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Abstract 

The development of big data analysis technology has brought new development opportunities to the production and 
management of various industries. Through the mining and analysis of various data in the operation process of enterprises 
by big data technology, the internal associated data of the enterprises and even the entire industry can be obtained. As a 
common method for large-scale data statistical analysis, clustering technology can effectively mine the relationship within 
massive heterogeneous multidimensional data, complete unlabeled data classification, and provide data support for various 
model analysis of big data. Common big data density clustering methods are time-consuming and easy to cause errors in 
data density allocation, which affects the accuracy of data clustering. Therefore we propose a novel large data density peak 
clustering based on sparse auto-encoder and data space meshing via evidence probability distribution. Firstly, the sparse 
auto-encoder in deep learning is used to achieve feature extraction and dimensionality reduction for input high-dimensional 
data matrix through training. Secondly, the data space is meshed to reduce the calculation of the distance between the sample 
data points. When calculating the local density, not only the density value of the grid itself, but also the density value of the 
𝑘𝑘 nearest neighbors are considered, which reduces the influence of the subjective selection truncation distance on the 
clustering results and improves the clustering accuracy. The grid density threshold is set to ensure the stability of the 
clustering results. Using the K-nearest neighbor information of the sample points, the transfer probability distribution 
strategy and evidence probability distribution strategy are proposed to optimize the distribution of the remaining sample 
points, so as to avoid the joint error of distribution. The experimental results show that the proposed algorithm has higher 
clustering accuracy and better clustering performance than other advanced clustering algorithms on artificial and real data 
sets. 

Keywords: data density clustering, sparse auto-encoder, data space meshing, evidence probability distribution, transfer probability 
distribution strategy. 
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1. Introduction

In recent years, the world's stored information has grown 
at an annual rate of nearly 24% [1], and the explosive 
growth of data volume has accelerated the arrival of the era 
of big data, which has brought new opportunities and 
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challenges to all walks of life. How to efficiently and 
automatically analyze and mine big data has become a 
major issue facing all industries. 

As a data mining method that can explore the potential 
information inside the data, clustering has been widely 
used in image processing [2], economic analysis [3], 
biomedics [4], pattern recognition [5] and community 
detection [6]. According to different data processing 
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approaches, clustering algorithms include many types, 
such as, partition-based k-means algorithm [7], grid-based 
STING (statistical information grid) algorithm [8], 
hierarchical BRICH (balanced iterative reducing and 
clustering hierarchies) algorithm [9] and density-based 
DBSCAN algorithm [10], etc. The k-means algorithm 
minimizes the sum of squares of the distance between 
samples and cluster centers by optimizing the objective 
function. This algorithm is easy to implement and fast, and 
has a good effect on spherical clusters, but it has a poor 
effect on non-spherical clusters. STING algorithm divides 
samples into different grids and uses grid relations for 
clustering, effectively reducing the time complexity. This 
algorithm is greatly affected by the underlying grid and has 
low accuracy for variable density data clustering. BRICH 
algorithm represents each cluster level based on clustering 
features and uses bottom-up strategy to combine samples 
to complete clustering. This algorithm has a fast clustering 
speed, sensitive to parameters and poor clustering effect on 
non-convex data sets. 

The clustering results of the above-mentioned 
clustering algorithms are often unsatisfactory when facing 
the clustering problems of arbitrary shape and variable 
density data. As a classical density clustering algorithm, 
DBSCAN can identify arbitrarily shaped clusters based on 
the tightness of sample distribution. This algorithm needs 
to input more parameters, and the clustering algorithm is 
sensitive to parameters in the face of arbitrary shapes and 
variable density data clustering. Reference [11] proposed a 
new density clustering algorithm, density peak clustering 
(DPC). The DPC algorithm was based on two assumptions: 
first, the local density of the density peak was significantly 
greater than that of the surrounding sample, and second, the 
distance between any two density peaks was far. The 
algorithm combined the relation of sample density and 
distance to cluster. Its principle was simple, the clustering 
process did not need iteration, the input parameters were 
few, and arbitrary shape clusters could be identified. DPC 
algorithm also has some shortcomings, such as: using 
global truncation distance to define density. This method 
only considers the global distribution of samples, ignoring 
the local distribution, and cannot accurately describe the 
density of the samples with more concentrated distribution 
in the low-density cluster of the variable density data set. It 
is easy to generate multiple density peaks in the high-
density cluster, which leads to poor effect of the algorithm 
on the clustering of variable density data. The distribution 
strategy is prone to the "domino" phenomenon, that is, the 
incorrect allocation of high-density samples will lead to the 
subsequent allocation errors of low-density samples, 
leading to the expansion of allocation errors. 

Recently, many scholars have proposed different 
improvement strategies for the shortcomings of DPC 
algorithm. In terms of local density improvement, 
reference [12] proposed the density peaks clustering 
algorithm based on improved similarity and allocation 
strategy (DPCV). In this algorithm, sample variance was 
introduced into the density definition to reduce the density 
difference between clusters of variable density data sets. 

Reference [13] proposed a robust clustering algorithm 
based on core point identification and K-nearest neighbor 
kernel density estimation, which used K-nearest neighbors 
to calculate sample density and form delegations for 
clustering. In reference [14], an adaptive nearest neighbor 
DPC algorithm was proposed, which introduced sample 
adaptive neighbors to accurately define sample density and 
obtain density peaks of low-density clusters. Reference [15] 
proposed density peaks clustering based on weighted local 
density sequence and nearest neighbor assignment 
(DPCSA). The new local density was defined by 
considering the contribution of K-nearest samples to the 
density. Reference [16] introduced the fuzzy domain and 
the relative relation between samples and their neighbors 
into density calculation, and these algorithms had 
improved the density calculation method to a certain extent. 
In terms of sample allocation strategy improvement, 
reference [17] proposed a fast hierarchical clustering of 
local density peaks via an association degree based on the 
association degree transfer method (FHC-LDP). The 
algorithm divided the data set into different sub-clusters 
according to the density peak, and uses hierarchical 
clustering to merge the sub-clusters. Reference [18] 
proposed a density peak clustering with connectivity 
estimation (DPC-CE) algorithm, which used the 
connectivity of the maps to improve the calculation 
strategy of relative distances in sample allocation. 
Reference [19] proposed an adaptive two-stage density 
clustering algorithm with fuzzy connectivity. Combining 
the advantages of DPC and DBSCAN algorithms, the 
algorithm also considered distance and fuzzy connectivity 
between samples when determining density peak and 
membership degree of sample allocation, thus improving 
the clustering effect. Reference [20] proposed a shared 
neighbor DPC algorithm for manifold oriented data, which 
defined the similarity between samples by the neighbor 
relationship between samples and allocated samples based 
on this similarity. References [21,22] improved the 
distribution accuracy of DPC algorithm by introducing 
minimum spanning tree and minimum spanning forest 
strategies. 

Because the local density value in the density peak 
clustering algorithm directly affects the clustering result, 
and the local density is related to the truncation distance of 
the subjective selection, some scholars have improved the 
defect. Maximo et al. [23] made use of the idea of adaptive 
multi-resolution meshing. After meshing the data set, 
density ratio estimation was used to calculate the local 
density of the data points, and then clustering was carried 
out. Reference [24] set a new formula for calculating local 
density in the density peak clustering algorithm. The 
average value of local density was used as the density 
threshold to screen outliers and eliminate them, and then 
the adaptive strategy was used to merge similar clusters. 
Campello et al. [25] extended the density peak clustering 
algorithm into a general hierarchical structure in order to 
avoid the impact of two user-specified parameters on the 
clustering effect, thereby improving the clustering 
accuracy to a certain extent. 
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Reference [26] proposed the sharing K-nearest 
neighbors and multiple assignment policies density peaks 
clustering algorithm (SKM-DPC). The algorithm defined 
the similarity between sample points based on shared 
neighbors, and introduced an amplification factor to 
redefine the local density. Based on the two-step allocation 
strategy of SNN-DPC algorithm, the condition of nearest 
neighbor reachability of inevitable dependent points was 
raised to improve the allocation result. The K-nearest 
neighbor majority voting principle was applied to the 
possible subordinate points that were not assigned. 
However, the distance information was not considered in 
the voting process, and it was easy to be affected by the 
distant nearest neighbor points. This could lead to incorrect 
decisions when dealing with the cluster boundary region, 
which in turn affected the subsequent allocation of points, 
and eventually leaded to a large number of allocation 
associated errors. 

The above researchers basically believe that the 
density peak clustering algorithm provides an effective tool 
for finding clusters with different shapes and densities, but 
the algorithm has shortcomings such as high time 
complexity and easy to be affected by manual parameter 
adjustment. Therefore, this paper proposes a density peak 
clustering algorithm based on sparse auto-encoder and data 
space meshing via evidence probability distribution. Our 
main contributions are as follows. 

Firstly, sparse auto-encoder is used to extract features 
and reduce dimensionality of high dimensional data matrix. 
The original density peak clustering algorithm needs to 
calculate the distance between each data point and all other 
data points, which causes the problem of high time 
complexity of the algorithm. The idea of grid is introduced 
to divide the data space into multiple grids. 

Then only the distance between each data point and 
the data points in the adjacent grid is calculated, which can 
greatly reduce the computation amount and improve the 
efficiency of the clustering algorithm. In the K-nearest 
neighbor domain, the transfer probability is constructed 
based on shared proximity to prioritize the points that meet 
the conditions. In order to overcome the limitation of the 
majority voting principle, the evidence function is 
established according to the distance information and class 
cluster information of the points in the K-nearest neighbor 
domain under the framework of evidence reasoning. Then 
the evidence function is synthesized, and a truth-based 
reliability decision method is proposed to address the 
deficiency of Pignistic decision probability. 

Finally, the reliability decision method is used to 
convert the synthesized evidence function into evidence 
probability for fine decision making and determine the 
class cluster belonging of sample points to be assigned. 
Different allocation methods are designed for different 
levels of sample points, which makes the algorithm in this 
paper more effective in alleviating the associated error of 
allocation. The experimental results show that the proposed 
algorithm has good clustering effect when dealing with 
complex manifold data and real data set. 

2. Preliminaries

2.1. Density peak clustering (DPC) 

Density peaks clustering algorithm has two basic 
assumptions: the density of the algorithm itself is high, 
while other data points with lower density are surrounded. 
The distance from data points greater than its own density 
is relatively large. In the density peak clustering algorithm, 
there are two important parameters, local density 𝑝𝑝𝑖𝑖  and 
relative distance 𝛿𝛿𝑖𝑖, the values of these two parameters are 
related to the clustering effect of the whole algorithm. 

Definition 1. Local density. The two formulas for 
calculating local density in the density peak clustering 
algorithm are shown in equations (1) and (4). 

When clustering large data sets, it uses truncation kernel 
to calculate local density: 

𝜌𝜌𝑖𝑖 = ∑ 𝜒𝜒(𝑑𝑑𝑖𝑖𝑖𝑖 − 𝑑𝑑𝑐𝑐)𝑗𝑗                           (1) 
Where 𝜒𝜒(𝑥𝑥) is the indicative function. 

𝜒𝜒(𝑥𝑥) = �1, 𝑥𝑥 < 0
0, 𝑥𝑥 ≥ 0               (2) 

𝑑𝑑𝑖𝑖𝑖𝑖 = �∑ |𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗|2𝑛𝑛
𝑖𝑖=1                       (3) 

Where 𝑑𝑑𝑖𝑖𝑖𝑖  represents Euclidean distance. 𝑑𝑑𝑐𝑐  stands for 
truncation distance. When the data set size is large, the 
clustering results are less affected by the truncation 
distance 𝑑𝑑𝑐𝑐. When the data set size is relatively small, the 
clustering results are greatly affected by the truncation 
distance 𝑑𝑑𝑐𝑐. In order to avoid the influence of truncation 
distance 𝑑𝑑𝑐𝑐  on clustering results, the density peak 
clustering algorithm adopts formula (4) to calculate local 
density 𝜌𝜌 for small-scale data sets. 

When clustering small-scale data sets, Gaussian kernel 
is used to calculate the local density: 

𝜌𝜌𝑖𝑖 = ∑ 𝑒𝑒𝑒𝑒𝑒𝑒(−
𝑑𝑑𝑖𝑖𝑖𝑖
2

𝑑𝑑𝑐𝑐2
)𝑗𝑗              (4) 

It can be seen from equation (4) that local density 𝜌𝜌 is 
also affected by truncation distance 𝑑𝑑𝑐𝑐 . Therefore, 
proposed algorithm does not use truncation distance 𝑑𝑑𝑐𝑐 to 
calculate local density 𝜌𝜌 , but introduces the concept of 
attenuation factor and the idea of k-nearest neighbor to 
calculate local density 𝜌𝜌. 

Definition 2. Relative distance. Relative distance 𝛿𝛿𝑖𝑖 
represents the minimum Euclidean distance between a data 
point 𝑥𝑥𝑖𝑖 and a data point 𝑥𝑥𝑗𝑗 whose local density is higher 
than its own local density. 

𝛿𝛿𝑖𝑖 = �
min
𝑗𝑗:𝜌𝜌𝑖𝑖<𝜌𝜌𝑗𝑗

(𝑑𝑑𝑖𝑖𝑖𝑖)

max
𝑗𝑗

(𝑑𝑑𝑖𝑖𝑖𝑖)     (5) 

For different data sets, the time and number of truncation 
distance 𝑑𝑑𝑐𝑐  calculation are also different. The larger the 
number of data samples contained in the data set, the 
greater the distance between the sample points to be 
calculated, and the higher the time complexity. In the same 
sample data set, different truncation distance values will 
directly affect the local density calculation. In the density 
peak clustering algorithm, the quality of the clustering 
results is greatly affected by the clustering center. In this 
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algorithm, the selection of cluster center is determined by 
two parameters: local density 𝜌𝜌  and relative distance 𝛿𝛿 . 
Moreover, the formula for calculating the local density 
includes the parameter truncation distance 𝑑𝑑𝑐𝑐, so the size 
of the truncation distance 𝑑𝑑𝑐𝑐  will directly affect the 
clustering result of the data set. 

The aggregation data set has seven classes, and the 
number of data points in different classes is not uniform, 
and the difference is large. Different class clusters will have 
a relatively large number of points connected. This paper 
takes the data set as an example to study the influence of 
different truncation distance values on clustering results. 
As can be seen from Figure 1, there are great differences in 
clustering results generated by different truncation distance 
values. The proposed method does not use truncation 
distance 𝑑𝑑𝑐𝑐 to calculate local density 𝜌𝜌, but introduces the 
concept of attenuation factor and the idea of K nearest 
neighbor to reduce the negative effect of truncation 
distance in calculating local density, so as to avoid a series 
of effects brought by truncation distance 𝑑𝑑𝑐𝑐 on clustering 
results. 

(a) cluster result with 𝑑𝑑𝑐𝑐=0.5 (b) cluster result with 𝑑𝑑𝑐𝑐=1

Figure 1. Aggregation data clustering result 

In the density peak clustering algorithm, firstly, the 
distance matrix 𝐷𝐷 is obtained by using the sample set data, 
so that the local density 𝜌𝜌𝑖𝑖 and the relative distance 𝛿𝛿𝑖𝑖 are 
obtained. Then, according to the product 𝛾𝛾𝑖𝑖 = 𝜌𝜌𝑖𝑖 × 𝛿𝛿𝑖𝑖  of 
local density 𝜌𝜌𝑖𝑖 and relative distance 𝛿𝛿𝑖𝑖, the decision graph 
is drawn to select the cluster center point. Clustering 
centers generally select data sample points with large local 
density and relatively far distance. The product of the two 
is used for selection to avoid the value of one item being 
too small, which makes the selection of clustering centers 
inaccurate. After selecting the correct cluster center, the 
sample data points of non-cluster center are allocated 
according to the distance principle. Finally, the result graph 
of clustering and various indexes are obtained. 

It can be seen from the steps of the above algorithm that 
the time complexity of the density peak clustering 
algorithm mainly lies in the calculation and storage of the 
distance matrix. However, after the data is meshed, the 
Euclidean distance between the data points is no longer 
calculated. Instead, the time complexity is reduced by 
calculating the distance between the grids. 

2.2. Defect analysis of DPC algorithm 

Although DPC algorithm can cluster arbitrarily shaped 
clusters without iteration, especially on non-convex data 
sets with good performance, the DPC also has certain 
defects: 
(1) The truncated kernel and Gaussian kernel of DPC
algorithm can not fully reflect the local density information 
of sample points, the former only counts simply, and the
latter requires the participation of all sample points, which
easily leads to inaccurate density measurement. Manifold
data is composed of some arc-shaped or ring class clusters.
Due to the inaccuracy of density measurement, it is difficult 
for DPC algorithm to find the correct class cluster center.
As shown in Figure 2, the Db data set is a complex
manifold data, consisting of 4 arc-shaped clusters. The
decision diagram of DPC algorithm on Db data set is shown 
in Figure 2(a), and the cluster center (black five-pointed
star) selected according to the decision diagram is shown
in Figure 2(b). It can be found that the DPC algorithm
cannot correctly select the class cluster center, and sample
points numbered 224 and 59 are selected as the class cluster
center on the longest curved ribbon class cluster, among
which sample point 59 is a multi-selected class cluster
center. This is because the DPC algorithm considers the
global distribution information of the sample points,
ignoring the local distribution information around. In the
face of manifold data with complex distribution structure,
it is often difficult to accurately measure its density, which
results in the excessive density of sample point No. 59, and
its high-density nearest neighbor is located around sample
point No. 224, which has the highest density, indirectly
leading to its relative distance being too large. It ends up
being the second most faulty candidate cluster center on the 
decision graph.

(a)Gaussian kernel density decision diagram (b) Gaussian
kernel density cluster center selection

(c)Shared proximity density decision map (d) Shared
proximity density cluster center selection

Figure 2. The cluster center selection by different 
density definition methods on the Db data set 
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(2) After selecting the center of the cluster, the DPC
algorithm sorts each non-central point in descending order
of density, and then assigns it to the cluster where its high-
density nearest neighbor is located in turn. The clustering
process is simple and efficient, but it is prone to assignment 
associated errors. When the high-density nearest neighbor
of a point is assigned incorrectly, the point will also be
assigned incorrectly. If that point is also a high-density
nearest neighbor of another point, a chain reaction will
result, with one misallocation of sample points causing
more points to be misassigned. Experiments are performed
on the Pathbased data set, as shown in Figure 3, which has
two spherical clusters inside and one ring cluster outside.
Although the DPC algorithm finds the correct cluster
center, there is a wrong sample point allocation. In the
boundary region of spherical cluster and annular cluster,
the boundary between clusters is not obvious, and the
density of the sample points of circular cluster is not only
lower than that of the boundary points of spherical cluster,
but also closer to the boundary points of spherical cluster.
According to the distribution rule, sample points No. 105
and 106 of the ring cluster are allocated to the boundary
points of the spherical cluster whose density is larger than
that of the ring cluster and the distance between them is
nearest. Due to these incorrect allocation, sample points No.
104 and 107 are also allocated incorrectly, which leads to
a large number of ring cluster points being incorrectly
allocated to the two inner spherical clusters.

(a)Pathbased data set (b) Gaussian kernel clustering result

Figure 3. Joint errors in allocation of DPC algorithm 
on Pathbased dataset 

2.3. D-S evidence theory 

D-S(Dempster-Shafer) evidence theory can deal with
uncertainty, inaccuracy and incomplete information, and
effectively integrate and reason these information, so it has
a wide range of applications in data mining [27,28].

For a problem to be decided, it is assumed that the 
possible outcomes that can be recognized are represented 
by the set 𝛩𝛩 = {𝜃𝜃1,𝜃𝜃2,⋯ ,𝜃𝜃𝑛𝑛} , and 𝛩𝛩  is called the 
recognition framework. For ∀ 𝐴𝐴 ∈ 2𝛩𝛩 , if the function 
𝑚𝑚: 2𝛩𝛩 → [0,1] satisfies the following two conditions: 

�
𝑚𝑚(∅) = 0

∑ 𝑚𝑚(𝐴𝐴)𝐴𝐴⊆𝛩𝛩 = 1                         (6) 

Then 𝑚𝑚  is called the basic probability assignment 
function (mass function). 𝑚𝑚(𝐴𝐴)  represents the degree to 

which the evidence supports proposition A. If 𝑚𝑚(𝐴𝐴) > 0, 
then 𝐴𝐴 is called a focal element. 

On the basis of the basic probability assignment 
function, trust function 𝐵𝐵𝐵𝐵𝐵𝐵 and plausible function 𝑃𝑃𝑃𝑃 can 
be used to express the lower limit and upper limit 
estimation of the degree of support for proposition 𝐴𝐴, and 
express the degree of uncertainty of proposition 𝐴𝐴  to a 
certain extent: 

�
𝐵𝐵𝐵𝐵𝐵𝐵(𝐴𝐴) = ∑ 𝑚𝑚(𝐵𝐵)𝐵𝐵⊆𝐴𝐴 ,𝐴𝐴 ∈ 2𝛩𝛩

𝑃𝑃𝑃𝑃(𝐴𝐴) = ∑ 𝑚𝑚(𝐵𝐵)𝐵𝐵∩𝐴𝐴≠∅ ,𝐴𝐴 ∈ 2𝛩𝛩              (7) 

𝐵𝐵𝐵𝐵𝐵𝐵(𝐴𝐴) indicates the degree to which the evidence trusts 
proposition 𝐴𝐴 . 𝑃𝑃𝑃𝑃(𝐴𝐴)  indicates the degree of trust that 
proposition 𝐴𝐴 is not false, that is, the degree of no doubt 
about proposition 𝐴𝐴, which is of great significance for data 
analysis and decision making. 

In order to combine information from multiple 
independent evidence sources, mass functions of multiple 
evidence can be combined by D-S synthesis rules, so as to 
achieve the fusion of multiple evidence and obtain a new 
global mass function, which is ready for the next step of 
decision analysis. Let 𝑚𝑚1  and 𝑚𝑚2  be two mass functions 
with focal elements 𝐴𝐴𝑖𝑖, and 𝐵𝐵𝑗𝑗 , respectively. 𝑚𝑚 is used to 
represent the mass function corresponding to the new 
evidence after the combination of 𝑚𝑚1 and 𝑚𝑚2, then the D-
S synthesis rule is expressed as follows: 

m(A) = �
∑ 𝑚𝑚1(𝐴𝐴𝑖𝑖)𝑚𝑚2(𝐵𝐵𝑗𝑗)𝐴𝐴𝑖𝑖∩𝐵𝐵𝑗𝑗

1−K
, A ≠ ∅

0, A = ∅
              (8) 

Where 𝐾𝐾 = ∑ 𝑚𝑚1(𝐴𝐴𝑖𝑖)𝑚𝑚2(𝐵𝐵𝑗𝑗)𝐴𝐴𝑖𝑖∩𝐵𝐵𝑗𝑗=∅  is called the 

conflict coefficient. 1
1−𝐾𝐾

 is called a regularization factor. 𝑚𝑚 
is also called the direct sum of 𝑚𝑚1 and 𝑚𝑚2, denoted 𝑚𝑚 =
𝑚𝑚1 ⊕𝑚𝑚2. 

3. Proposed density peak clustering
algorithm

A large number of scholars use cluster analysis to measure 
the similarity between different data sources, so as to find 
the relationship and rule between the data. The density peak 
clustering algorithm is a clustering algorithm using density. 
When the density peak clustering algorithm calculates the 
local density, it involves the truncation distance. The 
truncation distance is calculated according to the distance 
matrix of the sample data points, so it takes a long time for 
a large data set. In this paper, the sample data set is meshed, 
the density threshold is defined, the dense grid is screened, 
and the cluster center is selected directly from the dense 
grid, which greatly reduces the calculation time. In order to 
improve the clustering effect, the center sample points of 
non-class cluster are redistributed according to the idea of 
nearest neighbor. 
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3.1. Data dimensionality reduction based on 
sparse auto-encoder 

Sparse auto-encoder is an unsupervised feature learning 
algorithm [29,30], and its structure is shown in Figure 4. It 
is a neural network model where the target output is the 
same as the input. Each sparse auto-encoder has two 
processes: the encoding process and the decoding process. 
During encoding, input is converted into hidden features; 
During decoding, the hidden features are reconstructed into 
the target output. It overcomes the disadvantage that auto-
encoders cannot extract features effectively [31] and 
introduces sparse constraint term into the error function of 
auto-encoder to enforce dimensionality reduction 
expression on high-dimensional data. This method has a 
very broad application prospect. 

Figure 4. Structure of sparse auto-encoder 

According to the structure of the sparse auto-encoder 
shown in Figure 4, the parameter of the sparse auto-encoder 
is set to (𝑊𝑊, 𝑏𝑏) . Where 𝑊𝑊(𝑙𝑙)  represents the connection 
weight between 𝑙𝑙 − 𝑡𝑡ℎ layer and 𝑙𝑙 + 1 − 𝑡𝑡ℎ layer. 𝑏𝑏(𝑙𝑙+1) is 
the bias of 𝑙𝑙 + 1 − 𝑡𝑡ℎ layer. For a given input data, the 
output based on the forward propagation hidden layer is: 

ℎ𝑊𝑊,𝑏𝑏(𝑥𝑥) =

⎣
⎢
⎢
⎢
⎡𝑎𝑎1

(2)

𝑎𝑎2
(2)

⋮
𝑎𝑎𝑆𝑆2

(2)
⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡𝑓𝑓(∑ 𝑊𝑊1𝑗𝑗

(1)𝑆𝑆1
𝑗𝑗=1 𝑥𝑥𝑗𝑗 + 𝑏𝑏1

(1))

𝑓𝑓(∑ 𝑊𝑊2𝑗𝑗
(1)𝑆𝑆1

𝑗𝑗=1 𝑥𝑥𝑗𝑗 + 𝑏𝑏2
(1))

⋮
𝑓𝑓(∑ 𝑊𝑊𝑆𝑆2𝑗𝑗

(1)𝑆𝑆1
𝑗𝑗=1 𝑥𝑥𝑗𝑗 + 𝑏𝑏𝑆𝑆2

(1))⎦
⎥
⎥
⎥
⎤

         (9) 

Where 𝑆𝑆1 is the number of neurons in the input layer. 𝑆𝑆2 
is the number of hidden layer neurons. 𝑓𝑓(∙) is the activation 
function defined for sigmoid, as shown in equation (10). 

𝑓𝑓(𝑧𝑧) = 1
1+𝑒𝑒−𝑧𝑧

    (10) 
The sparse auto-encoder attempts to get the output 

vector ℎ𝑊𝑊,𝑏𝑏(𝑥𝑥) as close as possible to the input vector 𝑥𝑥. In 
order to obtain better sparse features, a sparse penalty term 
is added to the error expression, i.e., 
𝐽𝐽𝑆𝑆(𝑊𝑊, 𝑏𝑏; 𝑥𝑥) = 1

2
||ℎ𝑊𝑊,𝑏𝑏(𝑥𝑥(𝑖𝑖)) − 𝑥𝑥(𝑖𝑖)||2 + 𝛽𝛽 ∑ 𝐾𝐾𝐾𝐾(𝜌𝜌||𝜌𝜌𝑗𝑗)𝑆𝑆2

𝑗𝑗=1  
(11) 

The first term is the sum of squares error term, which 
describes the difference between the entire training data. 
The second term is a sparse penalty term with a penalty 

coefficient 𝛽𝛽. Where 𝜌𝜌 is a constant close to zero. 𝜌𝜌𝑗𝑗 is the 
average activation of hidden unit 𝑗𝑗, its expression is: 

𝜌𝜌𝑗𝑗 = 1
𝑚𝑚
∑ 𝑎𝑎𝑗𝑗

(2)(𝑥𝑥(𝑖𝑖))𝑚𝑚
𝑖𝑖=1    (12) 

Where 𝑚𝑚 is the number of samples. 
Sparse constraint can be understood as making the 

average activity of neurons in the hidden layer extremely 
small. Sparse effect is best when 𝜌𝜌𝑗𝑗 ≈ 𝜌𝜌. KL divergence is 
introduced to limit the difference between the two. KL 
divergence is defined as: 
∑ 𝐾𝐾𝐾𝐾(𝜌𝜌||𝜌𝜌𝑗𝑗)𝑆𝑆2
𝑗𝑗=1 = ∑ [𝜌𝜌𝑙𝑙𝑙𝑙 𝜌𝜌

𝜌𝜌𝑗𝑗
+ (1 − 𝜌𝜌)𝑙𝑙𝑙𝑙 1−𝜌𝜌

1−𝜌𝜌𝑗𝑗
]𝑆𝑆2

𝑗𝑗=1      (13) 

When 𝜌𝜌  is closer to 𝜌𝜌 , the KL divergence value is 
smaller, and as the difference between the two becomes 
larger, the KL divergence value will increase accordingly. 
The optimization problem can be solved by neural 
activation forward transmission and error back 
propagation. 

3.2. Data space meshing 

For data space meshing, each dimension of data is 
evenly divided into the same number ℎ of segments, the 
empty grid with 0 data points in the grid is deleted, and the 
number of remaining non-empty grids is 𝑀𝑀. Experimental 
results show that when the number of grid objects 𝑀𝑀  is 
greater than 𝑛𝑛/5 of data samples, the clustering accuracy is 
higher [32]. 

For the number of mesh segments ℎ, the size of ℎ will 
affect the clustering result. The smaller ℎ in mesh division 
denotes the larger grid length, which will lead to data 
sample points that do not belong to the same cluster being 
divided into the same cluster, resulting in a decrease in 
clustering accuracy. However, the larger ℎ  denotes the 
smaller mesh length, and even some grids contain only one 
data sample point, in this case, the accuracy of clustering is 
not much different from that before mesh division. So mesh 
division loses its meaning. 

Homogeneous partition clustering of heterogeneous data 
sets can find the cluster center more directly and has low 
time complexity. Non-uniform partition may have a 
positive effect on data sets with different degrees of 
sparsity. However, how to quantify data sparsity needs to 
be analyzed according to different data. In addition, non-
uniform partitioning will reduce the generality of the 
algorithm and increase the complexity of the calculation. 
Therefore, this paper chooses the method of evenly 
dividing the number of grid segments ℎ  for cluster 
analysis. 

3.3. Local density calculation and allocation 
strategy 

Definition 3. Local density. The local density of grid 𝑖𝑖 is 
calculated as the product of the number of sample data 
points 𝑔𝑔𝑖𝑖 in the grid plus the number of sample data points 
𝑔𝑔𝑗𝑗 in 𝑘𝑘 nearest neighbor grid 𝑗𝑗 and the function 𝑒𝑒. Where 
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𝑒𝑒−𝑑𝑑𝑖𝑖𝑖𝑖
2

 is the attenuation factor. 𝑑𝑑𝑖𝑖𝑖𝑖  represents the distance 
between the grid 𝑖𝑖 and 𝑗𝑗. 

𝜌𝜌𝑖𝑖 = 𝑔𝑔𝑖𝑖 + ∑ 𝑒𝑒−𝑑𝑑𝑖𝑖𝑖𝑖
2
𝑔𝑔𝑗𝑗𝑗𝑗∈𝐾𝐾𝐾𝐾𝐾𝐾𝑖𝑖                (14) 

Definition 4. Relative distance. The relative distance 𝛿𝛿𝑖𝑖 of 
the grid represents the Euclidean distance between grid 𝑖𝑖 
and the denser grid, calculated as follows: 

𝛿𝛿𝑖𝑖 = min
𝑗𝑗:𝜌𝜌𝑗𝑗>𝜌𝜌𝑖𝑖

(𝑑𝑑𝑖𝑖𝑖𝑖)                            (15) 

Definition 5. Density threshold. The density threshold is 
calculated as follows: 

𝜌𝜌𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜌𝜌𝑖𝑖) × 𝑑𝑑%                        (16) 
Where 𝑑𝑑 represents the upper quartile. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜌𝜌𝑖𝑖) means 

to sort the local density values of each grid cell according 
to the principle from largest to smallest. 

The steps of the allocation strategy are as follows: 
(a) Take any unlabeled sparse grid 𝑔𝑔  from the sparse

grid set 𝐺𝐺; If all grids are marked, skip to step (d). 
(b) For unlabeled sparse grids, identify the data points

within the grids. 
(c) Compare the Euclidean distance between the data

points in the sparse grid and the center points of the 
surrounding cluster, and assign the remaining data sample 
points using the idea of nearest neighbor. 

(d) Complete the assignment.

3.4. Non-central point allocation strategy 

After determining the class cluster center, labels can be 
assigned to non-class cluster center points according to the 
allocation strategy. The single-step allocation strategy 
adopted by DPC algorithm is easy to cause a lot of 
allocation errors. In order to improve the fault-tolerance of 
DPC algorithm distribution, a two-step distribution 
strategy is proposed in this section. In the first step, transfer 
probability distribution is performed, and sample points are 
connected according to transfer probability to complete the 
distribution of core sample points of cluster and form the 
backbone of cluster. The second step is to carry out the 
evidence probability distribution. According to the 
evidence probability, the unassigned non-core sample 
points in the cluster boundary area are accurately classified 
into clusters, and the clustering of the whole data set is 
finally completed. 

Most density clustering algorithms are considered from 
the connectivity between sample points. DBSCAN 
algorithm defines a cluster as a set of maximum density 
connected points, while DPC algorithm connects sample 
points with its high-density nearest neighbors. However, 
when the proximity of two connected points is low, 
allocation errors are likely to occur. The transfer 
probability distribution takes into account the shared 
proximity between two sample points. The idea is to start 
from the center of the cluster and find points with greater 
shared proximity in the K-nearest neighbor domain for 
label transfer. When the transfer point (labeled point) and 
the passed point (unlabeled point) are passed, it is 
considered that the two sample points are connected once. 
In this way, the label in the center of the class cluster is 

diffused to the whole class cluster. Those connected sample 
points constitute the backbone structure of the class cluster 
and can represent the core area of a class cluster. 

In order to demonstrate the connection effect of 
transitive probability assignment, a simple data set 
containing two lunate class clusters is artificially 
generated. Figure 5 shows the effect diagram of connecting 
sample points according to transfer probability distribution. 
The blue five-pointed star represents the cluster center, and 
the yellow sample point is the sample point that does not 
participate in the connection and participates in the next 
stage of distribution without the arrow pointing from the 
other sample points. What needs to be considered in this 
process is to which sample points can an allocated sample 
point transmit its label, so as to reduce the probability of 
errors in the allocation process as much as possible. The 
following is the relevant definition to achieve this 
allocation process. 

Figure 5. Transfer probability distribution of the 
sample point connection effect 

Definition 6. Transfer probability. The transfer probability 
is defined by K-nearest neighbors and shared proximity: 

𝑃𝑃𝑖𝑖𝑖𝑖 = �
𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖,𝑗𝑗)

∑ 𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖,𝑗𝑗)𝑥𝑥𝑙𝑙∈𝐾𝐾𝐾𝐾𝐾𝐾(𝑥𝑥𝑖𝑖)
, 𝑥𝑥𝑗𝑗 ∈ 𝐾𝐾𝐾𝐾𝐾𝐾(𝑥𝑥𝑖𝑖)

0, 𝑥𝑥𝑗𝑗 ∉ 𝐾𝐾𝐾𝐾𝐾𝐾(𝑥𝑥𝑖𝑖)
 (17) 

If sample point 𝑥𝑥𝑖𝑖 has been assigned a cluster label, 𝑃𝑃𝑖𝑖𝑖𝑖  
represents the probability that its cluster label will be 
passed to another sample point 𝑥𝑥𝑗𝑗, and 𝑃𝑃𝑖𝑖𝑖𝑖 = 0 is set that 
sample point 𝑥𝑥𝑖𝑖 cannot pass the label to itself. 
Definition 7. Transitive probability assignment. If sample 
point 𝑥𝑥𝑖𝑖 has been assigned cluster labels, for ∀𝑥𝑥𝑗𝑗 ∈ 𝑋𝑋, its 
transfer probability assignment concept is as follows: 

𝐿𝐿𝑏𝑏(𝑥𝑥𝑗𝑗) = �
𝐿𝐿𝐿𝐿(𝑥𝑥𝑖𝑖),𝑃𝑃𝑖𝑖𝑖𝑖 ≥

1
𝐾𝐾

 𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑗𝑗) ≥ 𝜇𝜇

−1, 𝜇𝜇 =
∑ ∑ 𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖,𝑗𝑗)𝑥𝑥𝑗𝑗∈𝑋𝑋𝑥𝑥𝑖𝑖∈𝑋𝑋

𝑛𝑛(𝑛𝑛−1)

      (18) 

Where 𝐿𝐿𝐿𝐿(𝑥𝑥𝑖𝑖)  is the cluster label for 𝑥𝑥𝑖𝑖 . 𝐿𝐿𝑏𝑏(𝑥𝑥𝑗𝑗) = −1 
indicates that point 𝑥𝑥𝑗𝑗 does not pass labels. 𝐾𝐾 is the number 
of nearest neighbors. 𝜇𝜇 is the mean of the shared proximity 
matrix. When 𝑥𝑥𝑖𝑖 passes the label to 𝑥𝑥𝑗𝑗, this indicates that 
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the two points are very closely connected, and 𝑥𝑥𝑖𝑖  and 𝑥𝑥𝑗𝑗 
can be considered to belong to the same class cluster. 

Algorithm 1. Transitive probability distribution 
strategy 
Input: cluster center 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, number of neighbors 𝐾𝐾, 
shared proximity matrix 𝑆𝑆𝑆𝑆𝑆𝑆. 
Output: the core set of allocated points and the 
remaining sample set 𝑅𝑅 to be allocated. 
Step 1. Initializing an empty 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄, adding the class 
cluster 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 to the queue. 
Step 2. Retrieves and deletes the first element 𝑥𝑥𝑝𝑝 from 
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄. 
Step 3. Find the K-neighbor set 𝐾𝐾𝐾𝐾𝐾𝐾(𝑥𝑥𝑝𝑝) of 𝑥𝑥𝑝𝑝 , and 
traverse every neighbor 𝑥𝑥𝑞𝑞  of 𝑥𝑥𝑝𝑝. If 𝑥𝑥𝑞𝑞  is not assigned, 
and 𝑥𝑥𝑞𝑞  and 𝑥𝑥𝑝𝑝 can be transitive probability assignment, 
then pass 𝑥𝑥𝑝𝑝 's class cluster label to 𝑥𝑥𝑞𝑞 , and add 𝑥𝑥𝑞𝑞  to the 
end of 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 , otherwise, skip 𝑥𝑥𝑞𝑞  to access the next 
neighbor. 
Step 4. If the 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄  is empty, the algorithm will be 
ended. Otherwise, go to Step 2. 

3.5. Evidence probability distribution 

The core points of the cluster are clustered through the 
transfer probability distribution, and the backbone structure 
of the cluster can be formed in most cases. The non-core 
set R that does not satisfy the transitive probability 
assignment is often the boundary region of the class cluster. 
For this part of the point, the classification of its cluster can 
not be determined accurately, which will have a certain 
impact on the final clustering accuracy. Even if the cluster 
backbone cannot be formed, the information of the points 
allocated in the previous step should be fully used for label 
diffusion, and the wrong chain reaction in the allocation 
process should be cut off as much as possible. 

Using the traditional KNN decision to cluster is to find 
the K-nearest neighbors of the unallocated sample points, 
and then to classify the unallocated sample points 
according to the voting principle based on their class 
cluster information. However, there are some problems, it 
does not take into account the difference between K 
neighbors, and it does not give the probability of belonging 
to each class cluster. As shown in Figure 6(a), it is 
obviously unreasonable for sample points not allocated 
according to the voting principle to belong to class cluster 
B. The EKNN algorithm proposed in reference [33] is a
supervised classification algorithm that improves the
traditional KNN algorithm by combining evidence theory.
The category information of K neighbors is regarded as
evidence, and each piece of evidence takes into account the
distance from the sample point to be classified. The closer
the distance from the sample point to be classified, the
more important its category is to determine the category of
the sample point to be classified. Evidence synthesis is to
synthesize these information from the perspective of
information fusion to obtain a new evidence function,

which provides the basis for the next decision. Inspired by 
reference [33], considering the distance and cluster 
information of K-neighbors of unassigned points, an 
evidence function is established for each neighbor, and the 
evidence probability of the point belonging to each cluster 
is calculated after the K neighbor information is fused by 
the evidence synthesis rule. Using evidence probability to 
precisely guide the clustering of points can achieve higher 
clustering accuracy than the traditional KNN majority 
voting. As shown in Figure 6(d), the decision is made 
according to the principle of maximum probability, and the 
unallocated sample points will be classified to clustering A, 
which is obviously more reasonable. 

When applying evidence theory to clustering, because 
clustering is an unsupervised learning algorithm, there may 
be other unassigned sample points in the k-nearest 
neighbor of an unassigned sample point. Therefore, it is 
also necessary to consider how to establish evidence 
functions for the nearest neighbor points without class 
cluster labels. The following gives the evidence function 
construction methods for two kinds of nearest neighbor 
points. 

Cluster A

Cluster B

Unallocated 
point

(a) nearest neighbor search (b) Establishing evidence

(d) Evidence probability (c) Evidence synthesis

Figure 6. The process of generating evidence 
probability 

Before evidence fusion, the cluster of data set 𝑋𝑋 is used 
as the identification framework 𝛺𝛺 = {𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝑀𝑀}. 𝑀𝑀 is 
the number of class clusters. For ∀𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅 , the k-nearest 
neighbor set 𝐾𝐾𝐾𝐾𝐾𝐾(𝑥𝑥𝑖𝑖) of 𝑥𝑥𝑖𝑖 is found, and the class cluster 
information of 𝑥𝑥𝑗𝑗

(𝑖𝑖) ∈ 𝐾𝐾𝐾𝐾𝐾𝐾(𝑥𝑥𝑖𝑖) is regarded as evidence. If
𝑥𝑥𝑗𝑗

(𝑖𝑖)  is an assigned point, it considers the distance
relationship between it and 𝑥𝑥𝑖𝑖 , and constructs a proof 
function for distance monotonicity. 𝑚𝑚(∙ |𝑥𝑥𝑗𝑗

(𝑖𝑖)) indicates the
confidence that 𝑥𝑥𝑖𝑖 belongs to the class cluster 𝑥𝑥𝑗𝑗

(𝑖𝑖):

�
𝑚𝑚(𝑐𝑐(𝑗𝑗)|𝑥𝑥𝑗𝑗

(𝑖𝑖)) = 0.95 × 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑑𝑑𝑖𝑖𝑖𝑖2 )

𝑚𝑚(𝛺𝛺|𝑥𝑥𝑗𝑗
(𝑖𝑖)) = 1 − 0.95 × 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑑𝑑𝑖𝑖𝑖𝑖2 )

           (19) 

If 𝑥𝑥𝑗𝑗
(𝑖𝑖)  is an unassigned point, it builds an evidence

function 𝑚𝑚(∙ |𝑥𝑥𝑗𝑗
(𝑖𝑖)) for it as well:

𝑚𝑚(∙ |𝑥𝑥𝑗𝑗
(𝑖𝑖)) = 1                             (20)

𝑐𝑐(𝑗𝑗) ∈ 𝛺𝛺  indicates the class cluster to which 𝑥𝑥𝑗𝑗
(𝑖𝑖)

belongs. 𝑑𝑑𝑖𝑖𝑖𝑖  is the Euclidean distance between 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗
(𝑖𝑖).

The smaller 𝑑𝑑𝑖𝑖𝑖𝑖  denotes the larger 𝑚𝑚(𝑐𝑐(𝑗𝑗)|𝑥𝑥𝑗𝑗
(𝑖𝑖)), indicating

that 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗
(𝑖𝑖) are more likely to belong to the same class
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cluster. 𝑚𝑚(𝛺𝛺|𝑥𝑥𝑗𝑗
(𝑖𝑖)) represents the degree of ignorance and

it shows the confidence in assigning 𝑥𝑥𝑖𝑖 to all class clusters. 
The larger 𝑚𝑚(𝛺𝛺|𝑥𝑥𝑗𝑗

(𝑖𝑖)) denotes that the more difficult it is to
judge the class cluster belonging of 𝑥𝑥𝑖𝑖. 

Thus, the K neighbors of 𝑥𝑥𝑖𝑖  provide K pieces of 
evidence for their cluster information {𝑚𝑚𝑘𝑘|𝑘𝑘 = 1,2,⋯ ,𝐾𝐾}. 
In order to obtain a piece of evidence describing the class 
cluster assigned by 𝑥𝑥𝑖𝑖 , the classical D-S evidence fusion 
rule is used to synthesize it 𝐾𝐾 − 1  times, and a fused 
evidence 𝑚𝑚 = 𝑚𝑚1⨁𝑚𝑚2⨁⋯⨁𝑚𝑚𝐾𝐾 is obtained. 

Definition 7. Evidence probability. The focal element in 
the fusion evidence 𝑚𝑚 of 𝑥𝑥𝑖𝑖 contains the class clusters and 
recognition frameworks to which K neighbors belong. In 
order to get the probability that 𝑥𝑥𝑖𝑖 is assigned to each class 
cluster, the decision probability obtained by converting 𝑚𝑚 
with the truth probability is called the evidence probability 
of 𝑥𝑥𝑖𝑖. 

The idea of the evidence probability distribution strategy 
is to continuously find the undistributed sample with the 
maximum evidence probability in the sample point set to 
be distributed and assign it first until the number of 
undistributed sample points reaches zero. 

Algorithm 2. Evidence probability distribution strategy 
Input: points 𝑅𝑅 to be allocated, number of neighbors 𝐾𝐾, 
number of clusters 𝑀𝑀. 
Output: Final clustering result 𝑆𝑆. 
Step 1. Initialize an allocation matrix 𝐴𝐴 with 𝐻𝐻 rows and 
𝑀𝑀  columns, where 𝐻𝐻 = |𝑅𝑅|  is the number of 
unallocated points, each unallocated point corresponds 
to a row of the matrix, and each class cluster corresponds 
to a column of the matrix. 
Step 2. For ∀𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅 , whose row number in the 
distribution matrix is denoted as ℎ , calculate the 𝑥𝑥𝑖𝑖 
evidence probability (𝑃𝑃1,𝑃𝑃2,⋯ ,𝑃𝑃𝑀𝑀), and then change 
the evidence probability (𝑃𝑃1,𝑃𝑃2,⋯ ,𝑃𝑃𝑀𝑀) is added to all 
columns corresponding to the row in 𝑥𝑥𝑖𝑖. 𝐴𝐴(ℎ,𝑚𝑚) is the 
element of row ℎ , column 𝑚𝑚  in matrix 𝐴𝐴 , which 
represents the probability 𝑃𝑃𝑚𝑚  assigned by 𝑥𝑥𝑖𝑖  to class 
cluster 𝑐𝑐𝑚𝑚. 
Step 3. Find the maximum value 𝑀𝑀𝑀𝑀 of the matrix 𝐴𝐴, if 
𝑀𝑀𝑀𝑀 ≠ 1/𝑀𝑀 , and have row ℎ  and column 𝑚𝑚 
corresponding to 𝐴𝐴(ℎ,𝑚𝑚) = 𝑀𝑀𝑀𝑀 . Assign the point 𝑥𝑥𝑖𝑖 
corresponding to row ℎ  to the class cluster 𝑐𝑐𝑚𝑚 
corresponding to column 𝑚𝑚, and then delete 𝑥𝑥𝑖𝑖 from 𝑅𝑅, 
if 𝑀𝑀𝑀𝑀 = 1/𝑀𝑀 , increase the nearest neighbor search 
range, let 𝐾𝐾 = 𝐾𝐾 + 1. 
Step 4. If 𝑅𝑅 is not empty, perform Step 1 to continue 
allocating unallocated points in 𝑅𝑅 , otherwise, end the 
algorithm. 

4. Time complexity analysis

Assuming that the number of samples in the data set is
𝑛𝑛, the time complexity of the DPC algorithm mainly comes 
from calculating the distance matrix, calculating the local 

density of each sample point, and calculating the relative 
distance of each sample point. The time complexity of each 
part is 𝑂𝑂(𝑛𝑛2), so the total time complexity of the DPC 
algorithm is 𝑂𝑂(𝑛𝑛2). 

The time complexity of this proposed algorithm is 
mainly composed of the following parts: (1) The time 
complexity of calculating the distance matrix is 𝑂𝑂(𝑛𝑛2); (2) 
The time complexity of calculating the shared proximity 
matrix using K-nearest neighbors and shared nearest 
neighbors is 𝑂𝑂(𝐾𝐾𝐾𝐾2) ; (3) The time complexity of 
calculating local density is 𝑂𝑂(𝑛𝑛); (4) The time complexity 
of calculating relative distance is 𝑂𝑂(𝑛𝑛2); (5) In the worst 
case, the K-nearest neighbors of 𝑛𝑛 core points need to be 
traversed, and the time complexity is 𝑂𝑂(𝐾𝐾𝐾𝐾) ; (6) The 
evidence probability distribution strategy also considers 
the allocation of 𝑛𝑛 non-core points in the worst case, and 
the time complexity of forming a distribution matrix for 
each non-core point is 𝑂𝑂(𝐾𝐾𝐾𝐾) . The time complexity of 
finding the maximum 𝑀𝑀𝑀𝑀  in the allocation matrix 𝐴𝐴  is 
𝑂𝑂(𝑀𝑀𝑀𝑀), regardless of the fact that 𝑛𝑛 is decreasing every 
time allocation, so the time complexity of the second step 
allocation strategy is 𝑂𝑂((𝐾𝐾 + 𝑀𝑀)𝑛𝑛2). To sum up, the time 
degree of the proposed algorithm is 𝑂𝑂((𝐾𝐾 + 𝑀𝑀)𝑛𝑛2), and 
both 𝐾𝐾  and 𝑀𝑀  are much smaller than 𝑛𝑛 , and the time 
complexity can be approximated to 𝑂𝑂(𝑛𝑛2), which is the 
same as the time complexity of the DPC algorithm. 

5. Experimental results and analysis

To evaluate the effectiveness of the proposed algorithm 
and detect its performance, this section presents a 
performance comparison compared to the comparison 
algorithm on both artificial and real datasets. WANG et al. 
[34] divided the artificial data set into 7 categories: uniform 
density data set, variable density data set, convex data set,
non-convex data set, single-peak data set, multi-peak data
set and cross-winding data set. Therefore, this paper adopts
7 manual datasets and 6 UCI datasets as shown in Table 1
and Table 2 to conduct simulation experiments. In addition
to ED-Hexagon and Blood datasets, other manual datasets
and UCI datasets are taken from reference [35], while the
rest are taken from reference [34].

Table 1. Artificial data set 

Data set Sample 
number 

Dimension Number of 
categories 

ED_Hexagon 361 2 2 
Jain 373 2 2 
D31 3100 2 31 
Donutcurves 1000 2 4 
Banana 4811 2 2 
T4 8000 2 6 
Chainlink 1000 3 2 
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Table 2. UCI data set 

Data set Sample 
number 

Dimension Number 
of 
categories 

Liver 345 6 2 
Wpbc 198 33 2 
Glass 214 9 6 
Ecoli 336 7 8 
Blood 748 4 2 
Wine 178 13 3 

The experimental environment of this paper are Windows 
64-bit operating system, CPU AMD Ryzen 7 6800H, AR
4.7GHz, 16.0GB RAM, PyCharm Community Edition
2023.2.1, Python 3.9.

5.1. Evaluation index 

In this paper, Adjusted Rand Index (ARI), Normalized 
Mutual Information (NMI) and Fowlkes and Mallows 
Index (FMI) are selected as cluster evaluation indicators. 
NMI). ARI is an indicator to measure the similarity of two 
clustering results, and its value range is [-1,1]. The value is 
close to 1, the clustering result is better; the value is close 
to 0, the clustering result is worse. Its definition is shown 
in Equation (21): 

𝐴𝐴𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅−𝐸𝐸[𝑅𝑅𝑅𝑅]
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅𝑅𝑅)−𝐸𝐸[𝑅𝑅𝑅𝑅]

      (21) 
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅𝑅𝑅) represents the value if the clustering results 

are completely correct. 𝐸𝐸[𝑅𝑅𝑅𝑅] is the expected value of RI. 
NMI is an external indicator that measures the degree of 

information sharing between clustering results and real 
categories, with values ranging from [0,1]. When the value 
of NMI is 0, it means that the clustering results are 
completely independent of the real category, and the value 
of 1 means that the clustering results are perfectly 
corresponding to the real category. Its definition is shown 
in equation (22): 

𝑁𝑁𝑀𝑀𝑀𝑀 =
∑ ∑ 𝑙𝑙𝑙𝑙𝑙𝑙𝑎𝑎(

𝑛𝑛∙𝑛𝑛𝑖𝑖,𝑗𝑗
𝑛𝑛𝑖𝑖∙𝑛𝑛𝑗𝑗

)𝑘𝑘(𝑇𝑇)
𝑗𝑗=1

𝑘𝑘(𝐶𝐶)
𝑖𝑖=1

�(∑ 𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑎𝑎
𝑛𝑛𝑖𝑖
𝑛𝑛

𝑘𝑘(𝐶𝐶)
𝑖𝑖=1 )(∑ 𝑛𝑛𝑗𝑗 𝑙𝑙𝑙𝑙𝑙𝑙𝑎𝑎

𝑛𝑛𝑗𝑗
𝑛𝑛

𝑘𝑘(𝐶𝐶)
𝑖𝑖=1 )

      (22) 

Where 𝑘𝑘(𝐶𝐶)  is the number of clusters of clustering 
results. 𝑘𝑘(𝑇𝑇) is the number of clusters of real clustering 
results. 𝑛𝑛𝑖𝑖 is the number of samples of cluster 𝑖𝑖. 𝑛𝑛𝑗𝑗 is the 
number of samples of cluster 𝑗𝑗 . 𝑛𝑛𝑖𝑖,𝑗𝑗  is the number of 
samples belonging to cluster 𝑖𝑖  in clustering result 𝐶𝐶  and 
cluster 𝑗𝑗 in real clustering result 𝑇𝑇. 𝑛𝑛 is the total number of 
samples in the data set. 

Based on the idea of pairwise comparison, FMI 
compares whether a pair of data points is assigned to the 
same cluster in two cluster results at the same time, and 
then measures the similarity between the given two 
clusters, whose value range is [0,1]. Where 1 indicates that 
the two clustering results are identical. 0 indicates that the 

clustering results are completely inconsistent. Its definition 
is shown in equation (23): 

𝐹𝐹𝑀𝑀𝑀𝑀 = 𝑇𝑇𝑇𝑇
�(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)

                   (23) 

𝑇𝑇𝑇𝑇 refers to the number of data point pairs assigned to 
the same cluster in two clusters at the same time. 𝐹𝐹𝐹𝐹 is the 
number of pairs of data points that are assigned to the same 
cluster in one cluster, but not in another cluster. 𝐹𝐹𝐹𝐹 refers 
to the number of pairs of data points that are not the same 
cluster in one cluster but are in another cluster. 

5.2. Experiments on manual data sets 

In this paper, DPC algorithm, DBSCAN algorithm and 
ICKDC algorithm are used as comparison algorithms, and 
experiments are conducted on 7 different types of manual 
data sets. The experimental results and analysis are as 
follows: 
(1) Uniform density data set. Different clusters have
similar densities in the data set, as shown in Figure 7(a). In
a data set with uniform density, most points have similar
local densities, so it is difficult to distinguish points with
significant density as cluster centers, which makes it
difficult for DPC algorithm to accurately identify cluster
centers. Secondly, because the density between data points
does not change much, the cluster boundary becomes
blurred, and the classification of cluster boundaries by DPC 
algorithm depends on the density difference, but in the case
of uniform density, this difference almost does not exist.
Therefore, in EX_Hexagon data set, DPC algorithm
performs poorly in clustering.

Figure 7. Experiments on uniform density data sets 
(from left to right: DPC on EX_Hexagon, DBSCAN on 
EX_Hexagon, ICKDC on EX_Hexagon, proposed on 
EX_Hexagon) 

(2) Variable density data set. Different clusters have
different densities in the data set, as shown in Figure 8(a).
In Jain data set, the upper branch data is sparsely
distributed, and the lower branch data is densely
distributed. In such data sets, the local density dominates
the decision value, while the correction effect of relative
distance is weak, which leads to the wrong selection of the
cluster center. As shown in Figure 8(a), Figure 8(b) and
Figure 8(c), DPC algorithm, DBSCAN algorithm and
ICKDC algorithm cannot effectively separate clusters.
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Figure 8. Experiments on variable density data sets 
(from left to right: DPC on Jain, DBSCAN on Jain, 
ICKDC on Jain, proposed on Jain) 

(3) Convex data sets. In any cluster, all connections
between data points are contained within the cluster region, 
as shown in Figure 9(a). In this kind of data set, there are
usually obvious cluster boundaries and good spatial
separation, which makes the cluster center easier to be
identified. As shown in Figure 9(a), Figure 9(b) and Figure
9(c), DPC algorithm, DBSCAN algorithm, ICKDC
algorithm and GDPC algorithm all perform well in
clustering.

Figure 9. Experiments on convex density data sets 
(from left to right: DPC on D31, DBSCAN on D31, 
ICKDC on D31, proposed on D31) 

(4) Non-convex data sets. In any cluster, all the connected
parts between data points are contained within the cluster
region, as shown in Figure 10(a). In the Donutcurves data
set, three non-convex clusters and one convex cluster are
included, since the remaining sample points are allocated
based on the Euclidene distance from each point to the
nearest high-density point by both the DPC and ICKDC
algorithms. This means that a point may be assigned to the
cluster where its closest high-density point is located, even
if that point is spatially closer to another cluster center.
Therefore, the DPC algorithm and ICKDC algorithm
performed poorly in clustering on the Donutcurves data set.

Figure 10. Experiments on non-convex density data 
sets (from left to right: DPC on Donutcurves, 
DBSCAN on Donutcurves, ICKDC on Donutcurves, 
proposed on Donutcurves) 

(5) Unimodal data set. Any cluster has a density peak as
the clustering center, as shown in Figure 11(a). On most
unimodal data sets, DPC algorithm, DBSCAN algorithm,
ICKDC algorithm and proposed algorithm perform better.
However, in Banana data set, there are more data points
with the characteristics of cluster center, and the parameter
sensitivity of DPC algorithm and ICKDC algorithm is
strong, which leads to the wrong selection of cluster center
and the wrong clustering result.

Figure 11. Experiments on unimodal density data 
sets (from left to right: DPC on Banana, DBSCAN on 
Banana, ICKDC on Banana, proposed on Banana) 

(6) Multi-peak data set. Any cluster has multiple centers
with high local density as clustering centers, as shown in
Figure 12(a). T4 data set not only contains multiple points
with high local density, but also contains a lot of noise. As
shown in Figure 12(a) and Figure 12(b), the influence of
noise causes the DPC algorithm and ICKDC algorithm to
produce wrong clustering results. If the algorithm cannot
effectively identify noise, it will not be able to effectively
cluster on such data sets.

Figure 12. Experiments on multi-peak density data 
sets (from left to right: DPC on T4, DBSCAN on T4, 
ICKDC on T4, proposed on T4) 

(7) Cross-wound data set. Two or more clusters of a data
set make it difficult for the algorithm to accurately
distinguish between different clusters, especially in the
cluster boundary region. The DPC algorithm shown in
Figure 13(a) and Figure 13(c) is affected by the chain
allocation problem on the Chainlink data set, resulting in
an intersection between errors, as shown in Figure 13(b).
The clusters of the Chainlink data set are intertwined with
each other and have complex and irregular shapes. The
remaining points were incorrectly allocated. ICKDC
algorithm produces large quantum clusters in order to
avoid the problem of incorrect allocation, and the
clustering performance is poor.

Figure 13. Experiments on cross-wound data sets 
(from left to right: DPC on Chainlink, DBSCAN on 
Chainlink, ICKDC on Chainlink, proposed on 
Chainlink 

In summary, the proposed algorithm is effective and has 
improved accuracy and clustering performance compared 
with the comparison algorithms. 
As shown in Tables 3,4,5, among the evaluation indexes of 
different clustering algorithms on artificial data sets, the 
clustering performance of the proposed algorithm is all 
good. The algorithm in this paper is a two-stage algorithm. 
In the first stage, more clustering centers are selected by 
using the idea of Gaussian distribution, so as to avoid the 
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wrong allocation problem caused by the influence of 
relative distance when allocating the remaining sample 
points. As shown in Figure 7(a), 10(a) and 13(a), after 
selecting the clustering center, DPC algorithm divides the 
data points belonging to the same cluster into another 
cluster due to the influence of relative distance, and the 
algorithm in this paper can cluster accurately. Secondly, in 
the second stage, the suture factor model proposed in this 
paper pays attention to the global characteristics of the data 
to a certain extent, and is more suitable for data sets with 
complex structures than the DPC algorithm. Finally, the 
proposed algorithm in this paper can not only screen cluster 
centers, but also identify noise, as shown in Figure 12(d). 
The reason is that the algorithm in this paper is based on 
data space meshing via evidence probability distribution. 
The remarkable characteristic of data space meshing is its 
symmetry, and its two tails are symmetric, which means 
that the probability of extreme values appearing on both 
sides of the mean value is equal, and the clustering center 
can be selected in the forward direction, and the noise can 
be identified in the reverse direction. Therefore, compared 
with DPC algorithm and ICKDC algorithm, the proposed 
algorithm performs better in clustering on T4 data set. 

Table 3. ARI results on manual data set 

Data DPC DBSCAN ICKDC Proposed 
EX_hexagon -0.0902 1.0000 1.0000 1.0000 
Jain 0.7056 0.9732 0.7306 1.0000 
D31 0.9359 0.5401 0.9498 0.9384 
Donutcurves 0.7594 1.0000 0.7138 1.0000 
Banana 0.0470 1.0000 0.3697 1.0000 
T4 0.6056 0.9052 0.3914 0.9978 
Chainlink 0.3313 1.0000 0.2893 1.0000 

Table 4. NMI results on manual data set 

Data DPC DBSCAN ICKDC Proposed 
EX_hexagon 0.1117 1.0000 1.0000 1.0000 
Jain 0.6448 0.9179 0.6093 1.0000 
D31 0.9574 0.8379 0.9654 0.9584 
Donutcurves 0.8479 1.0000 0.8572 1.0000 
Banana 0.0332 1.0000 0.4157 1.0000 
T4 0.7350 0.8983 0.5479 0.9957 
Chainlink 0.4015 1.0000 0.5154 1.0000 

Table 5. FMI results on manual data set 

Data DPC DBSCAN ICKDC Proposed 
EX_hexagon 0.6320 1.0000 1.0000 1.0000 

Jain 0.8779 0.9896 0.8913 1.0000 
D31 0.9379 0.5717 0.9514 0.9404 
Donutcurves 0.8244 1.0000 0.8161 1.0000 
Banana 0.5304 1.0000 0.6982 1.0000 
T4 0.6805 0.9239 0.4954 0.9982 
Chainlink 0.6954 1.0000 0.5377 1.0000 

5.3. Experiments on UCI data set 

The clustering performance of DPC algorithm, 
DBSCAN algorithm, ICKDC algorithm and proposed 
algorithm on UCI data sets is further evaluated. Table 2 
shows the basic information of selected 6 UCI data sets in 
this experiment. These UCI data sets have significant 
differences in dimension, feature number, shape, etc., 
which can evaluate the performance of the proposed 
algorithm in this paper from different angles and they are 
representative to a certain extent. In the parameter setting 
of the comparison algorithm, the DPC algorithm 
determines parameter 𝑘𝑘  according to the number of 
clusters. The values of parameters 𝑒𝑒𝑒𝑒𝑒𝑒  and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  in 
DBSCAN algorithm are [1,20] and [0.01,1], and the step 
sizes are 1 and 0.01, respectively. The optimal result is 
obtained by iterating 2000 times. Parameter 𝛾𝛾 in ICKDC 
algorithm value range is [0.01,2], step size is 0.01, after 
iterating 200 times, it obtains the optimal result. In this 
paper, the parameter 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 and σ values range in the 
proposed algorithm are [0.01,1] and {1,2,3,4,5}, 
respectively, and the optimal result is obtained through 500 
iterations. The comparison results of evaluation indicators 
of different clustering algorithms on UCI data set are 
shown in Tables 6,7,8. 

For UCI data sets, the performance of the proposed 
algorithm is generally good, but it still performs poorly on 
some data sets with high dimensions and complex 
distribution, and the clustering effect is lower than other 
algorithms. As shown in the Blood data set and Wine data 
set in the experiment, the clustering performance of the 
algorithm in this paper is poor. This is due to the fact that 
in a high-dimensional space, the distance difference 
between different points becomes smaller, making it more 
difficult to distinguish between different data points. 
Secondly, with the increase of dimensions, the volume of 
the data space increases rapidly, resulting in the existing 
data becoming sparse, which means that even large data 
sets may appear inadequate in high-dimensional Spaces, 
resulting in problems of over-fitting and poor 
generalization ability. In general, the proposed algorithm 
performs well compared with other algorithms, but DPC 
algorithm, DBSCAN algorithm and ICKDC algorithm all 
fail to achieve satisfactory results on UCI data sets. 
Compared with the manual data set, the evaluation indexes 
on the high-dimensional data set are decreased. 

EAI Endorsed Transactions 
on Scalable Information Systems | 

| Volume 12 | Issue 1 | 2025 |



Large data density peak clustering based on sparse auto-encoder and data space meshing via evidence probability distribution 

13 

Table 6. ARI results on UCI data set 

Data DPC DBSCAN ICKDC Proposed 
Liver 0.0002 0.0444 0.0046 0.0547 
Wpbc -0.0057 0.4516 0.4185 0.4732 
Glass -0.0241 0.0254 0.0034 0.0254 
Ecoli 0.3397 0.6152 0.6766 0.7560 
Blood 0.5682 0.6247 0.7114 0.5682 
Wine 0.5055 0.4959 0.4528 0.5238 

Table 7. NMI results on UCI data set 

Data DPC DBSCAN ICKDC Proposed 
Liver 0.0004 0.0453 0.0142 0.0532 
Wpbc 0.0095 0.3561 0.4098 0.4141 
Glass 0.0469 0.3394 0.0291 0.1314 
Ecoli 0.5248 0.5541 0.6289 0.7183 
Blood 0.7338 0.6634 0.7708 0.7338 
Wine 0.5647 0.5660 0.4481 0.5634 

Table 8. FMI results on UCI data set 

Data DPC DBSCAN ICKDC Proposed 
Liver 0.5492 0.6481 0.7125 0.7174 
Wpbc 0.7223 0.7370 0.6723 0.7455 
Glass 0.3215 0.1917 0.4981 0.3770 
Ecoli 0.4985 0.7259 0.7643 0.8257 
Blood 0.7716 0.7534 0.8085 0.7716 
Wine 0.6803 0.6932 0.6725 0.6657 

5.4. Parameter sensitivity experiment 

In the running process of the proposed algorithm in this 
paper, in order to evaluate the impact of the parameter 
𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 on the clustering results of the algorithm, under 
the optimal parameter 𝜎𝜎 , the value range is set as 
[0.001,0.05], the step size is 0.001, and 50 iterations are 
performed to observe the 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 changes of the ARI, 
NMI and FMI on the Ecoli data set. 

As shown in Figure 14, in multiple experiments, when 
the parameter 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜  changes slightly, the 
experimental results hardly changes, indicating that the 
parameter 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 is less sensitive. 

Figure 14. Parameter threshold  sensitivity 
experiment 

Similarly, in order to evaluate the influence of parameter 
𝜎𝜎 on the clustering results of the proposed algorithm in this 
paper, under the optimal parameter 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜, the value 
range of 𝜎𝜎  is set to [0.1,3], the step size is 0.1, and the 
iteration is 30 times. The changes of parameter 𝜎𝜎 on the 
evaluation indicators ARI, NMI and FMI for the Ecoli data 
set are observed. As shown in Figure 15, when the 
parameter 𝜎𝜎  changes slightly, the experimental results 
change accordingly, but the change amplitude is small, 
which indicates that the sensitivity of parameter 𝜎𝜎 is small. 

Figure 15. Parameter 𝜎𝜎 sensitivity experiment 

Generally, the experimental results of the proposed 
algorithm in this paper will change dramatically only when 
the parameters change greatly. On the contrary, when the 
parameter change amplitude is small, the experimental 
results change amplitude unchanged or not much. 
Therefore, the experimental results show that the proposed 
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algorithm has low parameter sensitivity and high stability 
and generalization ability. 

6. Conclusion

Data clustering will consume a lot of computing resources. 
In order to avoid consuming a lot of time in calculating 
Euclidean distance between data sample points by density 
peak clustering algorithm, this paper adopts sparse auto-
encoder for dimensionality reduction of data set and maps 
it to the corresponding grid to reduce the running time. 
Aiming at the subjective selection of truncation distance 𝑑𝑑𝑐𝑐 
in density peak clustering algorithm, a local density 
calculation method is defined according to the K-nearest 
neighbor. This calculation method is independent of the 
size of the data set and is independent of the truncation 
distance 𝑑𝑑𝑐𝑐 , which effectively avoids the influence of 
truncation distance 𝑑𝑑𝑐𝑐 on the clustering effect. On the basis 
of setting density threshold, the workload of selecting 
cluster center is further reduced. The Euclidean distance is 
calculated not only from the center point of the nearest 
cluster, but also from the data points contained in the 
nearest cluster, which reduces the possibility of joint error 
caused by the allocation strategy. DPC algorithms may 
have limitations when dealing with high-dimensional data, 
because the sparsity and spatial complexity of high-
dimensional data may cause the algorithm to not accurately 
reflect the similarity between data points. DPC algorithms 
may have limitations in identifying noise points in data sets, 
which may affect the accuracy of clustering results. 
However, how to determine the effective grid division 
mode under different data sets to further improve the 
clustering efficiency will be the direction of future research. 
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