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Abstract 

INTRODUCTION: A stroke, a sudden interruption of blood flow to the brain, is a leading cause of disability and death. 
Early diagnosis is paramount for minimizing brain damage and maximizing treatment effectiveness. 

OBJECTIVES: Traditional diagnostic methods can be time-consuming and have limited Accuracy.  

METHODS: This study investigates the efficacy of various machine-learning models for stroke prediction. Specifically, it 
compares established models like K-Nearest Neighbor, Artificial Neural Network, Long Short Term Memory (LSTM), 
and stacked LSTM with a newly proposed Transformer Convolutional Neural Network (TCNN) architecture, which fuses 
Transformer and Convolutional neural network (CNN) models. 

RESULTS: The TCNN demonstrates significant promise, achieving a superior accuracy of 98% when optimized with the 
AMSGrad optimizer. 

CONCLUSION: These findings suggest that the TCNN architecture has the potential to revolutionize stroke prediction 
accuracy compared to existing methods, potentially leading to improved patient outcomes. 
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1. Introduction

Stroke is considered one of the most dangerous and fatal 
conditions affecting humans because it occurs suddenly in 
the brain. This happens when the brain's blood supply is cut 

off, impairing the brain's capacity to take in oxygen and 
nutrients [1]. Brain cell death, therefore, happens in a matter 
of minutes. The World Health Organisation (WHO) lists 
ischaemic heart disease as the primary cause of mortality 
worldwide, with stroke coming in second. A poor diet, 
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smoking, high blood pressure, high cholesterol, and 
inactivity are the main causes of brain stroke. For successful 
brain stroke treatment and recovery, early detection is 
crucial. This approach increases the likelihood of successful 
intervention, minimizes brain damage, improves recovery 
outcomes, reduces mortality rates, lowers healthcare costs, 
and helps prevent future stroke. Hence, this study focuses on 
predicting brain stroke by incorporating a novel approach, 
namely TCNN, by fusing Transformer and Convolution. 
Figure 1 presents the computational framework for stroke 
risk assessment. 

The proposed method creates a hybrid model that 
combines the best features of transformers and 
convolutional neural networks (CNNs) to offer a novel 
approach to brain stroke prediction [2]. By using CNNs to 
capture fine-grained spatial information and the  

Figure 1. Computational framework for stroke risk 
assessment 

Transformer's multi-head attention mechanism to identify 
long-range correlations within the data, this novel 
architecture enables the model to capture both [3]. This 
combination significantly improves stroke prediction 
accuracy compared with traditional methods. 

The main insights this study offers are summed up as 
follows: 

1. The proposed method uses a multi-head attention
mechanism and a convolution process to analyze a
brain stroke dataset and identify strokes more
accurately.

2. This paper examines the performance of the hybrid
transformer-CNN model in further detail by
investigating the effects of several optimization
strategies.

3. The suggested model provides a comparative
examination of the machine learning classifiers.
This comparison analysis sheds light on the
suggested strategy's efficacy and any possible
benefits over currently used stroke prediction
techniques.

The structure of this document is as follows. Section 1 
summarises the introduction, outlining the significance of 
this research area. Section 2 delves into the existing 
frameworks for brain stroke prediction and establishes the 

groundwork for the proposed approach. Section 3 
constitutes the core of this paper, introducing the proposed 
TCNN model designed to enhance stroke prediction 
accuracy. Subsequently, the experiment findings are shown 
in Section 4, where they are used to assess the viability of 
the suggested model. Section 5, which summarises the main 
conclusions and suggests possible avenues for further study, 
brings the work to a close. 

2. Literature Review

Bathla and Kumar [4] combined feature selection techniques 
with machine learning classifiers to create a hybrid system 
that can accurately predict brain strokes. To alleviate the 
class disparity, the Synthetic Minority Over-Sampling 
Technique (SMOTE) was utilized. The researchers 
compared the performance of five classifiers (Naive Bayes, 
SVM, Random Forest, AdaBoost, and XGBoost) and three 
feature selection methods (Pearson Correlation, Mutual 
Information, and Feature Importance). The Random Forest 
classifier with the Feature Importance feature selection 
method yielded the highest Accuracy of 97.17%, reducing 
the feature set by 36.3%. They plan to incorporate 
Computed Tomography (CT) and Magnetic resonance 
imaging (MRI) images for classification in future work. 
Choi et al. [5] utilized electroencephalogram (EEG) data 
from elderly Korean participants aged 65 or older to predict 
stroke disease using deep learning models. They evaluated 
the models, including CNN-LSTM, LSTM, Bidirectional 
LSTM, and CNN-Bidirectional LSTM, with the latter 
achieving the highest Accuracy of 94.0%. To predict strokes 
using unbalanced healthcare data, Dev et al. [6] offer 
research on an Artificial Bee Colony (ABC) optimized Deep 
Neural Network (DNN) model. This work identified a gap 
in feature selection mechanisms for stroke prediction and 
demonstrates that incorporating feature selection can 
significantly enhance prediction accuracy. With accuracy, 
precision, and recall rates of 87.09%, 84.28%, and 85.72%, 
respectively, the suggested ABC-FS-optimized DNN model 
performs better than alternative machine learning 
approaches. To overcome the issues of incomplete data and 
class imbalance, Liu et al. [7] describe a hybrid machine-
learning strategy for predicting cerebral strokes utilizing a 
dataset of 43,400 patient records with 783 stroke events. The 
authors propose an automatic hyperparameter optimization 
(AutoHPO) based on a deep neural network (DNN) as a 
two-step technique that uses random forest regression to 
impute missing values. The study by Peñafiel et al. [8] 
presents a predictive model for stroke risk using an 
Electronic Health Record, focusing on interpretability and 
handling missing data. The model utilizes a Dempster-
Shafer theory-based approach and outperforms other 
machine learning methods, especially with incomplete data. 
The model extracts and validates important rules for stroke 
prediction and identifies key factors such as past 
cerebrovascular disease, high haemoglobin levels, diabetes, 
and body fat as significant predictors of stroke risk. Rahman 
et al. [9] compared the effectiveness of different machine 
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learning (ML) algorithms and deep neural networks (DNNs) 
in predicting strokes. This study assessed many models with 
varying architectures, including Random Forests, Support 
Vector Machines (SVM), and Deep Neural Networks. 
Regarding Accuracy, Random Forest performs better than 
other classifiers (0.99). Plans for future study entail 
expanding the dataset or utilizing the same model on several 
other datasets. A comparative comparison of machine 
learning methods for stroke prediction is presented by 
Sailasya et al. [10], with Naive Bayes demonstrating the best 
Accuracy. The study advances medical data analysis and 
shows how machine learning (ML) may be used to forecast 
serious illnesses like stroke. The models' training on textual 
data as opposed to real-time brain scans is a limitation of the 
work, and it is suggested that the research be expanded by 
utilizing all available machine learning methods. Adaptive 
moment estimates with maximum (AdaMax), Root Mean 
Squared Propagation (RMSProp), and Adaptive learning 
rate method (Adadelta) are three multi-optimizers that Uppal 
et al. [11] employed as a classification methodology for 
stroke data. According to the trial, the RMSProp optimizer 
is the most effective, with a data training accuracy of 95.8% 
and a data testing accuracy of 94.9%. Around 95% accuracy 
was attained, which may not be adequate for important 
medical diagnoses. Additionally, all of the data utilized in 
this work are textual; however, compiling a CT scan dataset 
to predict stroke risk in the future may be more useful. The 
incorporation of IoT technologies into healthcare systems 
has significantly enhanced patient care. Naresh [12] 
investigates the application of Discrete Wavelet Transform 
(DWT) for processing ECG signals within an IoT-enabled 
health monitoring system. Leveraging DWT's time-
frequency localization features, the research ensures 
effective analysis of non-stationary signals. The system 
architecture comprises signal acquisition, preprocessing, 
feature extraction, and real-time IoT-based transmission to 
cloud servers. Performance metrics indicate notable 
improvements in signal clarity and data compression. 
Basava [13] designed Smart Comrade Robot, driven by AI, 
to improve elderly care by integrating robotics and artificial 
intelligence for daily support, health monitoring, and 
emergency assistance. It enhances safety, provides 
companionship, and alleviates caregiver stress through 
features like real-time health tracking, fall detection, and 
emergency alerts. Leveraging advanced technologies such as 
IBM Watson Health and Google Cloud AI, it delivers 
personalized care to enhance the quality of life for older 
adults. Artificial intelligence (AI) transforms radiology by 
enhancing diagnostic Accuracy and efficiency. Tools like 
Convolutional Neural Networks (CNNs) and Variational 
Autoencoders (VAEs) are used by Surendar Rama 
Sitaraman [14] to support radiologists by streamlining image 
analysis, automating data processing, and detecting 
abnormalities. VAEs also generate synthetic medical 
images, aiding in data augmentation and privacy protection. 
However, the widespread adoption of AI faces challenges 
such as the need for large annotated datasets, issues with 
model interpretability, and ethical concerns. Despite these 

obstacles, AI holds significant potential to improve patient 
outcomes in the future. 

3. Proposed Method

The proposed method combines the integration of 
transformers and convolutional neural networks (T-CNN) 
[15] in a unified architecture for brain stroke prediction. The
Transformer component learns contextual relationships in
the medical data, and the CNN component extracts relevant
features from the input data [16]. The proposed T-CNN
model uses self-attention mechanisms to prioritize important
information and convolutional filters to capture the spatial
patterns in the data. Combining these two architectures, this
novel method can provide comprehensive and accurate
predictions of brain stroke risk. Figure 2 presents a
functional overview of the proposed TCNN architecture.

Figure 2. Functional overview of the proposed 
framework 

Transformers are a type of deep learning architecture that 
has shown promise in various applications. Unlike 
traditional methods, transformers can seamlessly integrate 
information from diverse sources, leading to a richer 
understanding of stroke risk. By combining multiple data 
types, transformers have the potential to make more accurate 
predictions compared to models relying on a single source 
[17]. The Transformer model for learning contextual 
relationships is described in Eq. (1) 
Given an input sequence of vectors, 

X = {x1, x2, ..., xn}       (1) 

Where (xi) represents the embedding vector of the ith input 
token, Feedforward neural networks (FFN) with several 
layers of self-attention make up the Transformer [18]. 
Positioning codes are appended to the input embedded data 
to deliver details regarding the relative locations of tokens, 
as the Transformer does not record the sequence order by 
default. Eq. (2) and (3) define the positional encoding for 
the ith position.  

PE(i,2j) = sin (i/10000 2j/d)          (2) 
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PE(i,2j+1) = cos (i/10000 2j/d)  (3) 

Where d is the dimension of the embeddings, and j ranges 
from 0 to d/2−1. The input embeddings are combined with 
the positional encodings described in Eq. (4).  
Zi=ei+PEi                                                                           (4) 

The self-attention layer is a transformer's central component 
[19]. Focusing on pertinent segments of the input sequence 
enables the model to identify interdependencies among its 
constituents. The self-attention mechanism converts the 
attention scores into probabilities using the softmax function 
[20]. These probabilities determine how much focus each 
token in the sequence should receive relative to the others. 
The formulation is mentioned in Eq. (5) as follows: 

Attention (Q, K, V) =SoftMax (QKT/ k) V        (5) 

where, 
Q=ZWQ (Query matrix), K=ZWK (Key matrix), V=ZWV 
(Value matrix), and WQ, WK, WV are learned parameter 
matrices. The outputs are routed via layer normalization and 
residual connections via the Feed Forward Network (FFN). 
Eq. (6) represents the FFN. 

FFN(x)=max (0, xW1+b1) W2+b2        (6) 

Here, x represents the input, and W,b denotes the weights 
and bias. Through the introduction of non-linearity and the 
ability to learn complicated feature representations, the FFN 
improves the model's capacity to detect intricate patterns 
and correlations in the data. In the Transformer architecture, 
each sub-layer is designed to stabilize and enhance the 
training process using layer normalization and residual 
connections. This combination is crucial for the model's 
performance and training efficiency. Thus, the Transformer 
encoder block processes the input word embeddings, 
capturing relationships between words [21]. Its final output 
vector, hT, represents the entire sentence. Eq. (7) means the 
shape of the final output vector. 

hT.shape=(batch_size,embedding_dim)           (7) 

In this deep learning architecture designed for stroke 
prediction, a convolutional neural network (CNN) branch 
operates parallel to the transformer encoder block, offering a 
complementary analytical pathway for the input data. The 
CNN branch operates on word embeddings to extract 
localized features. After convolution and pooling, the CNN's 
output is flattened into a 1D vector (h_C). This vector 
mentioned in Eq.(8) encapsulates the features learned by the 
CNN filters. Mathematically, its dimension can be 
represented as, 

hC.shape = (batch_size, flattened_size)      (8) 

Flattened_size depends on the filter and pooling operations 
used in the CNN architecture. This fusion layer strategically 
combines the Transformer and CNN outputs using 

concatenation along a specific axis. As mentioned in Eq.(9), 
the tf. concat function performs this operation, joining the 
vectors side-by-side. 

h = tf.concat([hT, hC], axis=1)           (9) 

This results in a new vector (h) with a dimension of batch 
size, embedding_dim, and flattened_size as denoted in 
Eq.(10) 

h.shape=(batch_size,embedding_dim+flattened_size)   (10)

CNN's capacity to extract localized characteristics from 
sequential input is one of its strongest points. By applying 
1D convolutional, CNN can identify localized aspects 
crucial for the classification task. Crucially, the information 
extracted by the CNN is strategically integrated with the 
global understanding captured by the Transformer. The 
CNN procedure is followed by flattening the output and 
concatenating it with the vector produced by the global 
average pooling layer of the Transformer. This creates a 
combined representation that incorporates information from 
global and local analysis levels. This fused representation is 
input into fully linked layers with sigmoid activation for the 
last classification challenge. Table 1 illustrates the algorithm 
of TCNN. 

Table 1. Algorithm of proposed TCNN 

TCNN- Fusion of Transformer and CNN 

Input: Kaggle Stroke dataset, num_filters, kernel_size, 
hidden_units 
Output: Predicted Stroke Status (logits= Normal, Stroke) 

1. Begin
2. Data= load dataset ( )
3. if data contains empty values
4. replace missing values with

appropriate values
5. end if
6. if column in the data has object type
7.                             encode categorical data
8. end if
9. If data is imbalanced:
10.

balance=SMOTE(strategy=’minority’) 
11. end if
12. X = data without 'stroke’, y =

data['stroke']
13. [X1, X2, y1, y2] = split_data(X, y)
14.                                    scaler = StandardScaler()
15. if standardize:
16. scaled_data = scaler.fit_transform(data)
17. end if
18. Reshape the data for CNN
19. for each sample X:
20. transformer_output

=TransformerBlock(X)
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21. cnn_output = Flatten(MaxPooling1D
(Conv1D(X,num_filters, kernel_size)))

22. fused_features=
concat([transformer_output,cnn_output],axis=1)

23. logits=Dense(fused_features,hidden_units,
activation=’relu’, num_classes)

24. Compute performance evaluation metrics
25. End

4. Performance Analysis

4.1. Dataset Description 

The dataset was extracted from Kaggle [22]. From the 
obtained dataset the independent attributes are id, gender, 
heart_disease, age, bmi, ever_married, work_type, 
Hypertension, residence_type, avg_glucose_level, 
smoking_status, and the stroke column is considered as a 
dependent attribute. A stroke is indicated by several 1, 
indicating that there has been no stroke. The influence of 
specific feature values on brain stroke prediction is 
visualized using the comprehensible Artificial framework 
SHAP (Shapley Additive Explanations) to obtain knowledge 
about the feature relevance and model comprehension.  

4.2. Data Preprocessing 

This dataset contains 12 attributes. This work excluded the 
id column as it doesn't influence the outcome. Missing 
values in bmi and smoking_status were imputed, followed 
by label encoding of categorical features. Finally, data 
normalization was applied to numeric features, scaling them 
to a common range between 0 and 1. This ensures all 
features contribute equally to the model, avoiding biases 
from different measurement scales. 
Machine learning models may perform noticeably worse 
when the dataset has a class imbalance. The proposed study 
used the Synthetic Minority Over-Sampling Technique 
(SMOTE) [23], which deliberately duplicates data points 
from the minority class to increase its representation in the 
training set. Figure 3 (a) and (b) illustrate the diagrammatic 
illustration of the samples before and after applying 
SMOTE.  

Figure 3. (a) Details of dataset before balancing 
Figure 3. (b) Balanced dataset with SMOTE 

4.3. Exploratory Data Analysis 

Figure 4. Model interpretability with SHAP summary 
plot 

Figure 4 shows the model interpretability using a SHAP 
summary graphic. This graph, a SHAP summary plot, 
illustrates how different characteristics affect a machine 
learning model's output, particularly when forecasting stroke 
outcomes. By calculating the contribution of each attribute 
to the prediction, this technique explains individual 
forecasts. The SHAP values, which show how each attribute 
affects the prediction, are represented on the x-axis. A 
characteristic with a positive SHAP value raises the 
possibility of the positive class (having a stroke, for 
example). 
In contrast, a negative SHAP value indicates a drop in the 
chance. The model's characteristics are listed on the y-axis. 
Each dot represents a sample's SHAP value. The dot's colour 
represents the feature's initial value. Higher feature values 
are indicated by red, and lower feature values are indicated 
by blue.  
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Age, Hypertension, and average glucose level are well-
established risk factors for stroke. The SHAP summary plot 
analysis indicates that age is a heavily weighted feature in 
the model's stroke risk prediction. As a result, the model 
predicts that older people will have a greater risk of stroke. 
Another significant risk factor for stroke is persistently 
elevated blood pressure. The SHAP summary plot suggests 
the model incorporates hypertension and blood glucose 
levels as important predictors of stroke risk. Higher values 
of these features correspond to an increased predicted risk of 
stroke, which aligns with established medical knowledge.  

4.4. Evaluation Metrics 

Performance evaluation metrics are essential for determining 
how well machine learning models work. Therefore, the 
evaluation tools are thought to include precision, recall, F1 
score, Accuracy, and kappa coefficient, also referred to as 
Cohen's kappa. The precision of the model is determined by 
dividing all of its positive predictions by the percentage of 
genuine positive forecasts. [24] Eq.(11) shows the formula 
to calculate precision.  

Precision=True_P/True_P+False_P                (11) 

Recall measures the percentage of accurate positive 
predictions among all real positive events in the dataset. It is 
computed by comparing the ratio of true positives to the 
total of false negatives and true positives. The formula for 
calculating recall is mentioned in Eq.(12).  

Recall=True_P/ True_P +False_N            (12) 

Where True_P, False_P, False_N denote the True Positive, 
False Positive and False Negative, respectively.' 
F1 offers a single score that considers recall and Accuracy, 
which is especially helpful for unbalanced datasets. The F1 
score calculation algorithm is provided in Eq. (13) below. 

F1=2(Precision×Recall)/(Precision+Recall)               (13)     

The ratio of accurately predicted occurrences to all instances 
in the dataset is used to calculate Accuracy, which gauges 
the model's overall correctness. q. (14) shows the formula to 
calculate Accuracy. 

Accuracy =Accurate predictions/(Total no.of predictions)      
(14) 

Inter-rater agreement for categorical items is statistically 
measured using Cohen's kappa, which considers chance-
based agreement. t provides a more robust evaluation of 
classifier performance than simple Accuracy, particularly in 
cases of class imbalance. The formula used to calculate 
Cohen's kappa is mentioned in Eq. (15).  

Cohen’s Kappa = (Observed- Expected)/(1-expected)         
(15) 

The suggested method's performance is assessed using the 
abovementioned performance evaluation metrics. 
Additionally, the proposed approach is contrasted with 
baseline machine models, including stacked LSTM with two 
layers, K-Nearest Neighbour, Artificial Neural Network, and 
Long Short-Term Memory (LSTM).  

4.5. Results and Discussion 

Using the "Adam" optimizer function, the suggested TCNN 
network is implemented in the brain stroke prediction 
datasets over a range of epoch counts. Table  2 below 
summarizes the performance evaluation across different 
numbers of epochs.  

Table 2. Performance evaluation across different numbers of epochs 

S.no No. of 
epochs 

Precision Recall F1 Score 
Normal Stroke Normal Stroke Normal Stroke 

1 10 0.88 0.95 0.95 0.86 0.91 0.91 
2 25 0.93 0.92 0.93 0.92 0.93 0.92 
3 35 0.95 0.87 0.85 0.95 0.90 0.91 
4 50 0.93 0.94 0.94 0.92 0.93 0.93 

Figure 5 shows the correlation between the quantity of 
training epochs and the model's accuracy and kappa 
coefficient. 

Figure 5. Performance of TCNN with varied epochs 
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Further enhancing the results, the TCNN model is evaluated 
with various optimizer functions by choosing 50 epochs. 
Table 3 illustrates the results of precision, F-measure, recall, 
Accuracy, Cohen's kappa, and the applied optimizer 
function. 

Table 3. Impact of different optimizers on TCNN 

S.no Optimizers Precision Recall F1 Score Accura
cy 

Cohen’s 
Kappa Normal Stroke Normal Stroke Normal Stroke 

1. Adam 0.93 0.94 0.94 0.92 0.93 0.93 0.93 0.866 
2. Adagrad 0.84 0.80 0.79 0.85 0.81 0.82 0.81 0.631 
3. Adamax 0.88 0.98 0.98 0.87 0.93 0.92 0.93 0.851 
4. AMSGrad 0.96 0.98 0.98 0.96 0.97 0.97 0.98 0.910 
5. Nadam 0.93 0.94 0.94 0.93 0.94 0.93 0.94 0.870 
6. Adadelta 0.69 0.79 0.83 0.63 0.76 0.70 0.73 0.758 
7. Nesterov 

Accelerated 
Gradient 

0.84 0.99 0.99 0.81 0.91 0.89 0.90 0.800 

8. RMSprop 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.857 
9. Stochastic 

Gradient 
Descent 

0.91 0.93 0.93 0.91 0.92 0.92 0.92 0.843 

The above table shows that the proposed TCNN model with 
AMSGrad optimizer performs well and achieves 98% 
accuracy and 91% kappa score. A high kappa score indicates 
better performance of the model. Hence, the TCNN model 
with AMSGrad optimizer was chosen for further evaluation. 
Accuracy and loss functions act as supplementary metrics 
for assessing the performance of the methodologies 
discussed above. Figures 6(a) and (b) depict the graphical 
representation of the TCNN model (with 50 epochs), 
offering insights into both the overall Accuracy of the 
models and the progression of the loss function during 
training and testing. 

Figure 6. a) Accuracy over Training and Validation 

Figure 6. (b) Loss over Training and Validation 

Figure 7 further illustrates the suggested strategy's 
performance using a gain chart, also called a lift chart. It is a 
visual tool for assessing how well a classification model 
performs, especially when dealing with binary classification 
issues. The chart plots the proportion of positive instances 
against the proportion of the population targeted by the 
model. 

Figure 7. Lift chart 

The proposed model curve starts at (0,0) and rises steeply to 
(100,100), indicating that it correctly identifies all positive 
instances with minimal population targeting. Further, to 
visualize the spread of probabilities assigned by a 
classification model to each class label, a predicted 
probability graph is depicted in Figure 8. t typically shows 
the frequency or density of predicted probabilities across 
possible values. In addition to offering insights about the 
model's performance and calibration, this graph is crucial for 
comprehending the degree of confidence in the predictions 
made. The well-calibrated model would ideally have a 
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smooth and evenly distributed curve across the entire range 
of probabilities, indicating balanced confidence in forecasts. 

Figure 8. Histogram of Predicted Class Probabilities 

The model distinguishes well between the two classes for 
most samples, with high-confidence predictions for both 
normal and stroke. However, there is a chance for 
improvement in reducing the number of less confident 
predictions in the middle range, which will be managed in 
the future by tuning the model, gathering more data, and 
trying different modelling approaches. Additionally, the 
suggested TCNN is contrasted with the current models, 
which include stacked LSTM, KNN, ANN, and LSTM, in 
that order. Area Under the Receiver Operating Characteristic 
Curve (ROC-AUC) curves illustrate how well the suggested 
model and all others already in use perform. The graphical 
depiction of ROC-AUC is illustrated in Figure 9. 

Figure 9. Performance Evaluation: ROC Curves of 
Multiple Models 

Also, the following graphs, 10 and 11, depict the pictorial 
representation of Accuracy and Cohen's kappa for all the 
adopted models.  

Figure 10. Graphical depiction of Accuracy 

Figure 11. Cohen’s kappa scores 

The above results show that the TCNN model with 
AMSGrad optimizer outperforms all existing techniques and 
achieves 98% accuracy. This paper compared several 
machine learning algorithms, including K-Nearest 
Neighbors (KNN), Long Short-Term Memory (LSTM) 
networks, Artificial Neural Networks (ANNs), and stacked 
LSTMs, for their effectiveness in brain stroke prediction. 
The investigation revealed that a proposed TCNN 
architecture, optimized with the AMSGrad optimizer, 
achieved superior results. It seems TCNNs are just really 
good at picking up on the important patterns in the data over 
time, which helps predict strokes better. 

5. Conclusion and Future Enhancements

The mitigation of brain damage and enhancement of patient 
outcomes are contingent upon the timely identification of 
stroke. Every minute counts when it comes to stroke 
intervention, and accurate prediction models can be 
instrumental in getting patients the help they need as soon as 
possible. The finding highlights the potential of TCNNs to 
identify stroke-related patterns in data, leading to faster 
diagnoses. The multi-head attention mechanism captures 
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these long-range relationships well. t can learn relationships 
between different parts of the data, potentially identifying 
subtle stroke symptoms that CNN might miss. This 
improves the model's ability to identify strokes, even 
manifesting in less typical or widespread patterns. Plans 
include adding more complete patient data and refining the 
model to achieve even higher precision, which should result 
in better approaches to stroke treatment and prevention. 
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