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Abstract 

Wireless Sensor Networks (WSNs) generate correlated and redundant data. This redundancy increases energy consumption 
during transmission and aggregation, which reduces the network lifespan. Eliminating data redundancy using appropriate 
data aggregation mechanisms in the dynamic environment is challenging. To address these issues, we designed the Data 
Aggregation with Redundancy Removal (DARR) protocol and implemented it in two phases. In Phase I, the DARR protocol 
identifies redundant nodes by calculating the spatial distance between the adjacent nodes. Over time, nodes may run out of 
energy and stop working after continuously sensing, aggregating, and transmitting the data. The dead nodes can obstruct 
data forwarding to intermediate nodes, so it is important to check periodically whether the nodes are alive or dead. The 
periodic time check identifies the status of each node, allowing the protocol to focus only on active nodes. It sets redundant 
nodes to sleep, which conserves network energy. In Phase II, the protocol reduces data redundancy at the source nodes using 
temporal correlation between data measurements. We enhanced the DARR protocol by incorporating a High Compression 
Temporal (HCT) mechanism, which further reduces data redundancy. Simulations show that the DARR protocol reduces 
data transmissions by 24% and lowers network energy consumption by up to 31% by eliminating redundant data at both the 
network and node levels. 
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1. Introduction

The wireless sensor network (WSN) has become more 
popular to facilitate real-time applications by interacting 
sensor nodes with physical objects via networked technology, 
similar to the Internet of Things (IoT). Wireless Sensor 
Networks (WSNs) face numerous challenges which affect 
their performance, reliability, and efficiency. Battery power 
is a common source of power for sensor nodes, however it is 
limited. Energy limits can significantly impact the sensor 
network lifetime. Hence, energy-efficient protocols and 
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algorithms are crucial [1]. Batteries often power the sensor 
nodes (SNs) in a harsh environment with a non-replaceable 
power supply, and they have limited sensing, transmission, 
and computing capabilities, so optimal node scheduling plays 
an important role in energy-efficient network [2,3]. Also, the 
sensor network is more vulnerable to failure since sensing, 
communication, and data processing consume the most 
energy. Many long-term continuous monitoring applications, 
such as tracking forest fires, habitats, automobile automation, 
military surveillance, industrial control systems, traffic 
monitoring, etc., await the sensor nodes' information while 
running unsupervised environments. Therefore, energy 
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management is essential for extending a wireless sensor 
network lifetime. 

In the WSN protocol stack, data aggregation plays a 
crucial role in saving the network energy. When aggregating 
the data, all network information must be efficiently 
transmitted to the sink node [4, 5, 6]. WSNs can enable 
effective data transmission, lower energy consumption, and 
extend the network lifetime by utilizing spatial and temporal 
correlation among the data measurements. The accuracy of 
representative data achieved through spatial correlation-
based methods is more significant compared to other 
correlation models [6]. An Efficient Data Collection Aware 
of Spatio-Temporal Correlation (EAST) protocol [7] 
dynamically modifies the size of the correlation region. It also 
modifies the value of coherent threshold based on the event 
characteristics. This helps to reduce the amount of energy 
utilized in data aggregation as it maintains both data accuracy 
and real-time reporting. To reduce the network energy 
consumption and increase the network lifetime further, we 
have proposed a data aggregation protocol. 

The proposed protocol uses an algorithm to identify 
redundant nodes before data transmission and puts them into 
Sleep mode. As a result, only a few non-redundant nodes 
transmit data. In contrast, the existing methods in the 
literature [11, 12] allow all source nodes, both redundant and 
non-redundant, to transmit data to the sink node. By reducing 
the number of data transfers within the network, our protocol 
significantly conserves energy and prevents network 
depletion. 

1.1. Motivation 

Data aggregation in wireless sensor networks (WSNs) is a 
key concept that aims to improve the network efficiency, 
longevity, and data accuracy. The motivation for data 
aggregation in Wireless Sensor Networks (WSNs) stems 
largely from the need to increase energy efficiency. Since 
sensor nodes in WSNs are usually battery-operated and 
placed in inaccessible or remote areas, it might be challenging 
to repair or recharge their power supplies. Large amounts of 
raw data transmission can quickly deplete a sensor node's 
battery since data transmission uses more energy than local 
data processing. By enabling nodes to analyse data locally, 
data aggregation lessens the volume of data transmitted over 
the network. The longevity of sensor nodes is greatly 
increased by this energy conservation through reduced data 
transmission, which also prolongs the network overall 
operating life.  

Furthermore, as WSNs frequently have limited bandwidth 
resources, data aggregation aids in lowering bandwidth 
consumption. By sending only the most important, 
aggregated data, network congestion is decreased and the 
network can function more effectively. In addition to saving 
bandwidth, this decrease in network load also reduces 

interference between sensor nodes. A more reliable 
communication process results from fewer transmissions 
since there is a lower chance of data packet collisions and 
subsequent retransmissions. As a result, the network is more 
capable of managing high data volumes and sending the most 
pertinent information to the user. 

1.2. Preliminaries 

Over time, nodes may exhaust their energy due to continuous 
sensing, aggregating, and transmitting of data, eventually 
leading to their failure. These dead nodes can disrupt data 
transmission by hindering communication with intermediate 
nodes. To prevent this, we periodically check the status of 
each node to determine whether it is alive or dead. The terms 
used in our research to describe node status are defined as 
follows. 
• Node-Alive Index: The Node-Alive Index represents the

percentage ratio of the number of nodes alive at present
to the number of nodes alive at the previous network
reconfiguration instant.

• Node-Alive Check Time:  The interval at which the
node's status (alive or dead) is monitored.

• Node-Alive Threshold: It is a constant value set by the
user. If the Node-Alive threshold is low, the network is
re-configured fewer times.

1.3. Contribution 

We have developed a novel data aggregation protocol that 
identifies redundant nodes at the network level and minimizes 
redundant data at the node level. The protocol then transmits 
the aggregated data efficiently to the sink node. The key 
contributions of this research are highlighted as follows. 
• We have identified the adjacent nodes and determined

the redundant nodes based on the spatial distance
technique and redundancy threshold.

• The computed redundant nodes enter into a sleep state,
and only active nodes are allowed to transmit the data to
the sink node to enhance the network lifetime.

• We computed the Node-Alive Index and optimized the
Node-Alive threshold to minimize transmission
overhead and data loss. If the Node-Alive Index falls
below the defined threshold, our protocol stops data
transmission, reconfigures the network, and then
resumes data transmission to avoid energy wastage.

• We have developed an aggregation method to remove
redundant data from source nodes based on temporal
correlation. We computed data redundancy using a
similarity threshold, which depends on the difference
between consecutive data measurements. Further, we
assign a weight to the non-redundant data measurement.
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• We have modified the DARR protocol and proposed the
HCT (High Compression Temporal) mechanism to
reduce redundant data measurements further.

The remaining sections of our paper are organized as follows. 
In Section 2, we have elaborated on the related work in the 
current literature. We discuss the design and implementation 
of the proposed protocol in Section 3. Section 4 presents the 
evaluation and simulation results. Section 5 provides the 
concluding remarks and future research direction.  

2. Related Works

Advancements in computer technology have made it possible 
to develop WSNs that can continuously monitor important 
parameters. Cloud computing can be quite helpful for web 
applications with particular processing and storage needs. 
Wireless sensor networks are connected to the cloud, which 
has a scalable and flexible architecture based on IoT(Internet 
of Things) [8]. During end-to-end transmission, these systems 
experience limited bandwidth, power, and resource 
consumption. Data aggregation [9] is one of the methods 
discussed for alleviating the above-mentioned problems. 

We have referred to the literature survey to discuss various 
spatial, temporal, scheduling, and routing-based data 
aggregation algorithms. As the nodes are randomly deployed 
and dense, they transmit more redundant data.  In [10], data 
redundancy is removed based on the semi-variance-based 
compressive sensing method. In the data aggregation process, 
the aim is to eliminate redundant data by removing relevant 
information from the collected data and sending it to the sink 
node. The most commonly used data aggregation functions 
are maximum (MAX) and minimum (MIN). Also functions 
such as MEAN, MEDIAN, Average (Avg), Difference (Diff), 
Count, and other math functions like MATCH, and 
Correlation-Coefficient techniques [11, 12, 13] are often 
used. Three major categories, centralized, distributed, and 
hybrid algorithms, are used to group data aggregation 
methods. As part of the centralized algorithm, a central node 
known as a cluster head collects information on each node in 
the network and keeps track of every other node [14, 15]. 
Additionally, it keeps the same information in its database. 
Any node must ask the central node for permission to interact 
with any other node. Whereas in the distributed algorithm 
[16], the central node need not be identified and any node may 
interact with another node. In this case, each node contributes 
equally to the packet routing process. Data aggregation 
systems must use big data handling techniques when dealing 
with massive volumes of data in IoT-based applications using 
a distributed approach [17]. 

In the modified I-LEACH (internet-based low-energy 
adaptive clustering hierarchy) protocol [18], a distributed 
cluster formation approach is used. The existing clustering 
method, LEACH, is adjusted by introducing a threshold value 

for selecting the cluster head (CH). Additionally, the power 
levels of nodes are adjusted at the same time. The amount of 
sensed data conveyed from the source nodes to the sink node 
is substantially reduced using a hybrid data aggregation 
strategy. The hybrid approach integrates the features of both 
the cluster and tree-based approaches, as mentioned in [19]. 

The energy efficiency of WSNs can be further improved 
by utilizing the spatial correlation among nodes. This is 
achieved by implementing a data collection strategy proposed 
in [20]. The strategy uses length-compressed coding to 
eliminate the unnecessary transmission of redundant data.  

In the existing algorithms [11, 12, 21], the data from all the 
nodes in a cluster is sent to the cluster head (CH). At the CH, 
redundant data is eliminated using spatial correlation. There 
is a significant limitation in the above algorithms, as all the 
nodes participate in data transmission to the CH or aggregator 
node. Additionally, the redundancy elimination techniques 
may cause the system to become more complex. The 
algorithms must be practical, and implementing them could 
require additional memory and computing power. In WSN, 
nodes with limited resources, this additional complexity may 
pose difficulties and affect the network performance. 

For various reasons, the collected data comprises large 
redundant data. Since redundant data is utilized to increase 
sensed data accuracy and reliability and build a fault-tolerant 
network, it is desirable due to its favourable effects. However, 
it causes various problems, such as reducing the network 
lifetime, data processing costs, bottlenecks, throughput 
delays, network congestion, and contention. Aggressive 
redundancy removal approaches may sacrifice data accuracy 
for efficiency. In [21], a spatial redundancy reduction 
approach for IoT data is presented to reduce redundant data 
issues without compromising the data's accuracy and 
reliability. The Sink Level Aggregation Algorithm (SLAA) 
and Sink Level Grouping Algorithm (SLGA) provided in [22] 
detect the deviation in data that implements the Kalman filter. 
The Kalman filter eliminates the spatial and temporal 
redundancy in the data. As the sensor networks frequently 
have changing topologies, the performance of the Kalman 
filter may decline. Utilizing support vector machines (SVM), 
using a supervised learning model [23] is another method to 
remove redundancies during data aggregation. To minimize 
the quantity of data transferred across the network further, 
temporal correlation can be used for the data aggregation 
process of combining or summarising redundant or linked 
information [24]. There are issues with collisions during data 
transmission as well as synchronization between the sensor 
nodes and their neighbours.  

The specific requirements of the WSN and the 
application’s specifications determine the choice of Medium 
Access Control (MAC) protocol. For example, Time Division 
Multiple Access (TDMA) may be suitable for certain 
scenarios. In other cases, Carrier Sense Multiple Access 
(CSMA) might be a better choice. The selected MAC 
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protocol should work effectively with temporal correlation 
techniques to optimize network performance.  

The lifetime of Wireless sensor networks (WSNs) depends 
heavily on latency, especially in applications where real-time 
data is critical. As the processing power of sensor nodes is 
often constrained, reducing the latency to reduce the node's 
computational power is a challenge. To aggregate data 
measurements from other sensor nodes (SNs), each SN must 
wait a predetermined amount of time, known as the waiting 
time (WT), which can be either fixed or variable, before 
executing the aggregation function [25]. This creates a delay 
in the data transmission in the network. To minimize this 
delay, the Distributed algorithm for Integrated tree 
Construction and data Aggregation (DICA) [26]  is used. This 
approach combines node scheduling and tree formation to 
minimize delay. Another popular method for extending a 
sensor network lifetime is Duty cycling, however, it increases 
the latency in data aggregation [27]. In [28], a collision-
resistant dynamic (CORD) scheduling approach is proposed. 
This suggested approach adapts to any starting routing 
structure and dynamically modifies a transmission's receiver, 
and whenever doing so, can shorten the aggregation time. 
Minimum Latency Aggregation Scheduling (MLAS) [29] 
computes a conflict-free schedule and constructs an 
aggregation tree with the chosen nodes, relying on non-
predetermined structures. To reduce the latency, a contention-
free approach is employed as a solution in the media access 
control technique, which uses TDMA to allocate time slots 
across SN on the assumption that another service will 
maintain network synchronization [30]. 

To prolong the network lifetime, the majority of protocols 
in the literature either implement routing protocol or 
eliminate redundancy when aggregating the data. However, 
in [31], a novel Q-learning-based Data-Aggregation-aware 
Energy-Efficient Routing (QADEER) method is 
implemented to achieve data aggregation with routing and 
redundancy elimination. The approach uses reinforcement 
learning to find the best path for data transmission. It 
considers factors like communication energy and the residual 
energy of each node. It also evaluates the effectiveness of data 
aggregation based on the type of sensor in use. In another 
routing technique, the authors suggested a novel routing 
method for WSN called Efficient Bandwidth Aware Routing 
Protocol (EBARP) [32] to improve sensor node energy. It 
involves fuzzy logic to form the cluster and select the cluster 
head (CH) based on residual energy, bandwidth, and 
delay.  One of the most critical challenges in transmitting the 
redundant data to the sink node is the formation of energy 
holes near the sink node, which cause energy imbalance in 
the network. Using the A-star heuristic technique, the 
LSDAR (Lightweight structure-based data aggregation 
routing) [33] protocol controls the energy hole problem. The 
Node utilization-based data routing and aggregation 
(NUIDRA) protocol [34] addresses the energy hole issue by 
relying on each node’s bandwidth utilization. To further 

improve communication efficiency and reliability, the O-
AODV (Optimized AODV) protocol for Bluetooth Low-
Energy (BLE) uses a multi-hop mesh with a flat, non-
hierarchical topology. This approach offers advantages over 
the traditional AODV (Ad hoc On-Demand Distance Vector) 
and standard mesh routing protocols. 

As the network expands, basic aggregation and routing 
methods may struggle to scale effectively, resulting in 
increased delays, congestion, and energy consumption. To 
address these issues, modern data aggregation and routing 
algorithms often incorporate AI and ML techniques. Fuzzy 
logic systems have been used to decide optimal routes in real-
time while considering energy and delay trade-offs.  

Real-time data collection from the surrounding 
environment is one of the primary characteristics of IoT-
based WSNs. Sensor nodes quickly provide data across the 
network while continuously monitoring physical attributes 
like temperature, humidity, and motion. As the need for 
routing techniques goes beyond optimisation, routing 
protocols themselves must be intelligent. Intelligent routing 
systems employ machine learning algorithms and adaptive 
decision-making to effectively negotiate the complexity of 
dynamic WSNs [37]. 

When processing large amounts of data in WSNs, 
Artificial Neural Networks (ANNs) offer a more efficient 
solution. The ANN has been applied in WSNs to solve 
various issues like routing, node localization, data 
aggregation, congestion control, etc. [38].  Also, [39, 40, 41] 
mentioned about the latest trends in AI, ML, Deep Learning, 
big data and Cognitive Learning in data aggregation 
mechanism. The knowledge tracing model (XKT) could be 
adapted to enhance the data aggregation in wireless sensor 
networks (WSNs) [42]. The XKT can apply its principles of 
multi-feature embedding, cognitive processing, and 
predictive modelling to manage and interpret the data 
aggregated from various sensor nodes.  

The convergence of 5G technology and WSNs offers 
immense potential for enabling real-time, high-speed 
communication with ultra-low latency and massive device 
connectivity. This integration enhances the capabilities of 
WSNs in applications like IoT, smart cities, and industrial 
automation by supporting intelligent data routing, adaptive 
resource allocation, and energy-efficient operations [43]. In 
the next section, we discuss the design and implementation of 
the proposed DARR protocol. 

3. Proposed DARR Protocol - Design and
Implementation

The proposed Data Aggregation with Redundancy 
Removal (DARR) protocol is explained in detail in this 
section. We suggest a two-phase design and implementation 
process for our protocol. The working mechanism of the 
proposed protocol is shown in Figure 1. In the first phase, we 
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determine the adjacent and redundant nodes based on the 
spatial distance between them. Then we set the redundant 
nodes to Sleep state. The sleep nodes do not take part in data 
sensing and transmission so the transmissions from redundant 
nodes are avoided. This reduces the communication overhead 
and network energy consumption. In the second phase, we 

remove the redundant data from source nodes using temporal 
correlation. This aggregated data is sent to the next active 
node or intermediate node, and then to the sink node using the 
shortest path [34]. A detailed explanation of phase I and phase 
II is given in section 3.3. 

Figure 1. Working mechanism of proposed DARR protocol 

3.1. Assumptions for DARR protocol 

The design of the DARR protocol is based on the following 
assumptions: 

• The nodes are dispersed uniformly and randomly over
the network field.

• The location of the nodes is not known.
• After deployment, nodes are stationary.
• Every node has the same amount of memory, battery

capacity, and computational power.
• The node's sensing range (Rs) is equivalent to half of its

communication range (Rc).

3.2. Network Operation 

Once the network is initialized, the network is operated in the 
following sequence. 

(i) The redundant nodes are set to Sleep state and non-
redundant nodes are set to Active state.

(ii) The sensed data is aggregated using temporal correlation
at the active source nodes and is send to the sink node
using the shortest path.

(iii) Periodically, as per the Node-Alive-Check Time (τ)
value, the Node-Alive Index (η) is compared with the
Node-Alive Threshold (Γ).

(iv) If Node-Alive Index goes less than Node-Alive
threshold value, the sequence of operation is started
again from the first step.
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Table 1 shows the symbols and notations used in the proposed 
protocol. 

Table 1. Symbols and Notations 

Symbols Description 

Si 𝑖𝑖𝑡𝑡ℎ source node, where i is an integer 

N Number of sensor nodes 

Rn Redundant node 

Adn Adjacent node 

Rc Communication range 

Rs Sensing range 

d Spatial distance between adjacent nodes 

x Redundancy threshold 

δ Number of nodes alive at an instant  

γ Number of nodes alive in last iteration 

τ Node-Alive Check Time 

η Node-Alive Index 

Γ Node-Alive threshold 

Ʈ Time slot for source node to sense data 

𝑡𝑡 
Time interval assigned to node to sense data                          
before aggregation 

M 
Data measurement in Ʈ𝑗𝑗  slot, where j is an 
integer 

ɛ Similarity measure threshold for data values 

µ Mean value 

ⱳ Weight value 

Next, we will examine the network operation in detail as 
outlined below. 

3.2.1. Monitoring of Alive Nodes 
As the data transmission starts from the source nodes to the 
adjacent nodes, with time, few nodes may fail due to 
environmental conditions or due to energy depletion. We do 
not consider dead nodes as intermediate or aggregator nodes 
to forward the data. So to consider only the alive nodes, after 
every Node-Alive Check Time (τ)  interval, we check the 
node status. We can change the value of (τ) depending on the 
application. Based on the  Node-Alive Index (η) value we 
decide the reconfiguration of the network. We denote the 
‘number of nodes alive at previous network reconfiguration 
instant’ as γ. The  Node-Alive Index (η) is given by Equation 
1.  

 η   =   δ/(γ )  * 100     (1) 

For illustration, we consider, there are 100 sensor nodes 
alive in the network. After Node-Alive Check Time (10 
minutes), 93 nodes are alive, and 7 nodes are dead, so 
according to Equation 1 the value of the Node-Alive Index 
(η) is 93. The Node-Alive threshold (Γ) value is set to 95. 

Now again after the next Node-Alive Check Time interval (10 
minutes), the Node-alive Index is computed. Whenever the 
Node-Alive Index is less than the Node-Alive threshold, the 
network operation will begin again and will recalculate the 
redundant nodes in the network, repeating the whole process 
as mentioned in section 3.2. Once we monitor the network for 
alive nodes then we identify the adjacent nodes and redundant 
nodes as discussed un the following section. 

3.3. Phase I - Identifying Redundant Nodes 

In Phase I of the proposed protocol we identify the redundant 
nodes in the network. The procedure to find the adjacent and 
redundant nodes is discussed in the following subsections. 

3.3.1. Identifying Adjacent nodes 

For each node, the sink node identifies its adjacent nodes 
depending on the spatial distance (d) between the nodes. The 
spatial distance between the two nodes is measured by the 
sink node and is dependent on the Received Signal Strength 
Indicator (RSSI) readings [33]. When the spatial distance 
between two nodes is equal to or smaller than the 
communication range (Rc ), then we consider them to be 
adjacent as mentioned in Equation 2. 

Adn  =     � 1   if  𝑑𝑑𝑖𝑖𝑖𝑖  ≤  Rc
0   otherwise

     (2) 

where i and m are integers; i represents the current node and 
m represents an adjacent node. 
    According to Equation 2, the adjacent-node flag is set to 
the value one if the distance between two nodes is less than 
or equal to the communication range otherwise, it is set to the 
value 0. 

3.3.2. Identifying Redundant nodes 

Once we determine the adjacent nodes, the proposed protocol 
determines the redundant nodes (Rn) as given by Equation 3. 

Rn =  �  1    if (x ∗  Rc) / 𝑑𝑑𝑖𝑖𝑖𝑖  ≥  1
0                          otherwise

    (3) 

Here, x denotes the redundancy threshold whose value varies 
from 0.1 to 0.9.    
For illustration purpose Figure 2 shows a network of twelve 
sensor nodes. The sink node computes the spatial distance (d) 
for all the nodes using the received signal strength 
measurements [33]. We have set the redundancy threshold (x) 
value as 0.45 and the communication range Rc as 10m. The 
redundancy threshold (x) is selected depending on the 
requirement of redundancy percentage, which depends on the 
application. The sink node identifies its adjacent nodes in the 
network using Equation 2. Further, the sink node computes 
redundant nodes using Equation 3 from its adjacent nodes. 
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The detail computation of redundant nodes is illustrated in 
Figure 2 (a), (b), (c), and (d) and Table 2.  

Step I – The nodes adjacent to the sink node (1) are nodes 
(2,4,5 and 6) and as shown in Figure 2 (a) and Table 2. Now, 
the sink considers two adjacent nodes, (1 and 2). The distance 
between them is 8 meters and by using Equation 3, we find 
the value of Rn is 0.56, which is not equal to or not greater 
than 1, and hence the redundant flag is set to 0 so node-1 and 
node-2 are not redundant as shown in Table 2. Similarly, sink 
node (1) computes the redundancy with node-4, node-5 and 
node-6 and finds that they are not redundant with node (1). 
After step I, we determine the redundant nodes for node-2.  

Step II – The adjacent nodes of node-2 are node-3, node-4 
and node-8 as shown in Figure 2 (b). Now the sink considers 

two adjacent nodes, node-2 and node-4. The distance between 
them is 6 meters. Using Equation 3, we find that Rn is 0.75, 
which is not equal to or not greater than 1. Thus,  node-2 and 
node-4 are not redundant. Similarly, the sink checks the 
redundancy with the adjacent node-3 and node-8. 
Step III – As shown in Figure 2.c), the adjacent nodes of node 
4 are node-3, node-8 and node-5. Now the sink considers two 
adjacent nodes, node-4 and node-8. The distance between 
them is 4.5 meters. Using Equation 3, we find that Rn is 1, 
and hence node-4 and node-8 are redundant. 

Step IV – The adjacent nodes of node-5 are node-4, node-6 
and node-7. Now the sink considers two adjacent nodes, 
node-5 and node-6. The distance between them is 4.5 meters. 
Using Equation 3, we find that Rn is equal to 1 so the 
redundant flag is set to 1, and 

Figure 2. Identification of redundant nodes 

Table 2. Computation of redundant nodes 

Visited 
Nodes 

Sleep 
Flag 

Adjacent 
(non-

visited) 
Nodes 

Redundant 
Node-count 

Redundant 
Node-Id 

1 0 2, 4, 5, 6 0 - 
2 0 3, 4, 8 0 -- 
4 0 3, 5, 8 1 8 
5 0 4, 6, 7 1 6 
6 1 -- -- -- 
3 0 8, 11 0 -- 
8 1 -- -- -- 
7 0 9 -- -- 

11 0 9, 10 -- -- 
9 0 10, 13 -- -- 

10 0 12, 13 2 12, 13 

hence node-5 and node-6 are redundant. It checks the 
redundancy for the remaining adjacent nodes in a similar 
fashion. The process mentioned in the above steps, I to IV, 
continues until the sink finds all the adjacent and redundant 
nodes in the network. The sink also maintains the adjacent-
nodes and redundant-nodes table with their node-id as shown 
in Table 2. The redundant nodes are highlighted (yellow 
colour) in Figure 3 and refer Table 2 for the same. Node-6, 
node-8, node-12 and node-13 represent the redundant 
nodes with respect to node-5, node-4, node-10, and 
node-10 respectively. 

12 1 -- -- -- 
13 1 -- -- -- 
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Identifying redundant nodes in the data aggregation 
process is also presented in Algorithm 1. 

Figure 3. Redundant nodes in a network 

Once we identify the redundant nodes, we set them to Sleep 
state till the Node-Alive Check Time, and the non-
redundant nodes are set to Active state for the same 
period. They will remain in Active or Sleep state 
depending on the number of alive nodes in the network. 
The Active node aggregates the data and further transmit it 
to the adjacent node and finally to the sink node using the 
shortest path [34]. 

Algorithm1: Identifying redundant nodes 
_____________________________________________________________________________ 
Input : Node lists/arrays used in algorithm 
SrcNodes – Input list of nodes to be processed 

Nodes – list to add and process nodes during program execution  

Node – variable to process a single node 

VisNodes – List of visited and processed nodes during program execution 

AdjNodes – List of adjacent nodes found for a current node being processed 

RedNodes – List of redundant nodes 

Rc – communication range, x - redundancy threshold, d - distance 

1: Start 
2: Initialize node lists SrcNodes, Nodes, AdjNodes, VisNodes 
3: Initialize variables d, x = 4.5, Rc = 10    
4: Nodes.AddNode(SrcNodes)            – First SinkNode is added in list Nodes to start processing
5: Repeat till list Nodes is empty      – process nodes in loop
6: Node = Nodes.GetNode()    – Get node from list and assign it for processing
7:      VisNodes.AddNode(Node)     –  add in visited node list
8:      If Node.SleepFlag = 1             –  if node is already marked for sleep, proceed to next node
9:            Next iteration of loop 
10:     End If 
11: AdjNodes = Node.FindAdjNodes()  – Find adjacent nodes for a current node 
12: Repeat till AdjNodes is empty              – Process all adjacent nodes in loop 
13:     If AdjNodes.Node is not in VisNodes list 
14:         d = FindDistance (Nodes.Node, AdjNodes.Node)        – Find distance between nodes
15:         AdjNodes.SleepFlag = IdentifyRedundancy (d, Rc, x)     – Identify redundancy 
16:         If AdjNodes.SleepFlag  = 1                       – If another redundant node identified
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17:    ++VisNodes.node.RedNodesCount    – increase redundant node count for
the node

18:    VisNodes.node.RedNodes.add(AdjNodes.Node)   – add redundant node in list 
19:         End if 
10:         Nodes.AddNode(AdjNodes.Node)        – Add adjacent node to nodes list 
21:         AdjNodes = AdjNodes.next       – take next adjacent node for processing 
22:     End If 
23: End loop 
24: End loop 
25: Stop 

Function: IdentifyRedundancy (d, Rc, x) 

1: Start 
2:     Int SleepFlag 
3:     SleepFlag = Int (Rc*x/d )         – Calculate formula to identify node to mark Sleep flag
4:     If SleepFlag >= 1 
5:         SleepFlag = 1 
6:     End if 

     7: Return SleepFlag  
_____________________________________________________________________________ 

In the next section, we discuss the working of Phase II of 
our protocol. 

3.4. Phase II – Data aggregation using 
temporal correlation 

Each source node senses the data during the time interval 
𝑡𝑡 and then aggregates it.  Each time interval (t) consists of j 
time slots (Ʈ𝑗𝑗) during which a node senses and records the 
data, as indicated by Equation 4. 

 𝑡𝑡 = � Ʈ𝑗𝑗
𝑛𝑛
𝑗𝑗=1       (4) 

where j is the timeslot number in time interval (𝑡𝑡 );  n is the 
maximum number of timeslots in time interval (𝑡𝑡 ). 
      For illustration, as shown in Figure 4, we consider sensor 
node-1 senses ten events in a single time interval 𝑡𝑡1 , at 
various time slots from Ʈ1 ,Ʈ2 ,𝑢𝑢pto Ʈ10 . We set the 
similarity measures threshold (ɛ) value to 0.05. The sensed 
data measurements in time slots Ʈ1 , Ʈ2  and  Ʈ3  is redundant 
and denoted as Redundant Data Value (RDV). The data 
measurements in Ʈ4 , Ʈ5 , and Ʈ9 , Ʈ10 is also redundant 
whereas the data in the remaining time slots represent Non-
Redundant Data Value (NRDV). After aggregating the data 
using temporal correlation, from ten data readings, only six 
are sent to the next intermediate node. Using modified DARR 
protocol with HCT mechanism only two data measurements 
are transmitted instead of 10 data measurements as shown in 
Figure 4 and step-by-step procedure is explained in Table 3. 

  We use the Cognate function to identify similar data as 
given by Equation 5 which indicates the difference between 
two data measurements. 

Cognate (𝑆𝑆𝑖𝑖,𝑗𝑗 , 𝑆𝑆𝑖𝑖,𝑗𝑗+1 ) =  � 
1  if || 𝑆𝑆𝑖𝑖,𝑗𝑗 , 𝑆𝑆𝑖𝑖,𝑗𝑗+1 ||  ≤  ɛ 
0,  otherwise

    ………    (5) 

where, S represents the sensor node, and (i,j)  are integer 
variables representing the data of 𝑖𝑖𝑡𝑡ℎ node at  𝑗𝑗𝑡𝑡ℎ timeslot. 
       The similarity measures threshold value (ɛ), depends on 
the type of WSN application. The Cognate function returns 
the value "1", which means the data values are redundant, i.e. 
two data measurements are the similar. 
        As shown in Table 3, we have set the similarity measures 
threshold (ɛ) value to 0.05, and the ‘Weight’ value of the 
current data-value or data-measure as 1. When the data is 
identified as redundant, its weight is incremented by 1. In the 
first iteration, we consider the first data value sensed at T1 
(5.11) with its weight value 1. In the second iteration, we 
apply the ‘Cognate’ function for data-value sensed at T1 
(5.11) and data-value sensed at T2 (5.09).  As per Equation 5, 
Cognate function returns value 1, that means, data-values 
5.11 and 5.09 are redundant. We calculate the ‘Mean’ of these 
two data values (5.10) and its weight value now becomes 2. 
Similarly, we apply the Cognate function for the next 
successive measurements. i.e. data-value at at T2 (5.09) and 
at T3 (5.12), which returns the value 1, so data values 5.09 
and 5.12 are redundant. Now, we find the ‘Mean’ of previous 
redundant values (5.11, 5.09) and the current successive value 
(5.12) which is 5.107 with its new weight value updated to 3. 
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If the data values are not redundant (Cognate function returns 
zero value) then ‘Mean’ is not computed and the earlier Mean 

Figure 4. Data aggregation using temporal correlation 

value and the current data-value are retained. The final mean 
values at the 10th iteration are the aggregated data values with 
their weight which are reduced from 10 data-values to 6 non-
redundant data-values. Weight value represents the 

occurrence of similar or redundant data value. The removal 
of redundant data using temporal correlation in the data 
aggregation process is explained using Algorithm 2.

Table 3. Removal of redundant data using temporal correlation 

Steps Data-
values Si,j  

DARR (Compared with consecutive data values) 

Similarity measures threshold (ɛ)  = 0.05 
Cognate 

(Si,j ,  Si,j+1) 
µ (µ, ⱳ) 

1 5.11 (5.11, 1) 
2 5.09 1 5.10 (5.10, 2) 
3 5.12 1 5.107 (5.107, 3) 
4 5.20 0 (5.107, 3) (5.20, 1) 
5 5.18 1 5.19 (5.107, 3) (5.19, 2) 
6 5.08 0 (5.107, 3) (5.19, 2) (5.08, 1) 
7 5.14 0 (5.107, 3) (5.19, 2) (5.08, 1) (5.14, 1) 
8 5.08 0 (5.107, 3) (5.19, 2) (5.08, 1) (5.14, 1) (5.08, 1) 

9 5.19 0 (5.107, 3) (5.19, 2) (5.08, 1) (5.14, 1) (5.08, 1) 
(5.19, 1) 

10 5.21 1 5.20 (5.107, 3) (5.19, 2) (5.08, 1) (5.14, 1) (5.08, 1) 
(5.20, 2) 

Algorithm 2 :  Data Aggregation using Temporal Correlation 

Input : DataA (data array contains j number of time slots with sensed data values), 
MeanA (array to store mean values), WeightA (to store weight for each mean value), 
TempA (array to keep data values to calculate mean) 
1: Start 
2: Initialize array MeanA, WeightA, TempA and integers n=0, k=0, l=0  
3: ɛ = 0.05          – Constant for similarity measures threshold  
4: TempAl = DataAn , MeanAk = DataAn , ++n      –  Assign first data value 
5: Repeat from 2nd value till jth value       – Last value in Data A  
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6: If difference (DataAn, DataAn−1) > ɛ      – If difference between current and 
    previous value is more than ɛ 

7: l=0, ++k    – Initialize temp array l, increase array iterator
8: Else 
9 ++l  – Increase iterator of temp array
10: TempAl = DataAn  
11:        MeanAk = Average (TempA0 …. TempAl)      – Take mean of values and

store in MeanA
12:  WeightAk = l +1         –  Store weight for above mean value 
13: Endif 
14: ++n 
15: End loop  
16: Return (MeanA array, WeightA array)       –  Returns aggregated data 
17: Stop 
____________________________________________________________________________________________________ 

The sink node computes node redundancy; the whole network 
will die if the sink node fails. Further, for very high node 
density (more than 1000 nodes), the DARR protocol causes 
higher computational overheads. DARR protocol does not 
capture the redundant data values if those are not consecutive 
in the given interval. We have proposed a DARR-HCT 
protocol to remove this limitation. The computation of 
eliminating redundant data using DARR-HCT is discussed in 
the next section.  

3.4.1. Removing redundant data using DARR-HCT 
protocol 

We have used the DARR-HCT (High Compression with 
Temporal correlation) protocol to eliminate large number of 
redundant data measurements. In this technique, the current 
data value is compared with the mean of prior redundant data 
values as shown in Table 4. If the difference is above the 
similarity measures threshold ( ɛ),  it is considered non-
redundant and retained, otherwise, its mean is computed with 
previously identified redundant values. We consider the same 
data set (10 Data values) as considered in the earlier DARR 
protocol. DARR protocol determines the number of non-
redundant data-values as six (6) shown in Table 3. It is further 
reduced to non-redundant data-values as two (2) by using 
DARR-HCT protocol. We illustrate the steps to find the 
aggregated data measurements in Table 4.

Table 4. Removal of redundant data using HCT 

Steps Data values 
Si,j  

DARR-HCT (Compared with mean value of each set) 

Similarity measures threshold (ɛ)  = 0.05 
Cognate 
(Si,j ,  Si,j+1) µ (µ, ⱳ) 

1 5.11 (5.11, 1) 
2 5.09 1 5.1 (5.10, 2) 
3 5.12 1 5.107 (5.107, 3) 
4 5.20 0 (5.107, 3) (5.20, 1) 
5 5.18 1 5.19 (5.107, 3) (5.19, 2) 
6 5.08 1 5.1 (5.10, 4) (5.19, 2) 
7 5.14 1 5.108 (5.108, 5) (5.19, 2) 
8 5.08 1 5.103 (5.103, 6) (5.19, 2) 
9 5.19 1 5.19 (5.103, 6) (5.19, 3) 
10 5.21 1 5.195 (5.103, 6) (5.195, 4) 
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The identification and removal of redundant data from all the 
given data measurements using the DARR-HCT protocol is 
explained using Algorithm 3.

Algorithm 3 :  Data Aggregation using HCT 
_____________________________________________________________________________ 

Input: DataA   is input data values array contains j number of time slots with data values), 
MeanA is array contains mean values stored after calculation, 
WeightA is array contains weightage for each mean value,  
TempA is array to keep data values to calculate mean 
1: Start  
2: Initialize array MeanA, WeightA, TempA and variables n=0, k=0, l=0, m=0,  

      within_threshold = No 
7: ɛ = 0.05      –  Constant for similarity measures threshold 
8: TempAl = DataAn , MeanAk = DataAn , ++n    – Assign first data value 
9: Repeat from 2nd value till jth value    – Last value in DataA  
10: Repeat till m <= k – Repeat for all mean values calculated 
11: If difference (DataAn, MeanAm) <= ɛ     – To check if difference is within 

 one of the mean values in the set 
12: within_threshold = Yes 
13: Exit loop 
14:  Else 
15:   ++m 
16: Endif 
17: End loop 
18:  If within_threshold = Yes 
19:  l = WeightAm
20: TempAml = DataAn 
21: MeanAm = Average (TempAm0 .. TempAml)    – Take a mean of values and store in Mean A 
22: ++WeightAm 
23:  Else 
24: ++k 
25: MeanAk = DataAn 
26: WeightAk = 1  
27:  Endif  
28: m=0, ++n, within_threshold = No  
29: End loop  
30: Return (MeanA array, WeightA array)      – Returns aggregated data
31: Stop 

4. Results and discussion

We have used the NS2 simulator [36] to assess the 
performance of the suggested DARR protocol. In the 
simulation scenario, up to five hundred wireless sensor nodes 
and one sink node are established. Every node establishes a 
constant bit rate (CBR) session with the sink node. There are 
orphan nodes that are unable to transfer packets to the sink 
node when there are relatively few nodes, for example 10 or 
20 nodes. This is due to the fact that since nodes are spread 

randomly throughout the network, certain nodes are not 
within the communication range of these orphan nodes. After 
a certain number of iterations, a few nodes may fail or run out 
of energy. Each parameter has been simulated ten times, and 
the average outcomes are shown. The calculation of various 
losses over the communication link is out of the scope of our 
paper. Hence, we have assumed the communication link to be 
ideal. Table 5 displays the simulation parameters that were 
taken into account when evaluating various protocols. 
     We compared the performance of the proposed DARR 
protocol with two cutting-edge protocols used STCDRR [12], 
and DA-AFM [3]. The evaluation parameters for WSN, such 
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as Percentage of Redundant nodes, Left-out nodes, Network 
Energy consumption, Reduction in data measurements, Data 
measurements transmitted, Network Lifespan, and Latency, 
are analyzed. During the simulation, the number of data 
measurements (M) is considered from 10 to 250. Table 6, 

Table 7 and Table 8 display the readings for varying node 
counts and evaluation parameters used in the data aggregation 
process. The standard deviation values for the simulation's 
evaluated parameters have been found to vary from -2.5% to 
+2.5%.

Table 5. Experimental parameter settings 

Parameter Numerical Value Parameter Numerical Value 

Network area 200 * 200 sq. m Mac protocol type IEEE 802.11b 

Number of sensor nodes 25 - 500 Bandwidth 1 Mbps 

Number of sink node 1 Frequency 2.4 GHz 

Node id size 1 byte Packet arrival rate 0.1 sec 

Mobility model None Simulation time 600 sec 

Control packet size 32 bytes Transmission Range 20 m 

Data packet size 256, 512 bytes Redundancy threshold (x) 0.1 – 0.9 

Application Type CBR Similarity measures 
threshold (ɛ)  

0.01 – 0.1 

Initial energy 1 J Node-Alive threshold (Γ) 95 

4.1. Percentage of Redundant Nodes 

The percentage of redundant nodes increases with the 
increase in redundancy threshold as shown in Figure 5, with 
the node density varying from 25, 50, 100, 150, and 200 
nodes in the given network area.  

Figure 5. Redundancy threshold Vs Redundant nodes 

Figure 5. shows that for 25 nodes, with redundancy threshold 
(x) as 0.1, the redundant nodes are 6% and with the value of
x as 0.5, the redundant nodes are 20%. For 200 nodes, with 
redundancy threshold (x) of 0.1, the redundant nodes are 
17%, and with x as 0.5, the redundant nodes are 47%. 

4.2. Left-out nodes 

In the randomly distributed network, some of the nodes are 
not in the communication range, so they cannot communicate 
with each other. Such nodes are called left-out nodes. The 
left-out nodes increase with the redundancy threshold (x). 
When x is increased, more nodes enter the Sleep state, 
therefore many nodes can be left out. The value of x can be 
optimized, based on the needs of the application to minimize 
the number of nodes that are left out, maximize area coverage, 
and ensure that the network uses less energy. Figure 6 shows 
the redundancy threshold versus left-out nodes. The left-out 
nodes are 4% when the spatial constant(x) is 0.1 and 22% 
when x is 0.5 with 200 nodes in the network. 

Figure 6. Redundancy threshold Vs Left-out nodes 
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4.3. Network Lifespan 

Figure 7 shows the relationship between the redundancy 
threshold and network lifespan. If we increase the redundancy 
threshold, the more number of nodes becomes redundant. 

Figure 7. Redundancy threshold Vs Network Lifespan 

The DARR protocol sets all redundant nodes to Sleep state. 
The network lifetime is extended because more nodes in the 
Sleep state prevent redundant data transmission from the 
sleeping nodes, which saves their energy. 
    From Figure 7, we observe that with a network of 50 nodes, 
the normalized value of the average network lifespan is 0.19 
and 0.71 when the redundancy threshold is set to 0.1 and 0.5, 
respectively. Similarly, with a network of 200 nodes, the 
normalized value of the average network lifespan is 0.3 and 
0.95 when the redundancy threshold is set to 0.1 and 0.5, 
respectively.  
   Table 6 indicates the percentage of redundant nodes, 
percentage of left-out nodes, and normalized value of the 
network lifespan for varying numbers of sensor nodes from 
25 to 500 with a redundancy threshold in the range from 0.1 
to 0.5. For the simulation results mentioned below, we have 
considered the packet size of 256 bytes. 

Table 6. Evaluation parameters for Number of nodes, N = 25, 50, ...500 for DARR protocol 

Number 
of nodes 
(N) →

Redun- 
ancy 
thresh- 
old (x) ↓ 

N=25 N=50 N=100 N=150 N=200 N=300 N=400 N=500 

Redun- 
dant 
Nodes 
(%) 

0.1 6 10 12 14 17 21 24 26 
0.2 11 15 17 20 23 30 35 39 
0.3 14 18 25 27 30 38 42 46 
0.4 18 21 31 33 35 44 47 50 
0.5 20 24 35 38 47 51 56 60 

Left-out 
Nodes 
(%) 

0.5 16 12 11 11.33 11 10 9.6 9 

Network 
Lifespan 
(normal- 
ized) 

0.1 0.11 0.19 0.20 0.22 0.3 0.36 0.4 0.42 
0.2 0.23 0.3 0.324 0.4 0.45 0.47 0.5 0.51 
0.3 0.38 0.49 0.51 0.6 0.67 0.69 0.7 0.71 
0.4 0.44 0.68 0.71 0.8 0.88 0.91 0.91 0.93 
0.5 0.59 0.71 0.8 0.9 0.95 0.95 0.96 0.97 

4.4. Energy consumption at source nodes 

When the source nodes sense the data during the time interval 
(t), much of the sensed data is found to be redundant. The 
redundant data is not transmitted to the adjacent nodes, so the 
energy consumption of the source nodes is less. The value of 
the data sensing time interval (t) is defined by the application. 
    The graph of the similarity measures threshold (ɛ) against 
the average normalized energy consumption at a randomly 

chosen source node-97 is displayed in Figure 8. We have 
considered twenty and fifty number of sensed data 
measurements (M) for simulation.   
For 50 data measurements, we have observed that, without 
aggregation or no aggregation (NA), the normalized value of 
energy consumption is 100%.  
    In comparison to energy consumption without aggregation, 
energy consumption with temporal aggregation is 90% at the 
threshold (ɛ) value set to 0.03, and 40% at ɛ value set to 0.1. 
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Figure 8. Energy consumption at source nodes 

4.5. Reduction in datasets after aggregation 

The amount of redundant data removed at source nodes 
depends on the similarity measures threshold (ɛ). 
Redundancy in the data measurements increases as we 

increase the value of similarity measures threshold. Figure 9 
shows the percentage reduction in data measurements sent for 
varying values of several data measurements (M) from 10 to 
50. The reduction in datasets, for ɛ value set to 0.03, is 6%
and 19.5% for a number of data measurements 10 and 50,
respectively, for DARR protocol. For ɛ value set to 0.03, the
reduction in datasets is 3% and 16.5% using the STCDRR
protocol and, 2% and 15% in the DA-AFM protocol with
values of M set to 10 and 50, respectively. The decrease in
datasets for DARR, STCDRR, and DA-AFM protocol is
48%, 43%, and 42%, respectively, for ɛ value set to 0.1 with
50 data measurements. As the similarity measures threshold
increases, we observe a larger reduction in datasets.
    In our proposed mechanism, the protocol takes the average 
of two successive data observations. Then, the average value 
is compared with the subsequent consecutive data 
measurement, so the difference or distance between the mean 
and subsequent data measurement is minimized and thus we 
extract more redundant data, than the other two protocols. 

Figure 9. Data measurements Vs Reduction in Data sets

The comparative results in percentage reduction in data 
measurements for M ranging from 10 to 50 data 
measurements with varying similarity measures threshold 
values for DARR, STCDRR, and DA-AFM protocol are 
shown in Table 7. We have considered the packet size of 256 
bytes to obtain the simulation results shown in Table 7. 
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Table 7. Reduction in data sets after aggregation (%) 

Similarity 
measures 

threshold (ɛ) 

 Number of Data 
Measurements (M)  Reduction in Data sets (%) 

 M=10  M=20  M=30  M=40  M=50 
 0.03  DARR  6  7.8  10.9  14.8  19.5 

 STCDRR  3  3.6  6.9  11.8  16.5 
 DA-AFM  2  2.8  4.8  10  15 

 0.05  DARR  8.2  11.5  13.2  19  24 
 STCDRR  5.2  8  10.2  15  21 
 DA-AFM  4.3  6.8  8.2  14  19 

 0.07  DARR  10.2  16  27  34.3  37 
 STCDRR  7.2  13  23.3  31.3  33 
 DA-AFM  5  11  22  29.3  32 

0.1  DARR 18 22.8 35 40 48 
 STCDRR 14 19.2 34 37 43 
 DA-AFM 13 17.8 32 35 42 

4.6. Reduction in datasets using DARR-HCT 

Figure 10 shows the percentage reduction in data 
measurements for DARR and DARR-HCT protocol. When 
employing the DARR-HCT protocol, data measurements are 
reduced by 60 % for 250 data measurements, while the 
DARR protocol reduces data measurements by 38 % for a 
similarity measures threshold value of 0.05. However, there 
is a trade-off between the reduction in datasets and the 
accuracy of the retrieved data. 

Figure 10. Reduction in datasets using HCT 

4.7. Data measurements sent 

Figure 11 shows the percentage of data measurements sent 
for varying values of redundancy threshold for 200 nodes. 
Without data aggregation, the Active nodes send all the data 
measurements, including redundant data to the sink node so 

the network consumes more energy. The DARR protocol 
transmits comparatively fewer data measures than the other 
two protocols i.e. 39% for DARR protocol, 52% and 64% for 
STCDRR and DA-AFM method respectively. In the 
proposed protocol, the redundant nodes are identified in the 
network and put into a sleep state, and only the remaining 
active nodes send the data measurements. Since the redundant 
nodes are in a sleep state, they do not participate in sending 
the data, so only Active nodes send the data. This results in 
the transmission of very less data measurements to the sink 
node. In contrast, in the compared protocols, all the nodes 
send the data measurements to the cluster head and redundant 
data is eliminated at CH and the aggregated data is sent to the 
sink node. 

Figure 11. Redundancy threshold vs. Data 
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4.8. Network Energy consumption 

When sensor nodes are densely populated, each node has 
numerous redundant neighbours due to the random 
distribution of sensor nodes. According to the DARR 
protocol, redundant nodes hold off on transmitting the data 
until the residual energy of the Active node in its sensing area 
drops below a certain threshold. Unlike the comparable 
protocols, this protocol saves network energy by setting all 
redundant nodes to the Sleep state. In the STCDRR and DA-
AFM protocols, the data aggregation works at two levels, i.e., 
source node and cluster heads. In STCDRR, in the 
aggregation process, every node periodically reads the 
measurements of the data it has acquired and uses the 
Euclidean distance function to send its data set and weights 
to the CH. The periodic data transmission results in saving 
the network energy. In the DA-AFM method, data 
redundancy is eliminated during aggregation by applying 
filters using the Relative Deviation and Adaptive Frame 
methods at both levels (source node and CH), which 
introduces additional overhead. The amount of network 
energy consumed increases with the number of data 
collection cycles or epochs. 
    Figure 12 shows the normalized network energy 
consumption for various data-aggregation rounds for the 
packet size of 512 bytes. In the 250th round, the network 
energy consumption using the DARR protocol is 21% 

whereas, for the STCDRR protocol and DA-AFM technique, 
it is 54% and 62%, respectively. As the number of data 
aggregation rounds further increases to 1000, network energy 
consumption using DARR protocol is 62% whereas, for 
STCDRR protocol and DA-AFM technique, it is 71% and 
90% respectively. Table 8 shows the comparative data for the 
below mentioned three protocols for data aggregation rounds 
varying from 250 to 1000 for the packet sizes of 256 and 512 
bytes. The DARR protocol outperforms the compared, 
STCDRR and DA-AFM protocols in terms of network 
energy. 

Figure 12. Network Energy consumption 

Table 8. Network energy consumption 

Number of 
data aggregation 

rounds 

Packet size 
(bytes) 

Network energy consumption (normalized) 

DARR STCDRR DA-AFM 
250 256 0.18 0.32 0.43 

512 0.21 0.54 0.62 
500 256 0.25 0.44 0.54 

512 0.33 0.60 0.77 
750 256 0.39 0.51 0.6 

512 0.47 0.65 0.84 
1000  256 0.44 0.58 0.79 

512 0.62 0.71 0.90 

4.9. Network Lifetime 

Figure 13 shows the normalized network lifetime for the three 
protocols discussed. The DARR protocol's data aggregation 
technique reduces the number of data transmissions at two 
levels. First, redundant nodes are put into sleep mode, which 
prevents unnecessary data transmissions. Second, redundant 

data is removed through temporal correlation when source 
nodes aggregate data over a set period. This decrease in 
network energy usage extends the network lifetime. The 
DARR protocol achieves a network lifetime that is 31% 
longer than the STCDRR method and 58% longer than the 
DA-AFM method over 1,000 data transmission rounds. The 
DA-AFM approach, which uses three-layer single-hop 
clusters in distributed sensor networks, has higher energy 
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consumption due to increased data transmissions. In next 
subsection, we have presented real time application of DARR 
protocol used in animal tracking system.  

Figure 13. Average Network Lifetime 

4.10. Application Scenario 

The DARR protocol can be used in various applications, such 
as wildlife tracking, early warning systems, etc., in dense 
forest environments. For example, the DARR protocol 
effectively addresses the challenges of data and node 
redundancy in animal tracking systems within dense forest 
environments. It operates through a two-phase strategy: The 
protocol identifies and optimizes sensor node usage by 
evaluating spatial distances between nodes. This ensures that 
only strategically active nodes monitor animal movements 
while redundant nodes are switched to a sleep state. By 
conserving energy at inactive nodes, the network achieves 
reduced redundancy and prolonged operational life. Applying 
a temporal correlation-based similarity measure, the DARR 
protocol filters redundant data frames generated during 
animal tracking. Only unique data is transmitted to the sink 
node, further minimizing energy consumption and 
maximizing efficiency. By integrating these mechanisms, the 
DARR protocol not only ensures efficient resource utilization 
but also significantly extends the network's lifespan while 
maintaining effective animal tracking capabilities. 

5. Conclusion and Future Scope

We have proposed the DARR protocol for energy-efficient 
and reliable data aggregation in wireless sensor networks. 
With the use of a spatial distance technique, the proposed 
protocol identifies the redundant nodes and configures the 
network environment to meet application requirements. 
Unlike other protocols, periodic updates are not necessary to 
maintain accurate spatial correlation between the aggregated 
data sets, as we set the redundant nodes to Sleep state. This 

reduces the number of data transmissions; hence it largely 
reduces the communication overhead. Periodically 
monitoring the Node-Alive Index and setting the redundant 
nodes to Sleep state, reduces the energy consumption of the 
network. Furthermore, it aggregates data at each source node 
for a set period using temporal correlation. Cognate function 
removes redundant data from consecutive time slots at the 
source node level, resulting in fewer data transmissions. 
Additionally, HCT mechanism reduces redundant data 
leading to very few aggregated data transmissions thereby 
increasing the network lifetime. The simulation result shows 
that the proposed protocol has a network lifespan that is 31% 
longer than the STCDRR protocol and 58% longer than the 
DA-AFM protocol.  
   Our future work will focus on improving scalability, real-
time adaptation, and redundancy removal by using advanced 
Artificial Intelligence (AI) techniques. AI-based techniques 
can be used to identify patterns in the data, differentiate 
meaningful data from redundant data, perform adaptive 
routing, and form flexible clusters in dynamic environments. 
These techniques will evolve to provide more innovative, 
efficient, highly scalable and resource-conscious aggregation 
strategies while maintaining data integrity and performance. 
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