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Abstract 

INTRODUCTION: Technology realizes the quantitative and positioning acquisition of soil erosion and land use information, 
grasps the relationship between the two from space, and provides theoretical reference and scientific basis for local ecological 
environment construction and soil and water conservation work. 
OBJECTIVES: This paper uses remote sensing images in my country in 2020 and 2021 as the data source and obtains land 
use data in four periods, respectively. The experimental results show that the land use structure in my country underwent 
great changes in 2020, and the land use type gradually changed from a structure dominated by cultivated land, grassland, 
and unused land to grassland, forest land, and cultivated land. 
METHODS: The economic and financial effects of the Belt and Road policy can provide a more comprehensive 
understanding of the significance of the Belt and Road Initiative, which positively enhances economic development. The 
other four types of land use area have increased to varying degrees; the unused land has decreased significantly, and the 
grassland and forest land have increased considerably; there are differences in the changes in the degree of land use in each 
study period, and the overall level of land use has developed phase by phase toward higher levels 
RESULTS: This paper also studies the clustering algorithm in machine learning and proposes an improved interpolation 
algorithm for completing the original rainfall data. 
CONCLUSION: This algorithm can also be applied to the calculation process of rainfall erosion factors, which realizes the 
automatic calculation system of soil erosion model factors, realizes real-time calculation and monitoring of soil erosion in 
the form of calculation tasks, and solving the problem that manual calculation consumes manpower and material resources. 
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1. Introduction

The spatial structure and character characteristics of the 
land will reduce the land area and quality, resulting in the 
loss of land resources; the change of land use cover changes 
the original surface runoff, vegetation phenology and soil 
microscopic physical and chemical properties, which 
become the factors affecting soil encroachment [1-2]. 
Unsustainable land use, such as deforestation, intensive 
agriculture, and urbanization, hastens soil erosion, 
compromising soil health, biodiversity, and water quality. 

* Corresponding author. Email: enqinyao_098@outlook.com 

Effective land use management and control are critical for 
maintaining ecosystem services and promoting sustainable 
agriculture. 
 In recent years, the negative impact of global land 
degradation, environmental quality and human and animal 
health due to soil erosion has become increasingly serious, 
causing serious economic and environmental problems in 
many countries. Cover cropping, crop rotation, 
conservation tillage, buffer zones, agroforestry, and 
reforestation are examples of land management methods 
that can help to preserve soil quality throughout land use 
changes. These measures help to prevent erosion, maintain 
nutrient balance, minimize compaction, stabilize soil, 
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increase organic matter content, and avoid degradation 
caused by urbanization or agricultural intensification. 
Reasonable land use and cover changes can effectively 
improve the natural environment factors such as soil, 
runoff, and climate so that soil encroachment can be 
controlled and the ecological environment can be 
effectively managed and restored. Reforestation, erosion 
control structures, bioremediation techniques, controlled 
grazing practices, and the establishment of protected areas 
can all help to restore ecological balance in places prone to 
soil invasion. These techniques improve soil stability, 
restore habitat, and prevent further invasion by minimizing 
compaction and overgrazing. The first is theoretical 
significance. Although soil erosion is a long-standing 
phenomenon, it is limited to the degree of understanding of 
natural processes and the restriction of research methods. 
The systematic study of soil erosion has been a matter of 
recent decades since the 1990s. Community involvement 
in restoration approaches adapts to local conditions, 
educating communities about soil, weather patterns, and 
erosion control methods. This promotes long-term project 
sustainability, ownership, and culturally relevant 
approaches, hence increasing community support and 
engagement in conservation initiatives. The research on the 
relationship between land use cover change and soil 
encroachment has become an important topic in 
environmental research, especially since the application of 
technology has realized the location and acquisition of soil 
encroachment and land use information, making the 
research on land use cover change and soil encroachment 
closer. Understanding how land use changes affect soil 
encroachment aids in the identification of crucial 
conservation zones, such as deforestation or urbanization, 
and focused interventions, such as reforestation and soil 
conservation techniques. This provides policymakers with 
information about sustainable land management strategies 
that balance development and environmental preservation. 
The four main drivers influencing land use intensity are 
population increases, urban expansion, agricultural 
intensification, economic development policies, climate 
variability, and ecological conservation efforts. Population 
growth and urbanization lower plant cover, whilst intensive 
farming techniques intensify land usage, affecting erosion 
rates and soil stability. 
Normative scientific, and systematic development. The 
second is practical significance. In the middle of the 20th 
century, the area of wind, water erosion and desertification 
in my country increased, the three large sand belts in the 
territory gradually expanded, and the ecological 
environment was seriously damaged. In China, various 
environmental environment governance projects have been 
implemented successively, such as managing Beijing-
Tianjin sandstorm sources, environmental migration, and 
returning farmland to forests and grasslands. In recent 
years, the desertification area has been significantly 
reduced, the forest land has increased in large areas, and 
the sand and dust weather has been effectively controlled 
[4]. The analysis emphasizes China's Belt and Road 
Initiative's concerns in balancing economic development 

and environmental protection, citing greater land 
disturbance, deforestation, and soil erosion threats. It 
proposes strong governance, multinational collaboration, 
and regulatory measures to address these concerns. 

In monitoring soil erosion, geographic researchers 
usually use the real-time rainfall data collected by rainfall 
stations as the original data for calculation. However, 
rainfall data differs from common data, which is spatial [5]. 
Model performance feedback can help discover data gaps, 
improve data quality checks, adjust validation processes, 
and determine the need for additional monitoring stations 
or sensors. Incorporating input into data collection 
promotes continual improvement and future data that meets 
model precision criteria. Due to the limitations of 
manpower, material resources, terrain and other factors, 
researchers can only reasonably distribute rainfall stations 
in the observation area as the observation points of rainfall 
[6]. Rainfall data collected by interpolation is critical for 
soil erosion models because it improves forecasts of 
erosion rates owing to rainfall variability. This data is also 
useful in assessing erosion risk, allowing for more effective 
soil conservation techniques and better land management 
practices. Based on this situation, researchers will use an 
appropriate interpolation algorithm to obtain the rainfall at 
any other location based on the rainfall data at the location 
of the rainfall station, that is, to realize the expansion of 
rainfall calculation from point to surface. In addition, the 
rainfall data is collected through physical devices, and the 
rainfall data needs to be transmitted through the network, 
which will inevitably lead to data loss due to device 
damage, network blockage and other reasons. To reduce 
data loss, use redundant transmission systems, real-time 
data backup, planned automated synchronization, data 
compression, and efficient encoding methods. These 
techniques ensure data can reach the database even if one 
system fails, reducing data gaps and improving 
transmission reliability. Therefore, a calculation method is 
needed to compensate for the lost rainfall data. [7]. The 
research and improvement of the interpolation algorithm 
are of great significance to the scientific research work of 
geographic researchers. An effective rainfall interpolation 
algorithm should be adaptive, resistant to outliers, able to 
integrate numerous data sources, and computationally 
efficient for real-time applications, providing realistic 
rainfall variance across landscapes and time frames. In the 
national soil and water loss monitoring work, researchers 
take the Chinese soil loss equation as the core to predict 
and analyze the soil and water erosion in the area of 
interest, realize real-time erosion monitoring and 
calculation, and support the spatial calculation of soil and 
water conservation data. Provide better information 
support. Therefore, an automated computing system can 
save a lot of manpower, material resources, and time costs, 
and it can positively affect the country's soil and water 
conservation work [8]. To sum up, this topic's three main 
content relationships are shown in Figure 1. 
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Figure 1. Research content relationship diagram 

To sum up, the improved interpolation algorithm can 
improve interpolation accuracy to predict rainfall at any 
location in the area. This block can be directly applied to 
the automatic calculation system of soil erosion model 
factors. The big data framework processes rainfall data, 
provides basic data for predicting rainfall at any region 
location, and improves the data processing performance. 

2. Related works

At the end of this century, influenced by Western 
science and technology development, my country began to 
study soil erosion science. [10] According to the 
observation data of hydrology and sediment in the small 
watersheds of northern Shaanxi, western Shanxi and 
southeastern Long Dong, a statistical model for estimating 
sediment yield in the sub-rainfall watershed was 
established. [11] According to the observation data of the 
Chaba watershed in Zizou, northern Shaanxi, the estimated 
small watershed was established using empirical formulas 
for forecasting sub-flood and annual sediment yield. In the 
mid-20th century, some researchers began to study 
conceptual models based on the physical processes of 
erosion and sediment production [12]. Sreekar looks into 
using K-means clustering in cloud computing to analyze 
Gaussian data. The results reveal that cluster sizes 
considerably impact computation speed and accuracy, 
resulting in cost savings. The study emphasizes the value 
of intelligent resource management and selecting the ideal 
beginning points for optimal clustering performance [13]. 
Rajya offers an improved version of the Variational 
Autoencoder Generative Adversarial Network (VAEGAN) 
for detecting credit card fraud, which is widespread when 
shopping online. The method generates diverse minority 
class data using a new oversampling strategy and a 
Convolutional Neural Network (CNN), enhancing fraud 
detection accuracy. The model beats current techniques 
regarding accuracy, precision, recall, and F1 score [14]. 
Physical erosion models like WEPP and RUSLE use 
sophisticated equations but require much field data. 
Machine learning clustering methods such as K-means can 
generate reliable erosion forecasts from current data 
without requiring high physical parameter precision. The 
two major units of beam slope and ditch slope are 

summarized, and from the dynamic point of view, using 
bed and suspended sediment transport formulas, the 
estimation of sediment production in small watersheds is 
established. The mathematical model of the quantity [15]. 
According to the mechanism of watershed runoff formation 
and erosion and sediment production, using the basic 
theory of hydrology and sediment movement mechanics, a 
small watershed sediment production dynamic model with 
a strong physical origin was constructed [16]. The Chengdu 
Institute of Mountain Hazards and Beijing Forestry 
University have conducted remote sensing application 
experiments and research, covering the whole country, 
large rivers, key soil erosion areas and small watersheds. 
Land use data is collected using remote sensing techniques 
such as high-resolution satellite images, multispectral and 
hyperspectral imaging, and lidar. These methodologies 
allow for precise classification of land use types, vegetation 
health, land cover changes, and surface composition, which 
is critical for soil erosion modelling. Conduct remote 
sensing surveys and monitoring and compile many remote 
sensing images [17]. Using the artificial visual 
interpretation of the latest satellite photos, a map of the 
current situation of soil erosion in various provinces across 
the country was drawn. 

The predicted values have gradually become more 
and more accurate. They used WLSTM, CLSTM, 
multilayer perceptron and LSTM for rainfall forecasting, 
and the results showed that the LSTM method is a better 
choice for time series forecasting. A precipitation 
prediction model based on random forest was established 
based on the measured rainfall data of Liangshan 
Hydrological Station. By comparing with the traditional 
rainfall forecasting model, it is concluded that the rainfall 
forecasting model based on random forest has high 
forecasting accuracy and can avoid the phenomenon of 
overfitting. A precipitation budget model combining a 
support vector machine and particle swarm optimization 
algorithm was pioneered. Machine learning clustering 
methods, such as K-means, strike a compromise between 
interpretability, computational economy, and 
effectiveness, making them ideal for large-scale 
environmental data analysis. Deep learning methods like 
CNNs can capture complicated spatial patterns, potentially 
enhancing prediction accuracy while needing more 
computer resources. 

The above studies are based on collecting local 
historical geological data and using machine learning or 
deep learning methods to predict soil erosion. This also 
provides a broad idea for the research on the calculation 
model of land cover change and soil erosion. The study 
proposes a method for improving land use data collection 
and analysis using remote sensing images, including an 
improved interpolation algorithm for rainfall data, machine 
learning techniques like K-means for erosion forecasts, and 
an automated computing system for real-time soil erosion 
monitoring, incorporating feedback for continuous 
improvement. 
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3. Soil erosion model and interpolation
calculation method

3.1. Soil erosion model 

Soil erosion monitoring is important in our 
country's environmental protection work. In geographic 
ecological protection, the soil erosion calculation model is 
the simplest and most effective calculation method that has 
been researched. The K-means algorithm and interpolation 
method efficiently capture environmental variability by 
grouping comparable landscape elements. They are 
computationally efficient, appropriate for large-scale 
ecological research, and have excellent reproducibility and 
interpretability. They are useful for making environmental 
predictions, policy suggestions, and management decisions 
when dealing with enormous amounts of remote sensing 
data. Since the 1960s, geographic research experts from all 
over the world have developed many formulas related to 
soil erosion calculation to monitor the situation of land 
loss. Soil erosion prediction accuracy is improved by 
machine learning approaches such as Random Forest, 
Support Vector Machines, and Neural Networks, which 
analyze big datasets and uncover nonlinear correlations 
between parameters such as rainfall patterns, land cover, 
soil type, and topography. This real-time data integration 
and adaptive learning eliminate subjectivity, resulting in a 
more dynamic and data-driven approach to soil erosion 
modelling. Climate variables such as rainfall and 
temperature substantially impact soil erosion and land use 
change. Intense rainfall promotes soil separation, but 
extended dry times reduce vegetation cover. These changes 
frequently necessitate adjustments to land use or soil 
conservation strategies. However, these calculation 
formulas are built in different ways. We can divide them 
into empirical statistical models and physical cause 
models. Empirical statistical models, such as the USLE, 
employ observable data to connect erosion causes and 
rates, although they may be inaccurate in complicated 
situations. Physical cause models, such as the WEPP, 
mimic erosion through sediment separation, transport, and 
deposition, providing precise insights for dynamic or short-
term erosion predictions. The empirical model is mainly 
aimed at the phenomenon of sediment production and 
runoff caused by rainfall scouring. Therefore, a few factors 
have been established: rainfall erosion, runoff sediment, 
plant coverage, land moisture content, soil water 
conservation measures, and land use methods. Relational 
expressions between factors. There are two main research 
objects for this type of model: sediment production and 
slope in small watersheds. 
USLE allows the concept of soil loss to be expressed 
numerically using a multiplicative form of six factors. The 
Universal Soil Loss Equation (USLE) has six components: 
R (Rainfall Erosivity), K (Soil Erodibility), LS (Slope 
Length and Steepness), C (Cover and Management), P 
(Support Practice), and A (Predicted Soil Loss). These 
elements include environmental and land management 

aspects influencing erosion potential, resulting in a 
comprehensive model for assessing soil loss and guiding 
conservation strategies. The USLE model is recommended 
because of its simplicity, ease of application, and 
dependability in estimating erosion with limited data, 
making it appropriate for resource-constrained locations or 
areas lacking precise input. The specific situation of USLE 
is shown in the following Equation: 

𝐴𝐴 = 𝑅𝑅 ∗ 𝐾𝐾 ∗ 𝐿𝐿 ∗ 𝑆𝑆 ∗ 𝐶𝐶 ∗ 𝑃𝑃  Equation (1) 

Where   is the rainfall erosivity factor. Rainfall erosivity 
generally expresses the ability of the soil structure to be 
damaged due to the falling and scouring of raindrops. It 
depends on the falling rate of raindrops during the rainfall 
process and some rainfall characteristics, such as the 
volume of raindrops. Soil erosion is caused by splashing 
raindrops and runoff from rainfall scouring, which causes 
soil particles to be separated and transported. Vegetation 
cover is an efficient natural defence against soil erosion. It 
absorbs kinetic energy, stops soil particles from being 
displaced, improves soil structure, increases water 
infiltration, and slows water movement. K-means 
Clustering is a basic and fast machine-learning approach 
that can be used in environmental studies, particularly to 
model soil erosion. It is quicker and easier to use than 
complicated models such as SVM or deep learning 
clustering, which demand a lot of computing power. 
However, neural networks may be more computationally 
costly and complex, rendering them unsuitable for soil 
erosion modelling. The effect of this rain damage depends 
not only on the structure of the land but also on some other 
properties of the soil, such as the slope of the land, whether 
there is sufficient vegetation protection on the surface, and 
what human protection measures are in place. 

 is the soil erodibility factor. Soil is the target of 
erosion, and after the soil has been washed, the soil will be 
mixed into the river to form sediment. The soil structure is 
different, resulting in different soils' resistance to external 
forces such as raindrops and water erosion. The K factor 
describes the ability of the land to respond to external 
effects such as raindrops and water erosion, and the 
magnitude of the value can reflect this ability. The smaller 
the K value, the weaker the induction ability, that is, the 
more difficult it is to be eroded; the larger the K value, the 
stronger the induction ability, and the easier the land is to 
be eroded. 

3.2. Interpolation algorithm 

Interpolation algorithms generally predict 
information at unknown points from known sample point 
information. The general idea includes artificially 
specifying the numerical relationship between the known 
sample point and the unknown point, adding an appropriate 
weight coefficient to the known point, and obtaining the 
value at the unknown point. Weight coefficients are 
optimized via interpolation algorithms using cross-
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validation, machine learning techniques like gradient 
descent, and context-specific variables such as topography 
and distance to known points. These approaches repeatedly 
compare multiple weights on known data points to get the 
best values for predicting unknown points. The new 
interpolation approach increases rainfall data accuracy by 
addressing geographical variability, an important factor in 
soil erosion models. It combines spatial and temporal 
rainfall data from multiple sources to produce more precise 
and localized estimates. This level of accuracy is critical 
for soil erosion modelling, as it improves prediction 
dependability. Or fit a suitable function through the known 
points and then substitute the variables of the unknown 
points to calculate the predicted value. Common 
interpolation algorithms include reverse distance weight 
interpolation, kriging interpolation, nearest neighbour 
interpolation, etc. 

Among them, the idea of the reverse distance 
weight interpolation algorithm is that in a search range, the 
observation point that is closer to the unknown point is 
more likely to affect the unknown point, and vice versa, 
with less impact. The enhanced interpolation approach 
enhances rainfall and soil erosion forecasts by capturing 
finer-scale geographical changes in rainfall data. It 
integrates multiple data sources to reduce mistakes in 
forecasting erosive force on various terrain types. This 
precision results in more accurate erosion estimates over 
numerous clusters. The inverse distance weight 
interpolation algorithm stipulates that its weight coefficient 
is represented by the power of the reciprocal distance, 
where the power value is a positive number, and its default 
value is 2. The number of sample points participating in the 
calculation can be artificially specified to avoid points with 
too low weights participating in the calculation process, 
resulting in unnecessary waste of computing resources. 
The specific calculation principle is shown in the Equation: 

    𝜇𝜇𝑥𝑥 = ∑ 𝜔𝜔𝑖𝑖
𝑁𝑁
𝑖𝑖=1 𝑦𝑦𝑖𝑖    Equation (2) 

𝜔𝜔𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑖𝑖−𝑝𝑝
∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=1

−𝑝𝑝  Equation (3)

∑ 𝜔𝜔𝑖𝑖
𝑁𝑁
𝑖𝑖=1 = 1   Equation (4) 

4. Methods

This chapter mainly proposes an optimized soil 
erosion interpolation calculation model to realize the 
estimation and prediction of soil erosion at a certain 
location. In the process of filling in the missing data of the 
rainfall station and calculating the soil erosion factor, we 
will use the interpolation method to obtain the rainfall and 
soil erosion at the predicted point. The soil erosion 
prediction model entails data collection, factor calculation, 
interpolation, model application, analysis and validation, 
and output interpretation. It collects information on 
rainfall, soil type, slope, land cover, and conservation 
strategies, then calculates factors, interpolates, and applies 
the model to estimate prospective soil erosion rates. The 

optimized soil erosion interpolation calculation model 
proposed in this chapter can improve the calculation 
accuracy of the predicted value. Land cover changes 
influence erosion projections by changing the soil's 
exposure to erosive forces. Vegetation cover protects the 
soil by minimizing raindrop impact, whereas barren terrain 
is more susceptible. The model uses land cover data and 
climate variables to forecast erosion vulnerability under 
specified conditions. Since the rainfall data is monitored by 
the rainfall station and transmitted into the database 
through the network, the phenomenon of data missing will 
inevitably occur. Therefore, it is necessary to conduct a 
data quality audit after the data is stored in the database. If 
data is found to be missing, it is necessary to take certain 
measures to make up for the missing data. In the previous 
topic, we directly filled the missing rainfall data as 0, which 
would cause the calculation results to deviate from the 
actual situation. 

Based on the above analysis, we finally selected 
the K-means calculation method combined with the row 
algorithm as the model for soil erosion prediction. It uses 
K-means clustering and an enhanced interpolation
approach to analyze erosion risk zones in various
environmental data sets. This method simplifies
segmentation and gives high-resolution rainfall estimates,
addressing the limits of existing methods in complex
terrains and improving the portrayal of soil erosion
processes. In addition, we used the error between the
predicted results of soil erosion and the actual soil erosion
as the evaluation standard of calculation accuracy. In order
to explore the relationship between the number of clusters
and the prediction results of erosion, we also recorded the
values of three evaluation indicators of clustering during
the experiment: silhouette coefficient, CH, and DBI.
Landscape heterogeneity, soil type variability, rainfall
intensity distribution, land cover types, and topographic
parameters were all examined to estimate the number of
groups in the K-means clustering technique for forecasting
soil erosion. Clustering accuracy was improved using the
Elbow Method and the Silhouette Score. In this way, we
can explore whether the quality of the clustering effect has
an obvious relationship with the erosion prediction model
proposed in this subject. The interpolation model combines
climatic data, wind erosion data, soil nutrient levels, and
vegetation characteristics to provide a comprehensive
perspective of erosion hazards, allowing for accurate soil
loss projections across a range of landscape circumstances
while ensuring spatial and temporal continuity. Land use
changes and soil erosion are analyzed using remote sensing
technologies and rainfall data from 2020 and 2021. It uses
interpolation methods, K-means clustering, and an
optimized soil erosion prediction model. The model's
accuracy is evaluated by comparing anticipated rates to
actual data, and feedback mechanisms are provided to
ensure ongoing development.

Step 1: Obtain the coordinate values of soil erosion in 
my country in the two-dimensional coordinate system. 
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Step 2: Integrate the rainfall data and the coordinate 
distribution data of the rainfall stations and select two 
data sets with 300 rainfall stations as unknown points. 
In one of the data sets, the rainfall at all stations is 
greater than 0, and this data is used to represent the 
dense rainfall. The file name is TEST.SCV; about 1/4 
of the rainfall stations have a rainfall greater than 0, and 
the remaining rainfall stations are all 0. This data is used 
to represent the dry season with less rainfall. 
Step 3: The prediction results are evaluated using the 
error sum of squares method, and the results are 
compared with the computational model without the 
clustering algorithm. K-means clustering is an 
important approach in soil erosion analysis because it 
groups similar locations according to erosion-
influencing characteristics. This enables more specific 
research and projections, exposing high-risk locations. 
This granular modelling improves the model's capacity 
to precisely represent regional diversity in erosion risk, 
resulting in more precise soil erosion predictions. Its 
calculation formula is as Equation: 

𝑆𝑆𝑆𝑆𝑆𝑆 = ∑𝑖𝑖=1𝑁𝑁 (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑙𝑙)2   Equation (5) 

Its technical flow chart is shown in Figure 2: 

Figure 2. Flow chart of soil erosion factor calculation 
technology 

In this calculation process, the main data sets involved are 
shown in Table 1: 

Table 1. Data set field collation table 

1. Climate data Air temperature 
(minimum, maximum, 

average) 
temperature (min, max, 

average) 
Wind speed (max, 

average, wind direction) 

2. Determination of wind
erosion soil nutrients

Non-growing season: full 
carbon, full nitrogen, full 

hydrogen, carbon-
nitrogen ratio, carbon-

hydrogen ratio 
Growing season: full 

carbon, full nitrogen, full 
hydrogen, carbon to 

nitrogen ratio, carbon to 
hydrogen ratio 

3. Surface vegetation
characteristics

Vegetation height, 
coverage, existing stock 

4. Determination of particle
size of wind erosion soil

non-growing season 
growing season 

The flow chart of the idea based on the calculation of 
terrain factors in this study is shown in Figure 3: 

Figure 3. LS factor calculation flow chart 

After that, using the contour map of 10m resolution in the 
spatial analysis module of ArcGIS9.3, the format DEM 
map of 30m resolution is generated. Its slope length factor 
algorithm is shown in the following Equation: 

  𝑆𝑆 = �
10.8 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 + 0.03 𝜃𝜃 < 5°

16.8 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 − 0.5 5° ≤ 𝜃𝜃 < 10°

21.9 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 − 0.96 𝜃𝜃 ≥ 10°
 Equation 

(6) 

The operation process is expressed as the function 
called first to fill the data; the slope factor extraction 
method is based on the slope value obtained by the 
maximum slope drop method, and the grid slope value is 
the height of the grid and the grid cell in the direction of 
the maximum slope drop. The difference is divided by the 
horizontal distance between the centres of the two grids. 
The slope algorithm is very mature. The functions and 
functions directly called extract the slope and the slope 
aspect and divide the slope segment according to the 
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formula to obtain the slope factor value of the grid cell. The 
algorithm calculates the runoff flow direction to determine 
the slope length of the grid cell, finds the runoff source 
point and the runoff endpoint through the slope map, and 
takes the runoff source point as the starting point to 
calculate the maximum gradient direction accumulation 
about the grid cell. Slope length: Take the cumulative 
maximum value as the grid cell slope length and traverse it 
to calculate the slope length of each grid. Its topographic 
factor eigenvalues are shown in Table 2. 

Table 2. Topographic factor characteristic value table 

Topographi
c factor 

Minimu
m value 

Maximu
m 

Averag
e value 

Standar
d 

deviatio
n 

L factor 0.55 8.72 4.63 0.42 

S factor 0.31 16.15 8.23 1.61 

LS factor 0.028 58.43 29.23 2.41 

5. Case study

The experimental results show that in addition to 
meeting the functional requirements of users, the design of 
the erosion factor calculation system also needs to ensure 
some non-functional requirements, such as accuracy, 
maintainability, and integrity. The study used Geographic 
Information System (GIS) software, such as ArcGIS or 
QGIS, to analyze spatial data and generate erosion risk 
maps. The datasets were processed, and USLE factors were 
calculated using statistical analysis software such as R or 
Python. High-performance computers with plenty of RAM 
and storage were employed for efficient data processing 
and visualization. 

5.1. Improve the accuracy of calculation 
results 

The accuracy is reflected in the system's 
calculation results. For this system, calculation is the core 
function, and the result of system calculation will directly 
affect the user's judgment on regional soil erosion. To 
ensure the system's accuracy, we must first ensure the 
correctness and integrity of the calculation data and, 
secondly, ensure the correctness of the calculation 
formulas and methods in the system. Therefore, we need to 
ensure the correctness of the method realization link in the 
data preprocessing link, the basic data maintenance link, 
and the calculation formula and calculation. 
Under the calculation of the optimized interpolation 
algorithm, the average temperature change is shown in 
Figure 4. 

Figure 4. Schematic diagram of temperature 
changes in 2020-2021 

Its humidity change is shown in Figure 5: 

Figure 5. Schematic diagram of humidity changes in 
2020-2021 

The change in wind speed is shown in Figure 6: 

Figure 6. Schematic diagram of wind speed 
changes in 2020-2021 
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5.2. Algorithm maintainability and integrity 
improvement 

The development and implementation of the 
system need to satisfy maintainability. The research and 
implementation of this system is mainly through the JAVA 
development language, through the construction of the 
SPRING BOOT development framework, combined with 
the SPRING JPA data persistence layer framework, to 
achieve the maintenance of the data in the database. 
Secondly, in the calculation part of geographic data, the 
GDAL class library in Java language is used to perform 
operations such as cropping and vector multiplication. 
Secondly, all the generated results in this system are in the 

form of files, and we have organized a set of file directory 
structures based on administrative divisions to store data. 
Therefore, the maintainability of the system is high. 
Integrity is reflected in the design level of the system 
architecture. The system is mainly composed of three 
modules. The processing and calculation module of rainfall 
data is responsible for verifying and calculating the system 
input data. The soil erosion model factor calculation 
module is accountable for realizing the factor calculation 
and obtaining the user's target result. The data storage and 
maintenance module is responsible for storing and 
maintaining system files.  
The final soil erosion transfer matrix calculation results are 
shown in Table 3: 

Table 3. Schematic diagram of calculation results of soil erosion transfer matrix 

1997 

1975year Micro 
degree 

Light Moderate Strength Extremely 
strong 1 

Extremely 
strong 2 

Severe 

Micro 
degree 

Km2% 994.39 343.29 105.14 32.03 8.27 1.25 0.68 

66.97 23.14 7.09 2.17 0.57 0.09 0.05 

Light Km2% 166.78 389.79 538.49 205.82 33.61 15.43 18.32 

12.21 28.51 39.37 15.05 2.46 1.14 1.35 

Moderate Km2% 76.28 189.9 472.48 555.35 490.68 128.39 27.22 

3.94 9.79 24.36 28.63 25.31 6.63 1.41 

Strength Km2% 2.23 108.29 135.51 252.96 364.02 277.55 425.09 

6. Conclusion

This paper mainly introduces the realization of the 
automatic calculation system of soil erosion model factors. 
Firstly, the realization goal of the system is outlined, and 
then the requirements of the system are analyzed from the 
functional and non-functional aspects. Then, the system's 
design is expounded, and the system is introduced mainly 
from system function and database design aspects. Finally, 
the system's detailed calculation process is introduced. The 
function and performance test of the system rainfall data 
processing module and soil erosion model factor 
calculation module are carried out. 
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