability to noise, 
highlighting its susceptibility to inaccuracies in edge 
detection. The ACO method not only rejects correct edges but 
also suffers from broken edges, compromising the overall 
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integrity of the detected edges. The introduction of ACO+ GF 
addresses the issue of broken edges, providing a notable 
improvement in edge detection accuracy. The Fuzzy+ L0 
Guided Filtering method emerges as a superior option among 
the discussed techniques, showcasing improved performance. 
However, it is noted for incorrectly detecting face boundaries, 
indicating a potential limitation in accurately identifying 
specific features. Comparatively, the PSO method 
outperforms ACO but exhibits edges that are less sharp, 
potentially impacting the precision of edge detection. The 
addition of Weighted Guided Filtering (WGF) to PSO, 
denoted as PSO+ WGF, proves to be an enhancement over 
the standalone PSO, showcasing improved results. Notably, 
the proposed method surpasses the aforementioned 
techniques in terms of edge detection. The edges are 
reasonably well connected, demonstrating a favorable 
balance between sensitivity and specificity. Moreover, the 
proposed method exhibits a commendable tolerance to noise, 
further solidifying its efficacy in real-world scenarios. This 
comparative analysis in Figure 9 underscores the significance 
of the proposed method as a promising advancement in edge 
detection methodologies, offering improved edge 
connectivity and noise tolerance compared to existing state-
of-the-art techniques. 

Figure 10. Comparison of FoM for the state-of-the-art 
methods 

The Figure 10 presents a detailed comparison of various 
image processing methods, each accompanied by its 
corresponding Figure of Merit (FoM) value. The Canny edge 
detector, known for its accuracy in identifying edges, yielded 
a FoM value of 0.297. The Sobel operator, utilizing 
convolution with Sobel kernels for edge detection, 
demonstrated a FoM value of 0.423, reflecting its 
computational efficiency. Fuzzy image processing, 
incorporating fuzzy logic to address uncertainty in image 
data, garnered a FoM value of 0.398. ACO, a nature-inspired 
optimization algorithm, achieved a FoM value of 0.418 when 
applied to image processing tasks. ACO combined with 
guided filtering resulted in ACO+ Guided Filtering, yielding 
an improved FoM value of 0.457. The integration of fuzzy 
processing with L0 guided filtering, termed Fuzzy + L0 
Guided Filtering, produced a FoM value of 0.497, 
showcasing enhanced performance. PSO, another nature-
inspired algorithm, achieved a FoM value of 0.513. Variants 
of PSO with additional sharpening effects demonstrated 
varying FoM values: PSO+ 5% sharpening (0.517), PSO+ 

10% sharpening (0.511), the proposed method, PSO+ L0 
Guided Filtering (5% sharpening) (0.521), and PSO+ L0 
Guided Filtering (10% sharpening) with the highest FoM 
value of 0.576. The table thus provides a comprehensive 
overview of the methods and their FoM values, facilitating a 
comparative analysis of their performance in the specific 
image processing context considered in the study. 

The Figure 11 offers a comprehensive comparison of various 
image processing methods, each accompanied by its 
corresponding F score, a metric commonly used in 
classification tasks that combines precision and recall. The 
Canny edge detector, known for its accuracy in detecting 
edges, achieved an F score of 0.49. The Sobel operator, 
employing convolution with Sobel kernels for edge detection, 
demonstrated an F score of 0.40, reflecting its computational 
efficiency in this specific application. Fuzzy image 
processing, which incorporates fuzzy logic to handle 
uncertainty in image data, exhibited a notable F score of 0.64, 
indicating its effectiveness in the given context. ACO, a 
nature-inspired optimization algorithm applied to image 
processing, yielded a higher F score of 0.72, showcasing 
improved performance. 

Figure 11. Comparison of F-Score for the state-of-the-
art methods 

The combination of ACO with guided filtering, denoted as 
ACO+ Guided Filtering, further enhanced the F score to 0.81. 
The fusion of fuzzy processing with L0 guided filtering, 
termed Fuzzy+ L0 Guided Filtering, resulted in a higher F 
score of 0.84, suggesting improved accuracy and recall. PSO, 
another nature-inspired algorithm applied to image 
processing, achieved a commendable F score of 0.84. 
Variants of PSO with additional sharpening effects 
demonstrated incremental improvements in F scores: PSO+ 
5% sharpening (0.843), PSO+ 10% sharpening (0.851), 
PSO+ L0 Guided Filtering (5% sharpening) (0.867), and 
PSO+ L0 Guided Filtering (10% sharpening) with the highest 
F score of 0.871. In summary, the table provides valuable 
insights into the performance of each image processing 
method based on the F score, enabling a comparative analysis 
of their accuracy and recall in the specific image processing 
context considered in the study. 
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Figure 12. BSD Butterfly image 

In Figure 12, the BSD butterfly image is presented, which is 
utilized as a benchmark for comparing various edge detection 
algorithms. This image, sourced from the BSD, features a 
complex and richly detailed scene with intricate edges and 
textures. By using this image, we are able to evaluate and 
compare the performance of different edge detection methods 
under controlled conditions, assessing their ability to 
accurately identify and delineate edges in a diverse and 
challenging context 

Figure 13. Comparison various edge detection method 
for BSD image dataset 
In Figure 13, various edge detection methods are compared 
to evaluate their performance. Figure 13(a) presents the 
ground truth image, which serves as a reference for assessing 
the accuracy of the different edge detection techniques. 
Figure 13(b) shows the results of the Sobel edge detection 
method. The Sobel detector is known for its simplicity and 
computational efficiency, making it effective for detecting 
edges with significant contrast. However, it is highly 
sensitive to noise, which can lead to the detection of false 
edges, and it often struggles with accurate edge localization 
and thinning. In Figure 13(c), the Canny edge detection 

method is displayed. Canny is renowned for its robustness 
against noise and its precise edge localization, thanks to its 
use of Gaussian smoothing, gradient calculation, non-
maximum suppression, and hysteresis thresholding. Despite 
these strengths, it has higher computational complexity and is 
sensitive to parameter choices, which can affect edge 
detection performance, especially in low-contrast regions. 
Figure 13(d) illustrates the results obtained using the PSO 
method. PSO can optimize edge detection parameters or 
criteria, potentially enhancing the results compared to 
traditional methods. However, it can suffer from convergence 
issues, leading to suboptimal solutions, and is 
computationally expensive, requiring careful tuning of its 
parameters. Figure 13(e) presents the results of combining 
PSO with a WGF. This combination aims to leverage the 
strengths of both PSO and WGF, improving edge detection 
by refining edge details through weighted gradients. While 
this approach can enhance edge detection, it introduces added 
complexity and may result in slower processing speeds, along 
with challenges in parameter tuning. Finally, Figure 13(f) 
shows the results of the proposed method. This new approach 
seeks to overcome the limitations of existing techniques by 
integrating innovative methods or combining multiple 
approaches to improve edge detection performance. Although 
promising, the proposed method needs thorough validation 
and benchmarking to confirm its advantages and address any 
potential implementation challenges. 

Table 2. Comparison with state-of-the-art DNN methods 

Method/Reference F-Score
Msmsfnet [17] 0.767 
Edter [18] 0.84 
Refined Edges [19] 0.853 
U-Net [20] 0.861 
Proposed 0.871 

Table 2 provides a comparative analysis of various state-of-
the-art deep neural network (DNN) methods for edge 
detection, focusing on their F-scores, which measure the 
balance between precision and recall. The Msmsfnet [17] 
achieves an F-score of 0.767, reflecting its capability in 
detecting edges but indicating room for improvement. Edter 
[18] improves upon this with an F-score of 0.84, showing
better performance in capturing accurate edges. Refined
Edges [19] further advances edge detection accuracy with an
F-score of 0.853, offering a notable improvement in precision
and recall. The U-Net model [20] surpasses previous methods
with an F-score of 0.861, demonstrating its robust
performance in detailed edge detection. The proposed method 
leads the comparison with an F-score of 0.871, highlighting
its superior ability to detect fine and accurate edges, thus
setting a new benchmark in the field.
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5. Conclusions

In conclusion, this paper introduces a novel approach to edge 
detection by integrating BPSO with L0 Guided Filtering. The 
collaborative strategy aims to tackle the intricate task of 
precise edge detection in noisy and complex images by 
capitalizing on the strengths of both BPSO and L0 guided 
filtering. The proposed methodology initiates with the BPSO 
algorithm's initialization, utilizing binary particles to navigate 
the solution space and optimize crucial parameters for 
effective edge detection. These optimized parameters are then 
applied within the L0 guided filtering framework, a 
sophisticated edge-preserving filter renowned for its capacity 
to retain fine details while effectively mitigating noise. The 
synergy between BPSO and L0 guided filtering exhibits 
enhanced adaptability to diverse image characteristics, 
thereby fortifying the overall robustness of edge detection. 
The binary nature of BPSO expedites exploration of the 
solution space, leading to quicker convergence to optimal 
parameters. Simultaneously, L0 guided filtering ensures edge-
preserving smoothing, contributing to the suppression of 
undesired artifacts. Experimental assessments conducted on 

benchmark datasets underscore the efficacy of the proposed 
method compared to traditional edge detection techniques. 
The outcomes demonstrate superior edge localization and 
reduced sensitivity to noise, emphasizing the practical 
potential of BPSO-based Edge Detection under L0 Guided 
Filtering in real-world applications. This presented approach 
represents a valuable contribution to the progression of edge 
detection methodologies, showcasing its capacity to enhance 
the performance of computer vision systems across various 
domains. The innovative fusion of BPSO and L0 guided 
filtering offers a promising avenue for advancing edge 
detection techniques, opening new possibilities for more 
robust and accurate computer vision applications. In the 
proposed method parameter tuning is complex, requiring 
careful adjustment of numerous settings for optimal 
performance. Additionally, while the approach improves 
edge detection, it may still be sensitive to noise, necessitating 
effective noise reduction strategies. 
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